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New Sparsity Function

In this supplementary file, we provide more details about

the new measure that approximates L0 sparsity during opti-

mization.

Given an input image z, the new sparsity measure is ap-

plied to image gradient vectors ∂∗z to regularize the high

frequency part, where ∗ ∈ {h, v} denoting two directions.

The function is

φ0(∂∗z) =
∑

i

φ(∂∗zi), (1)

where

φ(∂∗zi; ǫ) =

{

1

ǫ2
|∂∗zi|

2, if |∂∗zi| ≤ ǫ

1, otherwise
(2)

φ(·) is a concatenation of two functions – one is a quadratic

penalty and the other is a constant. i indexes pixels. One ex-

ample of the penalty function is shown in Fig. 1(a), with its

shape very well approximating L0 penalty when ǫ is small.

During optimization, we use another form of Eq. (2),

which is defined as

φ(∂∗zi; ǫ) = min
l∗i

{

|l∗i|
0 +

1

ǫ2
(∂∗zi − l∗i)

2

}

, (3)

where ∗ ∈ {h, v}. Each l∗i ∈ R and each |l∗i|
0 is a number

with the zero power – that is, |l∗i|
0 = 1 if l∗i 6= 0 and

|l∗i|
0 = 0 otherwise.

We give the closed-form solution to the problem defined

in Eq. (3) in what follows and also show the equivalence

between Eqs. (2) and (3).

Claim 1. The function defined in Eq. (3) taking the form

f(l∗i) = |l∗i|
0 + 1/ǫ2(∂∗zi − l∗i)

2 has a closed-form solu-

tion through hard thresholding as

l∗i =

{

0, |∂∗zi| ≤ ǫ;
∂∗zi, otherwise

(4)
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Figure 1. Plots of new sparsity function (a) and the hard threshold-

ing (b).

Proof. If |∂∗zi| ≤ ǫ, we compare the output from |l∗i|
0 and

1

ǫ2
(∂∗zi − l∗i)

2. If l∗i is not 0, it must hold that

|l∗i|
0 +

1

ǫ2
(∂∗zi − l∗i)

2 > 1.

If l∗i = 0,

|l∗i|
0 +

1

ǫ2
(∂∗zi − l∗i)

2 =
1

ǫ2
(∂∗zi)

2 < 1.

So the minimum is reached with l∗i = 0.

Similarly, if |∂∗zi| > ǫ, we compare the output from

|l∗i|
0 and 1

ǫ2
(∂∗zi − l∗i)

2. If l∗i is not 0, it must hold that

min
l∗i

|l∗i|
0 +

1

ǫ2
(∂∗zi − l∗i)

2 = 1,

when ∂∗zi = l∗i. If l∗i = 0,

|l∗i|
0 +

1

ǫ2
(∂∗zi − l∗i)

2 =
1

ǫ2
(∂∗zi)

2 > 1.

So the minimum is reached with ∂∗zi = l∗i in this case.

Combining the two situations, the final closed-form so-

lution is given by Eq. (4).

The relationship between l∗i and image gradient ∂∗zi is

illustrated in Fig. 1(b).

Claim 2. With the optimal l∗i, the penalty function w.r.t.

∂∗zi defined in Eq. (3) is equivalent to the function in Eq.

(2).
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Proof. With the optimal value of l∗i yielded by the hard

thresholding in Eq. (4), φ(∂∗zi; ǫ) output from Eq. (3) is

determined by one of the two segments (functions). Specif-

ically, if |∂∗zi| ≤ ǫ, l∗i has been proved to be zero to reach

the minimum in Eq. (3). Taking it into Eq. (2), we get the

simplified function 1

ǫ2
|∂∗zi|

2. When |∂∗zi| > ǫ, l∗i = ∂∗zi

makes the function in (3) also be simplified to (2).

In our algorithm, we use a family of loss functions by

varying ǫ and start from ǫ = 1, which makes the loss func-

tion quadratic, taking the fact into consideration that each

normalized |∂∗zi| is always smaller than or equal to 1. In

optimization, the penalty function evolves by decreasing ǫ,

gradually but steadily heading towards the L0 sparsity func-

tion realization. It is a really algorithmically practical,

effective and useful technique whenever L0 sparsity is

required.


