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Abstract

Most previous motion deblurring methods restore the de-
graded image assuming a shift-invariant linear blur filter.
These methods are not applicable if the blur is caused by
spatially variant motions. In this paper, we model the phys-
ical properties of a 2-D rigid body movement and propose
a practical framework to deblur rotational motions from
a single image. Our main observation is that the trans-
parency cue of a blurred object, which represents the mo-
tion blur formation from an imaging perspective, provides
sufficient information in determining the object movements.
Comparatively, single image motion deblurring using pixel
color/gradient information has large uncertainties in mo-
tion representation and computation. Our results are pro-
duced by minimizing a new energy function combining ro-
tation, possible translations, and the transparency map us-
ing an iterative optimizing process. The effectiveness of our
method is demonstrated using challenging image examples.

1. Introduction

Motion blur in a natural image is caused by camera shake
or object motion during exposure when the shutter speed is
relatively slow. The image degradation is usually modeled
as the convolution of a clear image with a shift-invariant
blur kernel

B = S ⊗ k + n,

where S is the latent unblurred image, k is the point spread
function (PSF), and n is the possible additive noise. Nor-
mally, the problem of recovering details from a single
blurred image is severely ill-posed given the large set of
unknowns and complex color information from the blurred
image. The solution uniqueness cannot be generally guar-

∗The work described in this paper was supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Re-
gion, China (Project No. 412206) and is affiliated with the Microsoft-
CUHK Joint Laboratory.

anteed since the convolution with a blur kernel is non-
invertible. To tackle this problem, additional image priors,
such as the global gradient distribution from clear images
[7], are proposed. Some approaches use multiple images or
additional visual cues [2, 20] to constrain the kernel estima-
tion.

(a)
(b)

(c) (d)

Figure 1. Transparency map. (a) An blurred image. (b) The trans-
parency map in the highlighted regions of (a). (c) An unblurred
image. (d) The transparency map in the highlighted regions of (c).

The spatially variant blur kernel estimation is an even
more difficult problem. The blur kernel, in this case, may
vary in size, shape, and values among pixels [24]. This gen-
erality makes it extremely difficult to estimate an appropri-
ate PSF. To make the problem trackable, additional assump-
tions, such as modeling the general kernel as a weighted
sum of several spatially invariant kernels [17], are proposed
in previous work. However, due to the complexity of the un-
known kernel and the expanded solution space, these meth-
ods cannot produce convincing kernel estimation and are
easily stuck in local minimum in optimization.



In this paper, we propose a practical algorithm to de-
blur rigid-body object undergone primarily the rotational
motions from a single image. The blur kernel is spatially-
variant and unknown. The possible translations during ro-
tation are allowed. Our blur kernel representation is general
and is modeled explicitly by a novel motion descriptor. In
order to reduce the ambiguities in motion deblurring using
complex image structures, we approximate the transparency
map physically produced by the blurred object [11] and em-
ploy it to robustly estimate the spatially variant kernels.

The transparency map [11] contains fractional pixel val-
ues which can be physically interpreted as the time percent-
age that the foreground pixels are exposed during image
capture. Each pixel has a fractional value between 0 and
1. With the fact that the foreground always occludes the
background, it further describes the partial occlusion of the
background scene by the foreground object during the expo-
sure. So, essentially, the transparency map abstracts object
motion information. The pixels in object center have value 1
and the pixels around the boundary of a blurred object may
have fractional values. For an unblurred object with solid
boundary, each pixel in the image corresponds to either the
background or the foreground. So the transparency map can
be approximated by binary values consisting of only 0 and
1. One illustration is shown in Figure 1.

Using the transparency map in our motion kernel estima-
tion has the following benefits. First, the transparency map
has very simple representation, each value is between 0 and
1, and is not related to the complex image structure. Second,
the transparency map has useful physical representation and
directly reflects the object motion structures. Third, the la-
tent transparency map after deblurring should contain only
binary values for a solid object which greatly reduces the
ambiguities in image reconstruction. Moreover, the binary
value property in an unblurred transparency map makes it
possible to apply an efficient discrete optimization in blur
kernel estimation.

By adopting the transparency map, our modeling and
computation process are simplified comparing to using only
the image color information. In our method, a robust itera-
tive optimization algorithm is proposed to estimate the mo-
tion descriptor, which is further applied to recovering the
original color image.

The rest of this paper is organized as follows. We first
review previous work in Section 2. The motion analysis
and descriptor are described in 3. In Section 4, we explain
the model and the proposed algorithm. We show the results
in Section 5. Finally, we conclude our method and discuss
it in Section 6.

2. Previous work

There are two main streams in research categorized by
the blur models, i.e., the spatially-invariant and spatially-

variant motion deblurring. If the point spread function
(PSF) is known, several algorithms such as Wiener filter-
ing, quick Pixon smoothing, Richardson-Lucy deconvolu-
tion can be applied to inferring the original clear image.

Deconvolution is also an important topic in astronomi-
cal imaging research. Gull discusses in [9] the principle of
maximizing the entropy in deconvolving images. Tsumu-
raya et al. [23] apply Lucy’s algorithm to reconstruct the
deblurred images. Zarowin et al. [27] propose a modified
version of van Cittert deconvolution (VCD) to relieve the
limitation of the traditional method which is only applica-
ble to shapes and related points.

Without knowing the blur kernel, one can recover a gen-
eral blur image using blind convolution. In [13, 5], methods
are proposed to estimate the blur kernel assuming a priori
knowledge. Two-step approaches are adopted by first esti-
mating the kernel and then deconvolving the image. With
the assumption that the unblurred image is two-tone, Li et
al. [15] propose an iterative approach to refine a deblurring
filter until the final result is visually acceptable. In [7], Fer-
gus et al. propose an ensemble learning [16] approach with
the prior modeling the distribution of image gradient. Most
recently, Jia proposes to solve the spatially invariant motion
blur from a transparency point of view [11]. Comparing to
[11], our goal is to estimate the spatially-VARIANT kernels
with entirely different motion models.

In the shift-variant deblurring methods [17, 24, 4], a gen-
eral PSF is assumed. Calvetti et al. [3] assume that the PSF
is known, and then the restoration of a blur and noisy image
can be accomplished by solving a large linear system. The
generalized minimal residual (GMRES) method is used to
iteratively solve this linear system. Nagy and Leary [17]
model the spatially variant blur kernel as the combination
of spatially invariant kernels. It provides a way to simplify
the PSF modeling, but it lacks of physical analysis and con-
straints. Ribaric et al. [21] propose a method to restore im-
ages blurred by circular motion. This method assumes that
the rotational center and the angular velocity are known,
which makes it difficult to be applied to natural images.

To provide additional information for image restoration,
multiple images or hardware are used to improve the result
construction. Without estimating the PSF, Jia et al. [12] en-
hance a short-exposure dark image by transferring the color
from a long-exposure blurred image. Yuan et al. [26] pro-
duce high quality deblurred images using blur/noisy image
pair configurations. The ringing artifacts are significantly
reduced by the proposed gain-controlled Richardson-Lucy
(RL) algorithm. Ben-Ezra et al. [3] construct a hybrid cam-
era system to acquire the camera motion tracks for accu-
rately estimating kernels. Raskar et al. [19] reduce the ill-
posedness of the deblurring problem by rapidly opening and
closing the shutter with a pre-specified binary sequence, in-
formation lost of high frequencies can be reduced. There



are many previous works in research of image deblurring.
We refer the reader to the respective surveys [22, 18, 10].

Comparing to other work, our single image deblurring
method provides a novel solution to deblur rotation plus
translation motions. Our framework is practical thanks to
our kernel modeling, transparency map representation, and
the robust iterative optimization.

3. Motion blur descriptor

While the state-of-the-art research on spatially invariant
motion deblurring has reached a certain degree of maturity
[19, 2, 7, 11], methods dealing with spatially variant blur
are still far from practicality. To sufficiently describe ob-
ject motions, a single blur filter may not be enough. In this
section, we propose a motion blur descriptor to model the
object rotational motion with possible irregular translations.

An image can be regarded as an integral of the light hit-
ting the image sensor per time unit. The blur effect in an
image is caused by the object motion during exposure. If we
consider the mixed light emitted or reflected from the fore-
ground and background, the image blur formulation can be
very complex. Hence we introduce the transparency map,
as described in Section 1, to describe the motion blur.

We denote f as the transparency map of a solid ob-
ject without motion in the latent (unblurred) image, where
f(x, y) = 0 if pixel (x, y) is on the background, and
f(x, y) = 1 if (x, y) belongs to the foreground, as shown
in Figure 1. We also denote B as the transparency map
where a solid object undergoes motions in a blurred image.
Obviously, B can be formulated as an integral of differ-
ent f after rotation and translation during exposure. Let
Tr(x, y; θt,∆xt,∆yt) be the value of transparency map in
(x, y) after f rotates with angle θt and shifts by (∆xt,∆yt),
the blurred transparency map B(x, y) is given by

B(x, y) =
1

T

∫ T

0

Tr(x, y; θt,∆xt,∆yt)dt, (1)

where T denotes the exposure time. By discretization,
B(x, y) can be estimated by

B̂(x, y,Q, f) =
1

T

N−1
∑

i=0

Tr(x, y; θi,∆xi,∆yi)(ti+1 − ti).

(2)
The value of N determines the level of accuracy. In the
experiments, we found N = 20 is sufficient to produce a
visually satisfying result. By dividing the exposure time T
evenly, the motion descriptorQ contains all the information
to describe the object motions

Q = {(θi,∆xi,∆yi)|i ∈ {0, 1, . . . , N − 1}}.

3.1. Descriptor analysis

In Eqn. (2), there is one Tr(x, y; θ,∆x,∆y) for each
time slot, modeling the object motion. Due to the implicit
format of these motion parameters, this function cannot be
used in efficient optimization. In the following, using the
Fourier transform, we derive an explicit representation.

Considering the object motion during image capture,
we map each pixel (x, y) in the transformed image
Tr(x, y; f, θ,∆x,∆y) to one pixel (x′, y′) in f where

[x′, y′]T =

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

[x, y]T + [∆x,∆y]T .

We thus have

Tr(x, y; θ,∆x,∆y) = f(x cos(θ) − y sin(θ) + ∆x,

x sin(θ) + y cos(θ) + ∆y). (3)

In order to establish an explicit function of motion descrip-
tors for Tr, we transform the image to the frequency do-
main. Eqn. (3) can then be written as

Tr(·) =

∫ +∞

−∞

∫ +∞

−∞

F (u, v)ej2π(u∆x+v∆y)

ej2π((ux+vy) cos(θ)+(vx−uy) sin(θ)))dudv,(4)

where F (u, v) is a Fourier transform of f(x, y) and j2 =
−1:

F (u, v) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)e−j2π(ux+vy)dxdy. (5)

Due to the discreteness in both the image domain and the

(a) (b)

Figure 2. Artifacts introduced by Discrete Fourier Transformation
(DFT). (a) Artifacts of image reconstruction after DFT. (b) Grid
misalignment after rotation.

frequency domain, we need to sample f and F for further
simplification. Directly sampling them using integer coor-
dinates may introduce serious artifacts, as shown in Figure
2. This is because the pixel positions of the rotated im-
age may not fall into the points with integer coordinates



as shown in Figure 2 (b). So the sampling rate should be
adjusted to reduce the artifacts. Without losing of general-
ity, we simplify the presentation by assuming the image is
square with size M ×M . Let q = 1/M , by applying the
Bluestein’s FFT algorithm [1, 6], we rewrite (5) as

F(u,v) = F (uκr, vκr)

≈
∑

y

∑

x

f(xκs, yκs)e
−j2πq(uκrxκs+vκryκs)κ2

sq
2

=
∑

y

∑

x

f(xκs, yκs)e
−j2πq(ux+vy)κrκsκ2

sq
2, (6)

where κs is the distance between neighboring samples in
the image domain and κr is the distance in the frequency
domain. For simplicity, here we use nearest neighborhood
interpolation to get f(xκs, yκs). Accordingly, we have

Tr(·) =
∑

v

∑

u

F(u,v)e
j2π(u∆x+v∆y)κrq

ej2π((ux+vy) cos(θ)+(vx−uy) sin(θ))κrqκ2
r. (7)

Directly computing (6) and (7) is computationally ineffi-
cient since the time complexity is Θ(χ2), where χ is the
number of pixels. So through some algebraic manipula-
tions, we derive

Tr(x, y; θ,∆x,∆y) = κ2
rH(y, x)

∑

v

∑

u

(K(u, v)

H(u, v)H(u− x, v + y)), (8)

where

H(x, y) = ejπκrq((x
2−y2) cos(θ)+2xy sin(θ))

H(x, y) = conj(H(x, y))

= ejπκrq((y
2−x2) cos(θ)−2xy sin(θ))

K(u, v) = ej2πκrq(u∆x+v∆y)F (u, v).

The convolution in (7) is substituted by the efficient multi-
plication in the frequency domain. We verify the correct-
ness of our formulation by using a blur image synthesis
shown in Figure 3 using a motion descriptor. The synthe-
sized image in (b) is quite realistic even using the discrete
transform.

4. Optimization

Our goal is to restore the latent image f by minimizing
the energy function

ED(Q, f) =
∑

x,y

(Bref (x, y) − B̂(x, y,Q, f))2. (9)

whereBref is the input blurred image. It requires that using
the estimated descriptor Q and image f , the reconstructed

blur image B̂ should be similar to the input blur image
Bref . Another implicit constraint is that f(x, y) ∈ {0, 1}
which will be imposed in our discrete optimization process.

Here we naturally assume that f(x, y), ∆xi, ∆yi, and θi
are all independent. In order to make the problem trackable
and to successfully restore the degraded image, the rotation
angles θt+1 − θt in short time intervals are assumed small.

4.1. Parameter initialization

(a) (b)

Figure 3. Rotational blur image synthesis. (a) The original im-
age. (b) The blurred image generated using DFT. The naturalness
validates the correctness of our motion descriptor.

The transparency map B used in our method describes
the transparency of the foreground occluding the back-
ground due to object motion. It can be computed using
the natural image alpha matting methods. In our approach,
the method in [14] is used to compute the fractional trans-
parency map. Since matting methods only use color infor-
mation to compute the alpha matte, there is no real physical
considerations of the background or foreground. So there
may exist errors in some pixels. As shown in Section 5,
we only need to select and use the pixels with structures in
obedience to the human perception instead of all of them.

We first initialize the object rotation center (cx, cy). It is
common that the blurred color image contains texture infor-
mation. So the users can interactively select several pairs of
points from both the transparency map and the color image
indicating the object motion. The pixels in each pair are
selected approximately at the start and the end positions of
one object point during its movement. In this paper, these
points are called characteristic points. One illustration is
shown in Figure 4. The estimation of rotation center does
not require much accuracy. The errors can be compensated
by the estimation of translation ∆xi and ∆yi in the follow-
ing optimization process.

After selecting the characteristic point pairs, the rotation
center can be estimated by solving a least square problem.
Assuming each point pair consists of the start point (xis, y

i
s)

and the end point (xie, y
i
e), we have

(xis − cx)
2 + (yis − cy)

2 = (xie − cx)
2 + (yie − cy)

2,

as illustrated in Figure 5. Considering all selected points,



(a) (b)

Figure 4. Blurred color image. (a) The original blur image. (b) The
user selected characteristic points according to the motion patterns
of object structure. Each pixel pair roughly indicates the start and
end position of one point in motion.
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Figure 5. The matched points can be used to identify the rotation
center (cx, cy).

the rotation center can be computed by solving

AM×2 · [cx, cy]
T = BM×1, (10)

where M is the number of the corresponding point pairs,

Ai,1= 1,Ai,2 =
y(i)

e −y(i)
s

x
(i)
e −x

(i)
s

, andBi =
x(i)2

e +y(i)2
e −x(i)2

s −y(i)2
s

2(x
(i)
e −x

(i)
s )

,

∀i = 1, 2, 3, · · · ,M . After cx and cy are estimated, we
move the coordinate center to (cx, cy).

4.2. Iterative optimization

In the following, we propose an iterative optimization to
solve all unknowns. The discrete and continuous optimiza-
tions are alternatively performed. Our optimization can be
divided into three steps, and these three steps are processed
iteratively.

Estimating θi. In this step, assuming the values of F ,
∆xi, ∆yi are fixed, we apply a continuous optimiza-
tion to compute θi by minimizing ED . Denoting m

(i)
1

= (ux + vy) cos(θi) + (vx − uy) sin(θi) and m
(i)
2 =

(vx−uy)cos(θi)− (ux+ vy)sin(θi), the first order partial
derivatives of ED can be explicitly given by

∂ED
∂θi

= −
4πκ3

rq

N

∑

x,y

(ζx,y · (
∑

u,v

F(u,v)j

ej2π(u∆x+v∆y+m
(i)
1 )κrq ·m

(i)
2 )),

where ζx,y = Bref (x, y) − B̂(x, y). For small θi’s, we

use the approximation that sin θi ≈ θi, cos θi ≈ 1 −
θ2i
2

to avoid computation of many trigonometric functions. The
Hessian matrix can be derived similarly. Using the above
representation, θi is computed using the conjugate gradient
method.

Estimating the latent transparency map f . Given the es-
timated θ, ∆x, and ∆y, we compute the binary map f using
discrete optimization by minimizing

ED(Q, f) =
∑

p

(Bref (p) −
1

N

N−1
∑

i=0

Tr(p; θi,∆xi,∆yi))
2,

where p = (x, y). Given that the motion parameters are
estimated, we can apply inverse motions to the input blur
image to derive the latent one. Since Tr denotes the mo-
tion of the object in a small time interval, applying (3),
we get f(x′i, y

′
i) = Tr(xi, yi; θi,∆xi,∆yi), where i ∈

{0, 1, ..., N − 1}. Under the rotational motion, xi and yi
are not guaranteed to be integers. We thus use the bilinear
interpolation from the neighboring four pixels with integer
coordinates to compute the transparency values:

f(x′i, y
′
i) =

3
∑

j=0

αjif(xji , y
j
i ), x

j
i , y

j
i ∈ Z. (11)

Integrating the above equations, we have

(Bref (x, y) −
1

N

N−1
∑

i=0

Tr(xi, yi; θi,∆xi,∆yi))
2

= (Bref (x, y) −
1

N

N−1
∑

i=0

3
∑

j=0

αji f(xji , y
j
i ))

2

∝ E1 +E2, (12)

where

E1 =
2

N

∑

i,j

Bref (x, y)f(xji , y
j
i ), (13)

and

E2 =
2

N2

∑

(i1,j1)6=(i2,j2)

αj1i1α
j2
i2
f(xj1i1 , y

j1
i1

)f(xj2i2 , y
j2
i2

)

+
1

N2

∑

i,j

(αji )
2f2(xji , y

j
i ). (14)

We build a Markov Random Field (MRF) in the image plane
to solve the above energy minimization problem where each
pixel is a node. The edges are constructed by connecting
node (xj1i1 , y

j1
i1

) to (xj2i2 , y
j2
i2

) if there exists a corresponding

term f(xj1i1 , y
j1
i1

)f(xj2i2 , y
j2
i2

) in E2. All the nodes are 0-1
labeled. EnergyED is minimized using loopy belief propa-
gation [8][25].



Estimating ∆xi and ∆yi In this stage, we estimate ob-
ject translations ∆xi and ∆yi. Since θi and f are fixed,
Tr(x, y; θi, 0, 0) is also known. We build Gaussian image
pyramids for Tr(x, y; θi, 0, 0) and Bref respectively. We
use a multi-scale approach with these Gaussian image pyra-
mids to compute ∆xi and ∆yi in a top-down manner. Sup-
pose the finest level is 0 and the coarsest level is s, it is ob-
vious that the translation in coarse level is small. Assuming
that the translations ∆x

(s)
i and ∆y

(s)
i in level s are smaller

than 1 pixel, i.e., −1 < ∆x
(s)
i ,∆y

(s)
i < 1, we compute the

translation vector in the fine level by

∆x
(γ)
i = 2∆x

(γ+1)
i + ψ

(γ)
i (x),

∆y
(γ)
i = 2∆y

(γ+1)
i + ψ

(γ)
i (y), (15)

where ψ(γ)
i (x), ψ(γ)

i (y) ∈ (−1, 1). With the constructed

Gaussian pyramids, we minimize E(γ)
D on each level and

propagate the estimated translation vector to the finer one.
Combining (3), (9), (15) we minimize

E
(γ)
D

=
X

x,y

(B
(γ)
ref (x, y) −

1

N

X

i

Tr
(γ)(x, y; θi,∆x

(γ)
i ,∆y

(γ)
i ))2

=
X

x,y

(B
(γ)
ref (x, y) −

1

N

X

i

f
(γ)(x̂i + ψ

(γ)
i (x), ŷi + ψ

(γ)
i (y)))2,

where x̂i = x cos(θi) − y sin(θi) + 2∆x
(γ+1)
i and ŷi =

x sin(θi) + y cos(θi) + 2∆y
(γ+1)
i . Since ψ

(γ)
i (x) and

ψ
(γ)
i (y) are small values, we apply the Taylor expansion

to f (γ)(x̂i + ψ
(γ)
i (x), ŷi + ψ

(γ)
i (y)) and derive

E
(γ)
D ≈

X

x,y

(B
(γ)
ref (·) −

1

N

X

i

(f (γ)(x̂i, ŷi)

+
∂f (γ)(x̂i, ŷi)

∂x
ψ

(γ)
i (x) +

∂f (γ)(x̂i, ŷi)

∂y
ψ

(γ)
i (y)))2.

(16)

The term f (γ)(x̂i, ŷi) in (16) in the Gaussian pyramid can
be computed by

f (γ)(x̂i, ŷi) = Tr(γ)(x, y; θi, 2∆x
(γ+1)
i , 2∆y

(γ+1)
i ).

Our computation starts from the coarsest level. In the opti-
mization in level γ, EγD is minimized by setting the par-

tial derivatives ∂E
(γ)
D

∂ψ
(γ)
i

(x)
and ∂E

(γ)
D

∂ψ
(γ)
i

(y)
to zeros and solv-

ing an over-determined linear system with 2N unknowns:
ψ

(γ)
i (x)’s and ψ

(γ)
i (y)’s. The optimization stops when

∆x
(0)
i and ∆y

(0)
i are computed.

4.3. Recover the color image

The above optimization steps iteratively process. In our
experiments, they always converge in 10 iterations. To re-
cover the color image, using the transparency map, we sep-
arate the blur image into foreground If and background Ib.

Then each pixel in If can be expressed as a weighted sum
of the pixels in the original clear object. Since θi, ∆xi, and
∆yi are estimated, the spatially variant blur kernel for each
pixel can be uniquely constructed. We write

If (p) = Rf (p) ⊗ k(p) + n, (17)

where Rf (p) is the corresponding pixel in the latent un-
blurred object and k(p) is the kernel constructed for pixel
p.

We apply the Richardson-Lucy deconvolution method to
iteratively restore the unblurred foreground R̂f . Then the
final image result is constructed by combining R̂f and Ib
with the recovered transparency map f .

5. Result and analysis

Examples are demonstrated in this section. All images
shown contain a blurred object undergoing unknown rota-
tion plus translation motions during image capture.

We first show the doll example in Figure 6. The doll is
held by a hand undergoing inconsistent motions for differ-
ent pixels during image capture as shown in (a). (b) shows
the selected characteristic points marked by red crosses in
the input image for computing an approximated rotation
center. The error introduced in this stage is inevitable but
does not greatly influence our optimization. We apply the
matting method to compute the blur transparency map with
an input of several strokes indicating definite foreground
and background pixels. We show the stroke-overlaid im-
age in (c). (d) illustrates the generated alpha matte. Once
we estimate all motion parameters, we apply them to con-
structing spatially variant kernels. The kernels are used to
restore the transparency map (e) and latent object (f) using
Richardson-Lucy deconvolution. (g) shows the deblurred
object composed back to the extracted background Ib. (h)
shows the magnified region. The motion blur is removed
successfully on the object.

We show another two examples in Figure 7. (a) and
(b) show the input blur images with marked characteristic
points. These points are selected easily using the recogniz-
able image patterns. (c) and (d) are the computed trans-
parency maps. We apply our iterative optimization to the
transparency maps and estimate object motions. Using the
constructed blur filter, we deblur the foreground object. The
compositions of the deblurred object and the background
are shown in (e) and (f).

Our method employs the natural image matting method
to compute the transparency map. In a complex scene, ex-
isting matting methods may not work well and may generate
incorrect alpha values for some pixels. We show in Figure
8 that the errors will not significantly influence our method
in the motion estimation since not all transparency pixels
are taken into computations. In Figure 8 (a), the hand is



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Doll. (a) The input image containing a motion blurred doll. (b) The selected characteristic points are illustrated using red crosses.
(c) Strokes specifying the foreground and the background to be used in the matting method. (d) The computed blur transparency map after
image matting. (e) The inferred unblurred transparency map by our method. (f) The computed unblurred object on a black background.
(g) The unblurred foreground object composed to the original background Ib. (h) The magnified view of (g).

blended to the background. It is difficult to obtain a good
alpha matte, as shown in (c). We only use the transparency
pixels with less error as illustrated in (d). Applying the
proposed optimization, the motion parameters can be suc-
cessfully estimated. The deblurred transparency map and
the composited object to the background are shown in (e)
and (f) respectively. It can be observed that since the trans-
parency map contains errors, there are pixels not correctly
deblurred. However, most pixels in the result are visually
plausible. The patterns on the sleeve are also clear.

6. Conclusion and Discussion

To conclude, we have proposed a novel and highly prac-
tical method to restore the degraded image containing a
blurred object due to the rotational and translational mo-
tions. Instead of using the complex color information in
input images, we introduce a transparency map encoding
the object motion and apply it to estimating the motion pa-
rameters. Our motion descriptor separates the motion blur
in different time intervals and the computation is facilitated
by Fourier transform. A novel optimization method is pro-
posed to iteratively refine parameter estimation using dis-
crete and continuous optimizations. Our method has been
applied to several difficult examples.

In discussion, the quality of our final result is closely
related to the quality of the transparency map generated by
the matting methods. Our further work includes developing
a more reliable transparency map estimation approach using
multiple input images. Reducing the manual work, such as
the characteristic point selection, will also be studied.
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