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Abstract— In this paper, we propose an efficient blind image
quality assessment (BIQA) algorithm, which is characterized by a
new feature fusion scheme and a k-nearest-neighbor (KNN)-based
quality prediction model. Our goal is to predict the perceptual
quality of an image without any prior information of its ref-
erence image and distortion type. Since the reference image is
inaccessible in many applications, the BIQA is quite desirable
in this context. In our method, a new feature fusion scheme
is first introduced by combining an image’s statistical infor-
mation from multiple domains (i.e., discrete cosine transform,
wavelet, and spatial domains) and multiple color channels (i.e., Y,
Cb, and Cr). Then, the predicted image quality is generated from
a nonparametric model, which is referred to as the label transfer
(LT). Based on the assumption that similar images share similar
perceptual qualities, we implement the LT with an image retrieval
procedure, where a query image’s KNNs are searched for from
some annotated images. The weighted average of the KNN labels
(e.g., difference mean opinion score or mean opinion score) is used
as the predicted quality score. The proposed method is straight-
forward and computationally appealing. Experimental results on
three publicly available databases (i.e., LIVE II, TID2008, and
CSIQ) show that the proposed method is highly consistent with
human perception and outperforms many representative BIQA
metrics.

Index Terms— Blind image quality assessment (BIQA), label
transfer (LT), multichannel features fusion.

I. INTRODUCTION

D IGITAL images are popular in visual communication,
entertainment, and social networks. In these fields, an
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efficient image quality assessment (IQA) algorithm [1], [2]
is crucial to evaluate, control, and enhance the perceptual
image quality. Recently, many objective IQA approaches have
been developed. Based on the availability of a reference
image, these methods are usually classified into three types:
1) full reference (FR); 2) reduced reference (RR); and 3) no
reference/blind (NR). The FR-IQA metrics require full access
to the undistorted image and the RR-IQA methods also need
partial information from the reference image. By incorporat-
ing the spatial domain information, transformation domain
information [3], [4] and saliency information [5], [6] into the
IQA, many well-established FR [7]–[11] and RR [12], [13]
metrics have captured human perception well. However, in
many practical applications, the reference image is unavailable
(e.g., image restoration, etc.), which limits the application
fields of the FR and RR IQA algorithms. In contrast, the
NR/Blind-IQA method does not need the information of the
reference image, which is appealing and quite challenging.

Most existing BIQA approaches are composed of two
modules.

1) Quality-Aware Feature Extraction: This module
generates an efficient image representation to capture
the perceptual quality variation caused by the distortion.
As discussed in [2] and [14]–[17], many BIQA methods
focus on describing an image based on its natural scene
statistics (NSS) from the single color channel (i.e., the
grayscale map). These NSS are extracted from different
domains, e.g., BLINDS-II [15] focuses on the
DCT domain, distortion identification-based image
verity and integrity evaluation (DIIVINE) [16] works on
the wavelet domain, and natural image quality evaluator
(NIQE) [17] is executed on the spatial domain.

2) Prediction Model Learning: This module is mainly used
to map the image features to the subjective quality scores.
In many BIQA algorithms [15], [16], [18]–[20], the
learning-based regression models are widely used, such as
the support vector regression (SVR) [21] and the general
regression neural network (GRNN) [22].

Although the aforementioned methods have achieved
promising results, many important characteristics of the visual
perception are still underutilized.

1) In the feature extraction module, many existing methods
extract the single-domain features, which are not
sufficient to simulate the complex visual perception
mechanism. The multidomain information in both the
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spatial and spatial-frequency domains is necessary to pre-
cisely represent an image in the visual cortex [23], [24].
Moreover, the multichannel color information is rarely
discussed for the BIQA task. As discussed in [25], we
know that the trichromacy is an important underlying
property of the human vision system.

2) In the quality prediction module, there are also two com-
mon issues. First, the learning-based methods are dataset
dependent. When the training samples are changed, the
model parameters need to be retrained. Second, these
regression models (e.g., SVR and GRNN) usually work
like the black box mapping, which cannot provide an
intuitive visual perception interpretation for the BIQA.

To address the problems mentioned above, we propose a
novel BIQA algorithm that is an extension of our previous
work [26]. In particular, we introduce the multidomain/channel
information to capture the hierarchical and trichromatic prop-
erties which are lost in the single-domain/channel features.
Meanwhile, a label transfer (LT) method is proposed to
intuitively simulate the visual memory retrieval process in
the BIQA. In comparison with [26], the visual perception
properties behind each proposed feature are further explored
here. More extensive experiments and application instances
are added to evaluate the proposed method. Meanwhile,
the computational complexity of our method is investigated
as well.

In view of the superiority of capturing different
NSS characteristics under each distortion type, we follow the
two-step scheme in [16] and [19] and implement the BIQA
with the distortion type classification and LT (TCLT). Inspired
by the human perception properties, many new elements are
introduced into the proposed method, i.e.,

1) Multiple-domain features are introduced to simulate
the hierarchical structure of the visual cortex
perception [27], [28], which combine the DCT, wavelet,
and spatial domain information to compensate for the
visual information lost in the single domain.

2) In view of the trichromatic property of human color
vision [25], a multichannel fusion scheme is developed
by combining the NSS information from all of the
YCbCr color channels.

3) Mittal et al. [17] proposed a novel completely blind met-
ric that estimates a query image’s quality by measuring
its difference with the pristine images in terms of the
multivariate Gaussian model-based NSS feature. Inspired
by this paper, we develop an LT method to transfer the
DMOS labels from some annotated samples to the query
image. Based on the assumption that the images with
similar quality-aware features share similar perceptual
qualities, we utilize the feature distance to search for
the query image’s KNNs and compute specific weights
for each query image. Then, the weighted average of the
KNN’s DMOS labels is used as the predicted perceptual
quality.

The framework of our proposed method is shown in Fig. 1.
First, an support vector machine (SVM) classifier is used to
identify the query image’s probabilities of belonging to each
distortion type, which are denoted by p1 to pM . Second, the

Fig. 1. Framework of our proposed TCLT method.

distortion-specific LT is implemented in each annotated image
subset, whose samples share the same distortion type. The
predicted qualities in each LT channel are denoted by Q1 to
QM . Finally, the weighted average of Q1 to QM is used as
our perceptual quality score Q. Extensive experiments on the
LIVE II [29], TID2008 [30], and CSIQ [31] databases show
that the proposed method is remarkably consistent with human
perception and outperforms many state-of-the-art BIQA met-
rics.

The remainder of this paper is organized as follows.
Section II describes the proposed multichannel fusion features.
Section III presents the LT-based quality prediction model.
Experimental results are shown in Section IV. Then, an image
auto-denoising application is discussed in Section V. Finally,
the conclusion is given in Section VI.

II. MULTICHANNEL FUSION FEATURES

Our crucial idea is to match perceptually similar images.
Thanks to the developments of neural science and visual
cognition theories, plenty of neurophysiological evidence has
been found to reveal the visual perception process.

It is verified that the visual perception system is highly hier-
archical, i.e., the local low-level image features are extracted
in the neurons of the early visual area and the more complex
features will be produced in the higher visual areas. Here,
we investigate the properties of areas V1 and V2, which are
highly correlated with the visual description in the primate
neocortex [27], [28]. Then, the multichannel fusion features
in multiple domains are introduced to simulate this perception
structure.

A. Quality-Aware Features for Visual Area V1

As described in [27] and [28], V1 is the first visual percep-
tion cortical area, which is sensitive to simple local features,
e.g., edges, bars, and spatial frequency. Correspondingly, the
DCT is a practical tool to represent the local patch with its
responses to some orthogonal basis functions, which capture
different spatial frequency and local structures [32], [33].

It is noted that human perception presents different sensitiv-
ities for different spatial frequencies [27], [33]. Thus, we focus
on investigating the NSS of the normalized frequency band
coefficient ci in each band. Let fi (x, y) denote an element in



WU et al.: BIQA BASED ON MULTICHANNEL FEATURE FUSION AND LT 427

Fig. 2. Frequency bands in the 4 × 4 DCT domain.

TABLE I

COMPARISON BETWEEN THE PROPOSED DCT FEATURES

AND THE OTHER METHODS

the x th row, yth column of the DCT coefficient matrix and its
frequency band is i . Then, we can get

ci =
√
√
√
√

1

Ni

∑

x,y∈Ui

f 2
i (x, y)

Ui = {x, y|x + y = i, 0 ≤ x < W, 0 ≤ y < W } (1)

where Ni is the number of DCT coefficients in the
i th frequency band, and W is the size of the coefficient matrix.
An instance of the frequency band locations for a 4 × 4 block
is illustrated in Fig. 2, where the coefficients in the same
frequency band are labeled with the same intensity and texture.

Here, we try to develop quality-aware indexes from the
DCT domain. Similar works can be found in [14] and [15].
BLINDS [14] describes the local contrast, zero coefficient
peakness, and the directional information loss in the
DCT domain. BLINDS-II [15] extracts the DCT coefficients’
shape parameter, the frequency variation, and the relative
distribution between the higher and the lower bands.

Since human vision tends to represent images with minimal
redundancy [34], we explore the quality-aware DCT features
from the coding-related cues, which is different from previous
works. As discussed in [35], NSS mainly concentrates on the
intra-block and inter-block correlations in the DCT domain.
Here, we develop three DCT domain indices to capture
these correlation properties. A detailed comparison between
the proposed DCT features and [14] and [15] is shown
in Table I, where the full-band denotes the statistics on all
DCT coefficients and the band-wise denotes the statistics
in each frequency band. In the full-band, we use only the
skewness to describe the intra-block correlation and [14], [15]
introduce more information, such as, mean, variance, kurtosis,
and generalized Gaussian distribution shape parameter. Band-
wise, we compute two kinds of Shannon entropies on the

Fig. 3. Distributions of the intra-block skewness for the images with different
DMOS. The x-axis indicates the available skewness values, and the y-axis
indicates the distribution probability of each skewness value. Legend: the
DMOS value of each image.

normalized frequency band coefficients, which does not con-
sider the correlation in different orientations like [15]. In addi-
tion, as shown in Table I, only our DCT features introduce
the multichannel color information, which is not considered
for both [14] and [15].

1) Intra-Block DCT Feature: In the DCT domain,
a well-known feature for the natural image is its energy decay
property as the frequency increases in the intra-block [35].
When the annoying distortion is present, the decay rate of the
frequency band coefficients’ distribution will change accord-
ingly. Here, the distribution of the intra-block skewness [36]
is computed to measure this statistical variation.

Let C j denote the frequency band coefficient set in the
j th block, where C j = {c j

1 , . . . , c j
Nc

} and Nc is the number of
the frequency bands in a block. In our experiment, the DCT is
implemented on each nonoverlapped 8×8 block, which makes
Nc up to 14. Then, the j th block’s skewness s j is

s j = E(C j − μ(C j ))3

σ 3(C j )
(2)

where μ(·) is the mean value operator, σ(·) is the standard
deviation operator, and E(·) is the expectation operator.

To obtain the global descriptor, we compute the intra-block
skewness distribution across all blocks. Let S denote the intra-
block skewness set, where S = {s1, . . . , sNb } and Nb is the
blocks’ number. Then, its margin distribution P(S) is

P(S) = norm(hist (S)) (3)

where hist (·) is the histogram operator and norm(·) represents
the l1-normalization, i.e., norm(x) = x/‖x‖1. Here, the
dimension of P(S) is set to 51 based on our experimental
study, which could achieve good-quality prediction accuracy.

To illustrate the distortion impact for the intra-block skew-
ness, an instance is shown in Fig. 3, where the curves with
different colors denote the P(S) extracted from the luma com-
ponents of the image monarch and its five JPEG2000 (JP2K)
versions. A higher skewness indicates a more intensive mass
distribution on the left of the mean value, which is induced
by a higher decay rate. It is clear that the perceptual quality
degradation could be efficiently captured by P(S), where
different image qualities correspond to different distributions.
For the severely distorted images labeled by larger DMOS,



428 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 26, NO. 3, MARCH 2016

Fig. 4. Distribution of the DCT entropy feature versus the frequency band.
The x-axis indicates the frequency band in the DCT domain, and the y-axis
indicates the corresponding frequency band entropy. Legend: the DMOS value
of each image.

their P(S) would be more focused on higher values. For the
slightly distorted images with smaller DMOS, their P(S) are
more smooth and spread on many low-value bins. Since the
JP2K introduces a high frequency loss, it accelerates energy
decay for the intra-block DCT coefficients. We can measure
two images’ perceptual similarity by computing their P(S)
feature distance, where more similar images have a smaller
distance.

2) Inter-Block DCT Feature: It is verified that human
vision tends to present natural scenes with minimal
redundancy [34], [37]. The image distortions often modify the
amount of image information by smoothing local structure or
adding random noise. To measure this variation, two entropy-
based indices are introduced here.

First, let Ci denote the coefficient set of the i th frequency
band across all blocks, where Ci = {c1

i , . . . , cNb
i }. Then, the

i th band’s Shannon entropy [38] ei is defined as

ei = E[− log2(P(Ci ))] (4)

where P(Ci ) = norm(hist (Ci)). In our experiment,
we quantize the Ci into 500 bins in computing its histogram.

The global frequency band entropy feature is represented as

E = [e1, e2, . . . , eNc ]. (5)

An instance of the distortion impact for E is illustrated
in Fig. 4, where different curves correspond to the E extracted
from the luma components of the image monarch and its five
JP2K versions. Similar to the intra-block energy compaction
property [39], we can find an entropy decay trend as the
DCT frequency band increases in the inter-block statistics.
This is because the natural images have higher responses
to the low-frequency DCT basis functions. When the local
image structures vary from one block to another, the
low-frequency coefficients exhibit a larger dynamic range
and decentralized distribution. In contrast, the high-frequency
coefficients are usually very small and gather around zero.
When the JP2K compression is introduced, there are more
high-frequency coefficients quantized to zero, which further
accelerates the entropy decay, as shown in Fig. 4.

Fig. 5. Distribution of the DCT inter-band difference entropy feature
versus the frequency band. The x-axis indicates the frequency band in the
DCT domain, and the y-axis indicates the corresponding inter-band difference
entropy. Legend: the DMOS value of each image.

Second, to pop out the distortion effect under diverse
image contents [40], we further compute the entropy for the
difference gi of the neighboring frequency bands’ coefficients

gi = ci − ci+1. (6)

Let Gi denote the difference set between the i th and
(i + 1)th frequency bands’ coefficients across all blocks,
where Gi = {g1

i , . . . , gNb
i }. The entropy of Gi can be

represented as

di = E[− log2(P(Gi ))] (7)

where P(Gi ) = norm(hist (Gi )). Similar to (4), the histogram
bins of hist (Gi ) are also set to 500.

By combining the inter-band difference entropy of all
frequency bands, we can obtain the second inter-block feature

D = [d1, d2, . . . , dNc−1]. (8)

In Fig. 5, we show an instance to illustrate the distortion
impact on feature D, where different curves denote the D
extracted from the luma components of the image monarch and
its five JP2K versions. It can be seen that all curves associated
with different DMOS show different distributions. Meanwhile,
a larger DMOS shows a greater difference with respect to the
undistorted image. Similar to E , the feature D also presents
the energy decay trend as the frequency increases, which
is caused by the nonlinear amplitude decay of the spatial
frequency responses for the natural images [37]. Since the
low-frequency bands have a higher decay rate, the dynamic
range of their difference is larger relative to the high-frequency
bands. When JP2K compression is applied, the small coeffi-
cients in the high-frequency bands are more easily eliminated,
which enlarges the difference between the high-frequency and
low-frequency bands and increases the decay rate.

B. Quality-Aware Features for Visual Area V2

As discussed in [41], visual area V2 contains two features.
One focuses on capturing the localized, oriented, and bandpass
information like area V1. The other one represents a more
complex position and scale invariance and is sensitive to
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Fig. 6. Distributions of wavelet entropy under different sub-bands. The x-axis indicates the scale in each sub-band and the y-axis indicates the entropy of
the wavelet coefficients. Legend: the DMOS of each image. (a) HL. (b) LH. (c) HH.

the shape and texture information [42]. To describe these
properties, we develop two statistical indices in the wavelet
domain and spatial domain, respectively.

1) Multiscale and Multidirection Information in the Wavelet
Domain: Due to the inherent multiscale and multidirection
properties, wavelet transform is widely used to simulate the
visual cortex property [16]. Wavelet decomposition is usually
implemented in a multiscale steerable pyramid structure along
the horizontal, vertical, and diagonal directions, which are
denoted by HL, LH, and HH, respectively. Here, the wavelet
decomposition scale is set to 4 based on our experimental
study, which could achieve good-quality prediction accuracy.

In the wavelet domain, there are two important statistical
properties for natural images, i.e., exponential decay and self-
similarity across all scales [43], [44]. When distortion is
introduced, deviation will arise in these statistics. Here, we
develop two statistical indices to describe these properties.

First, we employ the entropy of each sub-band to quan-
titatively measure the exponential decay property. Here, we
decompose each channel of a color image into L scales
with the wavelet transform. Let êk,l denote the entropy of
a sub-band in the kth direction and the lth scale, where
1 ≤ l ≤ L and k = {1, 2, 3} correspond to the HL, LH, and
HH directions, respectively. Then, the definition of êk,l can be
given by

êk,l = E[− log2(P(Xk,l ))] (9)

where Xk,l denotes the wavelet coefficient set in the
kth direction and the lth scale and P(Xk,l ) =
norm(hist (Xk,l)). The bin number of hist (Xk,l) is set
to 800 based on our experimental study, which could achieve
good-quality prediction accuracy.

To capture the exponential decay properties under different
directions, we collect three directional sub-band entropies

êHL = [ê1,1, ê1,2, . . . , ê1,L]
êLH = [ê2,1, ê2,2, . . . , ê2,L]
êHH = [ê3,1, ê3,2, . . . , ê3,L] (10)

where Ê = [êHL, êLH, êHH] is defined as the overall wavelet
entropy feature and its dimension is 3 × L.

Fig. 6 shows the instances of the distortion impact on
êHL, êLH, and êHH, where different curves correspond to the
wavelet entropy features extracted from the luma components

of the image monarch and its five JP2K versions. It is clear
that the curves associated with different perceptual qualities
separate from each other. The curves associated with larger
DMOS are farther from the undistorted image’s curve. In all
three directions, the sub-band entropies present a regular decay
trend from the coarse scale to the finer one. When JP2K
compression is present, the low-value coefficients on the finer
scales are more easily quantized to zero, which causes a higher
entropy decay rate, as shown in Fig. 6.

Second, the self-similarity property indicates that the
wavelet coefficients are strongly correlated across all scales,
which is usually referred to as inter-sub-band correlation [45].
Moorthy and Bovik [16] try to measure this property with
the structural similarities among different wavelet sub-bands,
where the spatial information is considered in locating the
comparison windows. In this paper, we consider only the
difference of the frequency distribution across the neighboring
scales and the Kullback–Leibler divergence (KLD) [38] is
employed to measure it. Let d̂k,l denote the neighboring sub-
bands’ KLD between the lth and the (l + 1)th scale along the
kth direction. Then, its definition can be given by

d̂k,l = E P(Xk,l+1 )

[

log2

(
P(Xk,l+1)

P(Xk,l )

)]

(11)

where a larger d̂k,l indicates weaker similarity between two
neighboring sub-bands.

Similar to our entropy features, the KLD features are also
computed in three individual directions

d̂HL = [d̂1,1, d̂1,2, . . . , d̂1,L−1]
d̂LH = [d̂2,1, d̂2,2, . . . , d̂2,L−1]
d̂HH = [d̂3,1, d̂3,2, . . . , d̂3,L−1] (12)

where D̂ = [d̂HL, d̂LH, d̂HH] is defined as the overall wavelet
inter-sub-band KLD feature and its dimension is 3 × (L − 1).

The instances of the distortion impact on d̂HL, d̂LH, and d̂HH
are shown in Fig. 7, where different curves denote the inter-
sub-band KLD features extracted from the luma components
of the image monarch and its five JP2K versions. In all
directions, the curves associated with different DMOS present
different distributions. The seriously distorted image show
higher inter-sub-band KLD than the clear image in the mid-
scale. However, an opposite case arises in the fine-scale.
It is noted that the mid-scale d̂k,l measures the inter-sub-band
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Fig. 7. Distributions of wavelet KLD under different sub-bands. The x-axis indicates the scale in each sub-band and the y-axis indicates the KLD of
two neighboring wavelet sub-bands. Legend: the DMOS value of each image. (a) HL. (b) LH. (c) HH.

correlation between the coarse-scale and the fine-scale.
Since the magnitudes of the coarse-scale coefficients are higher
than those of the fine-scale coefficients, the information loss
caused by JP2K is imbalanced in the two scales, which
increases the inter-sub-band difference. In contrast, the fine-
scale d̂k,l corresponds to two sub-bands in the finer scales.
JP2K tends to suppress the low-value coefficients, which
makes the coefficient distributions of these two scales more
consistent.

2) Texture Information in the Spatial Domain: As discussed
in [46] and [47], most cells in area V2 possess the cue-
invariant responses for the texture. To capture this property, we
use the local binary pattern (LBP) [48] descriptor, which has
gray-scale and rotation invariance. As discussed in [48], we
know that LBP can obtain a good texture classification perfor-
mance with 16 neighbors in the radius of 2. A larger neighbor
and the radius may slightly increase its classification accuracy.
However, the feature dimension would become higher, which
increases the complexity in computing the feature distance.
Thus, we set the radius to 2 and use 16 neighbors in computing
the LBPri feature, whose dimension is 4116.

C. Multichannel Fusion for Trichromatic Property

We introduce the multichannel fusion features based on
two factors. First, human vision has an inherent trichromatic
property [25]. Second, some image distortions may present dif-
ferent degradation degrees in each color channel. For example,
JPEG and JP2K use different quantization and entropy coding
settings for the luma and chroma channels.

Here, we use the YCbCr color space for its superiority
in matching human perception and the low complexity in
color space transformation [49]. Since the Cb and Cr com-
ponents present strong correlation [50], the same features
are extracted from them. The multichannel fusion features
can be obtained by combining the NSS from all color
channels.

Here, the DCT domain multichannel fusion features are

P = [PY(S), PCb(S), PCr(S)]
E = [EY, ECb, ECr]
D = [DY, DCb, DCr] (13)

where the dimensions of P , E , and D increase to 3×51, 3×14,
and 3 × 13, respectively.

TABLE II

MEDIAN SROCC ACROSS 100 TRAIN-TEST TRIALS BASED

ON THE NEAREST NEIGHBOR QUALITY ESTIMATION

The wavelet domain multichannel features are

Ê = [ÊY, ÊCb, ÊCr]
D̂ = [D̂Y, D̂Cb, D̂Cr] (14)

where the dimensions of Ê and D̂ increase to 3 × 3 × 4 and
3 × 3 × 3, respectively.

In the spatial domain, we capture the texture variation
caused by distortion. However, most regions in the
chroma components are smooth. Since the LBP loses the
magnitude of the local contrast, many small noise in the
chroma components would change the distribution of LBP
even if the human perception is insensitive to these noise.
Accordingly, we only extract the LBP feature in the luma
component.

D. Validity Analysis

Here, we further give a quantitative analysis to verify the
validity of our proposed features, i.e., whether the close
samples in our proposed feature space share the similar
subjective qualities. We implement a simple nearest neighbor
quality prediction on the LIVE II database, where one of
29 reference images and its distorted versions are used as the
testing set. The rest of the images are used as the training set.

In the testing stage, we estimate the query image subjective
quality with the DMOS of an annotated image, whose feature
has the minimum chi-square distance with respect to it. For
each proposed feature, we repeat the random nonoverlapped
train-test trial 100 times. Finally, the median Spearman’s
rank ordered correlation coefficients (SROCCs) between the
predicted qualities and their ground-truth DMOS across the
100 trials are reported in Table II, where each row corresponds
to the performance of one proposed feature.

It can be seen that our proposed features work well in
measuring the images’ perceptual similarity. Based on a simple
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Fig. 8. Plot of the median SROCC versus the number of proposed features.

Fig. 9. Diagram of the distortion-specific LT for JP2K. The DMOS label of
each annotated image is marked in its top-right corner. Hi denotes the feature
distance between the query image and its i th nearest neighbor.

nearest neighbor estimation, we can efficiently predict the test
images’ quality ranks, where all features’ median SROCCs
are larger than 0.8 across different distortion types. To verify
the validity of our composite features, we investigate the
performances of the feature combinations based on the greedy
search [51], where the number of composite features N f can
range from 1 to 6. When N f is larger than one, we use the
product of multiple feature distances to measure perceptual
similarity. Here, the investigation result is shown in Fig. 8.
It can be seen that the median SROCC steadily increases as
we add the number of the composite features. That is, our
composite features could measure the perceptual similarity
more accurately. In addition, since there is no content overlap
between the training set and testing set, we can safely con-
clude that the proposed features could accurately measure the
perceptual similarity across different image contents.

III. PREDICTION MODEL BASED ON LABEL TRANSFER

As discussed in [52] and [53], the visual memory and
perception are highly correlated and share a certain brain
mechanism. According to the speculative theoretical frame-
work in [53], the visual system is assumed to be composed of
the early visual processing and visual memory modules. Here,
the visual memory consists of many natural scene templates
and the perception or cognition task can be achieved by
retrieving the matched pattern for the query image.

From an application perspective, we simulate this visual
memory retrieval with an LT procedure, which transfers

the subjective quality labels [e.g., DMOS or mean opinion
score (MOS)] from the annotated images to the query image.
It is based on the assumption that the images with similar
features should share similar perceptual qualities. An instance
of the distortion-specific LT for JP2K is shown in Fig. 9. Here,
we first search for the query image’s KNNs from the annotated
set. There are two outputs in this stage, i.e., the transferred
DMOS labels Qi and the distance-based weight wi . Then, we
can obtain the predicted quality by integrating Qi and wi .
This LT method could adaptively update wi for each test
image, which works like piecewise regression and improves
the robustness of the regression model [54]. Following the
two-step scheme in [16], we design the distortion-specific
LT channel for each distortion type.

First, we divide the annotated images into distortion-specific
subsets, which are used for different LT channels, respectively.
We identify the query image’s distortion type with the offline
trained SVM classifier [55], whose input is the single-channel
LBP feature and the outputs are the query image’s probabilities
of belonging to each distortion type. To prevent overfitting,
cross validation is employed to determine the classifier’s
parameters [56], [57].

Second, the distortion-specific LT is separately implemented
in each LT channel. We search for the query image’s KNNs in
the distortion-specific image subset and the KNN’s labels are
transferred to the query image. Then, the weighted average of
the received labels is used as the predicted quality score in
each LT channel.

Let Fi denote the feature vector set of the i th query image,
where Fi = {F1

i , . . . , F NF
i } and NF is the number of the

feature vectors. Let F̃m
j denote the feature vector set of the

j th reference sample in the annotated image subset with
the mth distortion type, where F̃m

j = {F̃m,1
j , . . . , F̃m,NF

j }.
As discussed in [58] and [59], the product combination from
multiple smaller classifiers could achieve the optimal classi-
fication performance for the independent training data. Thus,
we use the product fusion to combine all feature similarities.
We define the distance Hm, j between Fi and F̃m

j as the

product of the chi-square distances for each pair of the feature
vectors

Hm, j =
NF∏

k=1

h
(

Fk
i , F̃m,k

j

)

h
(

Fk
i , F̃m,k

j

) =
Nk∑

t=1

(

Fk
i (t) − F̃m,k

j (t)
)2

Fk
i (t) + F̃m,k

j (t)
(15)

where Fk
i (t) and F̃m,k

j (t) denote the t th element of

Fk
i and F̃m,k

j , Nk is the dimension of the kth feature vector.
Based on our experimental study, we select the top five near-

est neighbors of the query image from the current annotated
image subset in terms of Hm, j , which achieves good-quality
prediction accuracy at low complexity. Then, a distance-based
weighting scheme is used for the KNN’s labels (i.e., DMOS)
to predict the subjective quality in current LT channel. Here,
a larger weight is assigned to the label which has a smaller
feature distance. The normalized weight wm, j for the j th
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TABLE III

PERCEPTION CONSISTENCY PERFORMANCE OF EACH FEATURE

selected neighbor image can be defined as

wm, j = H −1
m, j

/ 5
∑

j=1

H −1
m, j . (16)

The predicted quality of the mth LT channel is

Qm =
5

∑

j=1

wm, j · DMOS j . (17)

By assigning a larger weight to the quality index which has
more similar distortion types with the query image, we can
obtain the final predicted perceptual quality

Q =
M

∑

m=1

pm · Qm (18)

where pm is the query image’s probability of belonging to the
mth distortion type, and M is the number of the distortion
types.

IV. EXPERIMENTAL RESULTS

A. Protocol

We test the proposed method on the LIVE II [29],
TID2008 [30], and CSIQ [31] databases. The MATLAB code
of our method has been released online.1 The consistency
experiment is conducted on the LIVE II database, which
contains five distortion types, i.e., JP2K, JPEG, additive white
noise (WN), Gaussian blur (Blur), and fast fading (FF). Similar
to [14]–[16], a cross validation is implemented by randomly
splitting the LIVE II database into two nonoverlapped sets.
We use 23 of 29 reference images and their associated dis-
torted images as the training set. The remaining images make
up the test set.

The training set is used to learn the distortion-type classifier
and construct the annotated image set. Here, we conduct the
random splitting evaluation 100 times. The median values of
the indices across the 100 trials are used for verification. Four
measures are adopted to compare different BIQA approaches,
i.e., the Pearson’s linear correlation coefficient (PLCC), the
SROCC, the root-mean-square error (RMSE), and mean
absolute error (MAE) between the predicted quality Q and
the DMOS.

B. Feature Analysis

Since the discriminatory abilities of different features vary
for different distortion types, we first investigate each feature’s
performance. Each candidate feature is separately used to com-
pute the similarity between the query image and the annotated

1http://ivipc.uestc.edu.cn/wqb/projects/TCLT-release.zip

TABLE IV

EACH FEATURE’S CONTRIBUTION FOR DIFFERENT

DISTORTION-SPECIFIC LT CHANNELS

TABLE V

FEATURE COMBINATIONS FOR DIFFERENT

DISTORTION-SPECIFIC LT CHANNELS

reference sample across all distortion types. Here, we use only
the data from the training set of the LIVE II database. Similar
to Section IV-A, we divide these training images into the
content nonoverlapped annotation set and validation set, which
contains 60% and 20% samples, respectively. The median
SROCCs of the validation set over 100 train-test trials are
reported in Table III, where the optimal results in each row
are labeled in boldface and the dimension of each proposed
feature is listed in the last column.

It is seen that the SROCC values of the proposed features are
all larger than 0.8 under different distortion types. Meanwhile,
no single feature performs best across all distortion types.
Thus, it is natural to select different feature combinations for
each distortion-specific LT channel.

Let ρk
m,n denote the SROCC obtained from the LT of

the kth feature, where the query image belongs to the
mth distortion type and the annotated image subset possesses
the nth distortion type. Let σ k

n denote the standard derivation
of the SROCC for the kth feature in the nth distortion-specific
LT channel. Then, we can get

(

σ k
n

)2 = 1

M

M
∑

m=1

(

ρk
m,n − μk

n

)2

μk
n = 1

M

M
∑

m=1

ρk
m,n . (19)

By considering the classification accuracy, we represent
the kth feature contribution for the query images with the
mth distortion type as I k

m

I k
m =

M
∑

n=1

ρk
m,n · sgn(n)

σ k
n

sgn(n) =
{

an n = m

1 − an n �= m
(20)

where an is the nth distortion type’s classification accuracy.
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TABLE VI

MEDIAN PLCC, SROCC, RMSE, AND MAE ACROSS 100 TRAIN-TEST TRIALS ON THE LIVE II IQA DATABASE

Fig. 10. Scatter plots of the predicted quality index Q versus the DMOS.
The x-axis is the predicted quality index Q and the y-axis is the DMOS
value. The red line represents the ideal linearly correlated line. (a) TCLT-Gray.
(b) TCLT-YCbCr. (c) TCLT-Gray. (d) TCLT-YCbCr.

From (20), we know that only the feature that produces bet-
ter correlation performance with DMOS (i.e., higher SROCC)
and stronger robustness across different distortion types
(i.e., smaller SROCC standard deviation) can bring greater
contribution to current LT channel. Table IV shows the I k

m

values, where a higher value in each row means a bigger
contribution for the corresponding distortion type. For each
distortion type, we select some specific features with the
top I k

m values in each row of Table IV. The number of
selected features is determined by cross validation, which
achieves the highest median SROCC in the validation set.
For clarity, the selected features are labeled in the boldface in
Table IV. Meanwhile, we summarize the feature combination
information for each distortion-specific LT channel in Table V,
where the dimensions of the combined features are listed in
the last column.

C. Consistency Experiment

Our method has two characteristics that guarantee high
consistency with human perception, i.e., multichannel
feature fusion and distortion-specific LT. To separately
evaluate them, we implement our method with four
combinations: single-channel feature + universal
distortion LT (named TCLT-Gray); multichannel feature
fusion + universal distortion LT (named TCLT-YCbCr);
single-channel feature + distortion-specific LT (named
TCLT-Gray); and multichannel feature fusion + distortion-
specific LT (named TCLT-YCbCr). The single-channel
features are extracted from the gray image. The universal
distortion LT does not identify the distortion type, and
evaluates the query image with the weighted average of
its KNN’s labels searched from all reference images.
In measuring two images’ similarity, the universal distortion
LT would combine all proposed features.
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TABLE VII

RESULTS OF THE ONESIDED t -Test PERFORMED BETWEEN THE SROCC

VALUES OBTAINED FROM FOUR VERSIONS OF THE PROPOSED METHOD.

A VALUE OF 1/0/−1 INDICATES THE ROW ALGORITHM IS STATISTICALLY

SUPERIOR/EQUIVALENT/INFERIOR TO THE COLUMN ALGORITHM

Here, we compare our method with some FR-IQA (e.g.,
peak signal-to-noise ratio (PSNR), structural similarity (SSIM)
[7], and visual information fidelity [8]) and BIQA (e.g.,
blind image quality index [19], probabilistic latent seman-
tic analysis [60], BLINDS [14], DIIVINE [16], BLINDS-II
[15], natural image quality evaluator [17], NSS-TS [61], and
blind/referenceless image spatial quality evaluator (BRISQUE)
[62]) algorithms.

The scatter plots for the four versions of our method
are shown in Fig. 10. It can be seen that the predicted
quality Q shows a nearly linear relationship with DMOS.
For all of TCLT-Gray, TCLT-YCbCr, TCLT-Gray, and TCLT-
YCbCr, the plots are closely distributed around the linearly
correlated line DMOS = Q. It demonstrates that all of our
methods can achieve high consistency with human perception.
Meanwhile, some outliers can also be found in Fig. 10, which
are far from the linear-correlation line. In Fig. 10(a), the
prediction error of the JP2K version of stream is up to 25. In
Fig. 10(b), the prediction errors for the JP2K and FF versions
of paintedhouse are 24 and 19, respectively. In Fig. 10(c), the
prediction error of the JP2K version of coinsinfountain is 22.
In Fig. 10(d), the prediction error for the FF version of ocean
is 18.

The detailed consistency performances are shown
in Table VI. The best BIQA metrics’ PLCC and SROCC
are highlighted in boldface under each distortion type.
It can be seen that our predicted qualities are highly
consistent with human perception across different distortion
types. For Blur, the TCLT-Gray achieves the best PLCC
(0.955) and the suboptimal SROCC (0.947) result. For WN,
all the TCLT-Gray, TCLT-Gray, and TCLT-YCbCr achieve
the best performance in terms of PLCC (0.989). Both of
the TCLT-Gray and TCLT-Gray obtain suboptimal SROCC
(0.980) results, which are close to the best DIIVINE result
(SROCC = 0.984). For JPEG and FF, the TCLT-YCbCr
and TCLT-YCbCr achieve the fourth best performance,
respectively. For JP2K, the PLCC of TCLT-YCbCr is still
more than 0.9.

For the general purpose BIQA, the predicted quality should
work well for all distortion types. Here, our TCLT-YCbCr
method achieves the second best result (SROCC = 0.934)
in the entire database test, which is very close to the
state-of-the-art BRISQUE metric (SROCC = 0.940).
A onesided t-test [63] is also executed on the SROCC of
the proposed method and BRISQUE across 100 train-test
trails. The reported result shows that the four versions of
our proposed method are statistically inferior to BRISQUE
in this test.

TABLE VIII

STANDARD DERIVATION OF THE PERFORMANCES OF TCLT-GRAY AND

TCLT-YCbCr ACROSS 100 TRAIN-TEST TRIALS

ON THE LIVE II IQA DATABASE

TABLE IX

STANDARD DERIVATION OF THE PERFORMANCES OF TCLT-GRAY

AND TCLT-YCbCr ACROSS 100 TRAIN-TEST TRIALS

ON THE LIVE II IQA DATABASE

TABLE X

MEDIAN CLASSIFICATION ACCURACY (%) ACROSS 100 TRAIN-TEST

TRIALS ON THE LIVE II IQA DATABASE

TABLE XI

STANDARD DERIVATION OF THE CLASSIFICATION ACCURACY ACROSS

100 TRAIN-TEST TRIALS ON THE LIVE II IQA DATABASE

In addition, the entire database test verifies that the multi-
channel feature fusion and distortion-specific LT are both valid
in improving the BIQA performance. First, the multichannel
fusion features capture more comprehensive visual perception
properties than the single-channel features. Thus, it is found
that TCLT-YCbCr (SROCC = 0.925) outperforms TCLT-Gray
(SROCC = 0.910) and TCLT-YCbCr (SROCC = 0.934)
outperforms TCLT-Gray (SROCC = 0.916). Second, the
distortion-specific LT provides a refined reference image
subset, which helps the query image to find more accurate
references than the universal distortion LT. So it is seen
that TCLT-Gray outperforms TCLT-Gray and TCLT-YCbCr
outperforms TCLT-YCbCr. TCLT-YCbCr, which combines
both of the aforementioned traits, performs best in all versions
of our method. To evaluate the statistical significance of the
difference between four versions of our method, we perform
the onesided t-test [63] on their SROCC across 100 train-test
trials. As shown in Table VII, we can find that TCLT-YCbCr
still consistently outperforms the other versions of the
proposed method.

In Tables VIII and IX, we further show the standard
derivations of the four indices for the proposed methods across
100 train-test trials. It can be seen that the standard derivations
of the four indices are very small for all the proposed methods.
It demonstrates that the performance variations of the proposed
methods are insignificant in the 100 trials.
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TABLE XII

SROCC BETWEEN THE PREDICTED QUALITY INDEX AND MOS ON THE

KNOWN SUBSETS OF THE TID2008 DATABASE

TABLE XIII

SROCC BETWEEN THE PREDICTED QUALITY INDEX AND DMOS

ON THE KNOWN SUBSETS OF THE CSIQ DATABASE

Fig. 11. Median RMSE variation of TCLT-YCbCr under different K.

D. Classification Accuracy

The distortion-specific LT assumes that the reference subset,
which has the same distortion type with the query image,
improves the accuracy of the LT. Thus, the classification
accuracy plays an important role in our TCLT-YCbCr method.
Here, we investigate the median accuracies of our distor-
tion type classification across 100 train-test trials. As shown
in Table X, it is seen that our classification accuracy is
significantly superior to that of DIIVINE for every distortion
type and the entire database. Especially for JPEG and WN,
our classification accuracies are both up to 100%.

In Table XI, we also show the standard derivations
of the classification accuracies across 100 train-test trials.
It is seen that the standard derivations of our distor-
tion type classification are very small, which demonstrates
that our classification performance varies very slightly in
the 100 trials.

E. Database Independency

To verify that the proposed method is independent of
the dataset, we further test our method on the subsets of
the TID2008 [30] and CSIQ [31] databases. The entire
LIVE II database is used as the train set. Four types of
known distortions in the train set are selected from TID2008
and CSIQ to construct the test set, i.e., JP2K, JPEG, WN,
and Blur.

TABLE XIV

PERFORMANCE OF THE TCLT-YCbCr METHOD WITH K = 20

The detailed SROCC performances on TID2008 and CSIQ
are presented in Tables XII and XIII, respectively. For com-
parison, we also show the performances of two FR metrics
PSNR and SSIM in Tables XII and XIII. The performances
of three BIQA metrics DIIVINE, BLINDS-II, and BRISQUE
are also involved here, where the best BIQA metrics are
highlighted in boldface. It is clear that all the four versions of
the proposed method still achieve highly consistent evaluation
with human perception. In addition, due to the contributions
of multichannel feature fusion and distortion-specific LT,
TCLT-YCbCr also performs best of all the four proposed
methods for both TID2008 and CSIQ databases, which is
consistent with the result in the LIVE II test.

Based on the experimental results here, we find that the
four versions of the proposed method perform similarly on
each database. If only a complete training set is properly
constructed, the proposed four methods can accurately predict
the perceptual quality of a degraded image.

F. Impact of the Neighbor Number

Here, we investigate the performance variation of the pro-
posed method under different K , whose value ranges from 1 to
100 with an interval of 5. The investigation is implemented on
the LIVE II database. Except for the K , all the other settings
are the same as in Section IV-C. The median values of the
RMSE across 100 train-test trials are reported in Fig. 11.

It is seen that when we change K from 1 to 20, the
RMSE would significantly drop from 7.13 to 5.46. That is,
a larger number of neighbors could avoid a large prediction
error, which is caused by mistaking the neighbors’ perceptual
similarities. Then, the RMSE slowly increases and converges
to 5.62 as K changes from 20 to 100. Here, too many
neighbors would increase the model bias for introducing the
dissimilar images. Since we employ the distance-based weight
scheme, the predicted quality sores would not tend to the mean
of the annotated database like the arithmetic averaging [64].
This can be found from Fig. 11, where our RMSE does not
significantly increase as K increases to 100.

To evaluate the performance of our TCLT-YCbCr
with 20 neighbors, we repeat the experiments
in Sections IV-C and IV-E. The SROCC results on the
LIVE II, TID2008, and CSIQ databases are reported in
Table XIV, where the best results under each distortion type
are highlighted in boldface. It is interesting to see that our
method outperforms all the other BIQA metrics in the LIVE II
and CSIQ databases. In the TID2008 database, our method
still works well and achieves high consistency with human
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Fig. 12. Performance comparison for TCLT under different color spaces.

Fig. 13. Plot of median SROCC between the predicted quality index Q and
DMOS versus the percentage of the images used for annotated set.

perception. Since the results in LIVE II are obtained from
100 train-test trials, we further perform a onesided t-test to
evaluate the statistical significance of the difference between
different BIQA methods. The reported result confirms that
when K is set to 20, our TCLT-YCbCr is statistically superior
to all of the DIIVINE, BLINDS-II, and BRISQUE metrics
on the LIVE II database.

G. Comparison Among Different Color Space

Here, we further investigate the performance of our
multichannel features under different color spaces, which
include RGB, Lab, and YCbCr. We repeat the experiments
in Sections IV-C and IV-E. For each candidate color space,
the SROCC values on LIVE II, TID2008, and CSIQ and
their average results across the three databases are reported
in Fig. 12.

It is seen that the performance of RGB is inferior to those of
Lab and YCbCr on the three databases. There are two possible
reasons accounting for this result: first, both Lab and YCbCr
represent the color image with one luma and two chroma
components. Since the chroma components are insensitive to
illumination change, it could improve the discriminative power
of the features in describing the natural scene [65]. Second,
by transforming from RGB to Lab/YCbCr, the high-frequency
image content is preserved in the luma component and the
smooth information is stored in the chroma components. Then,
the statistics on Lab/YCbCr can capture more comprehensive
intra-scale correlations from different color channels [66].

In addition, it can be seen that Lab and YCbCr achieve
similar performances. As shown in Fig. 12, YCbCr slightly
outperforms Lab in LIVE II. In TID, Lab performs better

TABLE XV

SROCC PERFORMANCE OF TCLT-YCbCr ON THE UNKNOWN

SUBSETS OF THE TID2008 DATABASE

than YCbCr. For CSIQ, YCbCr achieves the same SROCC
result as Lab. On average, the Lab and YCbCr also achieve the
same performance across these three databases, whose average
SROCCs are both 0.901.

H. Completeness of the Annotated Image Set

Here, we further discuss the completeness of the annotated
samples. For our TCLT-YCbCr method, the completeness
requires that the query image could find some similar images
in the annotated sample set. It should satisfy two points:
1) the annotated set should cover all available DMOS values
and 2) the annotated set should contain all possible distortion
types.

1) Impact of the Annotated Sample Size: Here, we inves-
tigate the impact of the DMOS coverage by varying the
annotated sample size. The experiment in Section IV-C is
repeated with different train-test splits, where the percentage of
train set ranges from 10% to median SROCC variation versus
the percentage of train set is reported in Fig. 13, where the
results of DIIVINE, BLINDS-II, and BRISQUE are also added
for comparison.

It can be seen that our method outperforms all the other
BIQA metrics under the train set size 10%–60%. For the
train set size 70%–90%, our TCLT-YCbCr method is slightly
inferior to the BRISQUE metric. When only 10% samples are
used for training, our TCLT-YCbCr method can obtain a rea-
sonable performance in the LIVE II database, whose median
SROCC reaches up to 0.8668. In addition, we can also find
that the SROCCs of all BIQA metrics monotonically go up as
the train set size increases. Because a larger training set would
cover more dense DMOS values, it makes the train set more
complete and facilitates the LT.

2) Impact of the Unknown Distortion Type: Here, we
implement the cross-database experiment to investigate the
train set’s completeness in terms of the distortion type. The
LIVE II database is used as the annotated set. The test set is
constructed with 13 unknown distortion types in TID2008,
which are additive noise in color components (ANCs),
spatially correlated noise (SCN), masked noise (MN),
high-frequency noise (HFN), impulse noise (IN), quantization
noise (QN), image denoising (ID), JPEG transmission
errors (JPEGTE), JPEG2000 transmission errors (JP2KTE),
noneccentricity pattern noise (NEPN), local block-wise
distortions of different intensity (LBDDI), mean shift (MS),
and contrast change (CC). The SROCCs of our methods are
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TABLE XVI

COMPUTATIONAL COMPLEXITY FOR EACH FEATURE DOMAIN

(N : THE NUMBER OF PIXELS IN AN IMAGE)

reported in Table XV. For comparison, BRISQUE [62] is also
tested here.

Since the test images distortion types are not present in
the annotated samples, it is hard for us to implement an effi-
cient LT. For SCN, QN, JPEGTE, JP2KTE, NEPN, LBDDI,
MS, and CC, their SROCCs are all smaller than 0.5 for
TCLT-YCbCr. However, when the unknown distortion types
show some characteristics similar to those of the annotated
samples, the proposed method would still work well. For
example, the ANC, HFN, IN, and MN are similar to the WN,
and ID is similar to Blur. Correspondingly, our TCLT-YCbCr
method achieves relatively high SROCC values on these
distortion types, which are all larger than 0.65. Similar results
can be found for BRISQUE. Experimental results show that
the application of TCLT-YCbCr is limited to certain distortion
types which are similar to the training data.

I. Computational Analysis

In this section, we further analyze the computational
complexity of the proposed method. This investigation is
conducted on the LIVE II database, whose 80% images are
used for constructing the annotated reference samples. The
system platform is an Intel Core 2 processor with a speed
of 2.0 GHz, 2-GB RAM, and Windows 7. The unoptimized
MATLAB code is run on the MATLAB R2009b software.
Here, it takes about 10 s to predict the quality of
a 512 ×768 image, which includes both the feature extraction
and the LT steps.

To compare the computational loads of each module, both
the percentage of running time and the time complexity for
each module are summarized in Table XVI. Compared with
the existing BIQA metrics [15], [16], the proposed method
introduces an extra online prediction module LT. However,
its complexity O(Nr ) is determined by the number of the
annotated reference samples, which is negligible with respect
to the total complexity. As shown in Table XVI, the LT module
only takes 2% of running time in the proposed method.

In addition, the complexities listed in Table XVI show the
upper bound of each module, which is computed in terms of
the serial operation. In fact, the proposed algorithm is highly
parallelizable, where the quality-aware information can be
extracted from multiple domains simultaneously. Accordingly,
the application of our proposed TCLT method should not
suffer the limitation due to its complexity.

Fig. 14. Mean quality of the denoised images at each noise level. The x-axis
denotes the noise variance σ and the y-axis denotes the quality metric.
(a) Subjective metric MOS. (b) Objective metric MS-SSIM.

J. Discussion

Since the proposed DCT domain features are not shift
invariant, a simple translation on the image may result in
significant change on the features. An alternative solution
is to add the shifted images in the annotated set. In our
future work, more robust features will be studied. Similar to
many previous works, we assume that a single distortion is
present in the image, which is consistent with the condition in
existing IQA databases. In many situations, an image may
be contaminated by multiple sources, which brings greater
difficulty for BIQA. Until now, the BIQA for the hybrid
distortion is still a challenging problem and there are few
reliable hybrid distortion IQA databases. In our future work,
we would make efforts to build the hybrid distortion IQA data
and extend the proposed method to deal with this new problem.

V. APPLICATION FOR IMAGE AUTO-DENOISING

To verify the efficiency of the proposed algorithm, we
further investigate its performance in an image denoising
application. Many representative denoising methods require
some manual parameters (e.g., noise variance) to obtain good
results. However, in practice, it is impractical to manually
select the parameters for each test image. Here, the BIQA
metric is quite desirable in estimating the perceptual quality
of the denoised image, which could help us to automatically
choose the denoising parameter.

We incorporate our TCLT-YCbCr metric into a repre-
sentative color image denoising algorithm CBM3D [67],
which needs the noise variance σ as the input parameter.
In our implementation, the test image is first denoised with
different parameters, and then the BIQA metric is used to eval-
uate the perceptual quality of each denoised image. By choos-
ing the parameter that produces the highest image quality, we
can obtain a good denoising result without user intervention.
Here, the LIVE II database is still used as the annotated set
for our TCLT-YCbCr method. To avoid overlapping between
the annotated set and the test set, we build a denoised image
dataset, whose 23 original images are extracted from the
Computer Vision Group-University of Granada database
(http://decsai.ugr.es/cvg/dbimagenes/). We add 8 levels of
Gaussian noise to each original image, where σ can range
from 5 to 40 at an interval of 5.

In the testing stage, the denoising results obtained by the
default parameter [67] are used as the benchmark. For our
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method, we run CBM3D with 50 candidate σ , which ranges
from 1 to 50. Then, the denoised image which is perceived
best for our proposed metric is selected as the output. For
comparison, the denoising results chosen by the BRISQUE
metric are also investigated here. In the subjective test, we
invite 12 subjects to rate the perceptual quality for each
denoised image, where the subjective score can range from
1 to 10 and a larger value denotes a better quality. Then, the
MOS across 12 subjects is assigned to each denoised image.
Besides the MOS, an objective metric MS-SSIM [68] is also
used to measure the denoising results.

Here, we compute the mean quality of 23 denoised images
at each distortion level to compare different methods. Both
the subjective and objective evaluation results are shown
in Fig. 14. It can be seen that the denoised image’s quality
could be significantly improved by selecting the parameter
with the TCLT-YCbCr and BRISQUE metrics. In addition,
in terms of both the MOS and MS-SSIM, the denoising
results obtained from our TCLT-YCbCr are better than those
of BRISQUE, as shown in Fig. 14. In addition, we also
implement the one-sided t-test on the MOS and MS-SSIM
of all denoised images. The reported result shows that our
TCLT-YCbCr-based denoising results are statistically superior
to those of BRISQUE and default methods in both the
subjective and objective metrics.

VI. CONCLUSION

In this paper, we propose a novel blind image quality
assessment algorithm based on distortion-TCLT. Inspired by
the hierarchical and trichromatic properties of human vision,
we extract both the frequency and spatial-frequency features
from all three YCbCr channels to describe a natural image.
Then, a KNN-based LT model is used to estimate the query
image’s quality. Both the validity and robustness of the
proposed algorithm have been verified through the experiments
on LIVE II, TID2008, and CSIQ databases. In addition,
experimental results show that the application of the proposed
method is limited to certain distortion types which are similar
to the training data. It is still a challenging task to deal with
the unknown distortion types.

In our future work, the mid-level features will be studied
to simulate the more complex visual perception properties,
e.g., shape selectivity and saliency. In addition, a more effi-
cient similarity metric will be studied to further improve the
performance of the LT module.
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