CENG 3420 Computer Organization & Design

Lecture 07: Floating Numbers

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Textbook: Chapter 3.5)

Spring 2023

Floating Point Number

Scientific notation: 6.6254×10^{-27}

- A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)
- Scale factors to determine the position of the decimal point (e.g. 10^{-27} indicates position of decimal point and is called the exponent; the **base** is implied)
- Sign bit

Normalized Form

• Floating Point Numbers can have multiple forms, e.g.

$$0.232 \times 10^{4} = 2.32 \times 10^{3}$$

$$= 23.2 \times 10^{2}$$

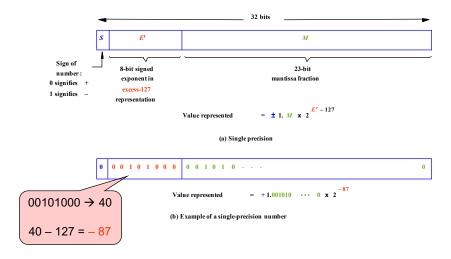
$$= 2320. \times 10^{0}$$

$$= 232000. \times 10^{-2}$$

- It is desirable for each number to have a unique representation => Normalized Form
- We normalize Mantissa's in the Range [1..R), where R is the Base, e.g.:
 - [1..2) for BINARY
 - [1..10) for DECIMAL

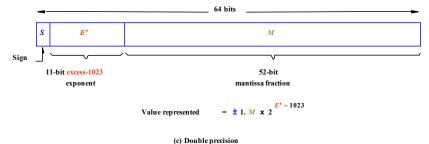
IEEE Standard 754 Single Precision

32-bit, float in C / C++ / Java



IEEE Standard 754 Double Precision

64-bit, float in C / C++ / Java



What is the IEEE single precision number $40C0\ 0000_{16}$ in decimal?

What is the IEEE single precision number 40C0 0000₁₆ in decimal?

- Sign: +
- Exponent: 129 127 = +2
- Mantissa: $1.100\ 0000\ ..._2 \to 1.5_{10} \times 2^{+2}$
- $\bullet \ \rightarrow +110.0000 \ ..._2$
- Decimal Answer = $+6.0_{10}$

What is -0.5_{10} in IEEE single precision binary floating point format?

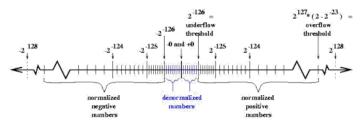
What is -0.5_{10} in IEEE single precision binary floating point format?

- Binary: $1.0... \times 2^{-1}$ (in binary)
- Exponent: 127 + (-1) = 011111110
- Sign bit: 1
- Mantissa: 1.000 0000 0000 0000 0000 0000

Ref: IEEE Standard 754 Numbers

- Normalized +/- 1.d...d x 2^{exp}
- Denormalized +/-0.d...d x 2^{min_exp} → to represent <u>near-zero</u> numbers e.g. + 0.0000...0000001 x 2⁻¹²⁶ for Single Precision

Format	# bits	# significant bits	macheps	# exponent bits	exponent range
Single	32	1+23	2-24 (~10-7)	8	2-126 - 2+127 (~10 ±38)
Double	64	1+52	2 ⁻⁵³ (~10 ⁻¹⁶)	-	$2^{-1022} - 2^{+1023} (\sim 10^{\pm 308})$
Double Extended	>=80	>=64	<=2 ⁻⁶⁴ (~10 ⁻¹⁹)		2-16382 - 2+16383 (~10 ±4932)
(Double Extended is 80 bits on all Intel machines) macheps = Machine Epsilon = = 2 - (# significand bits)					
$arepsilon_{mach}$					



Special Values

Exponents of all 0's and all 1's have special meaning

- E=0, M=0 represents 0 (sign bit still used so there is ± 0)
- E=0, M \neq 0 is a denormalized number \pm 0.M \times 2⁻¹²⁷ (smaller than the smallest normalized number)
- E=All 1's, M=0 represents ±Infinity, depending on Sign
- E=All 1's, M≠0 represents NaN

Other Features

+, -, x, /, sqrt, remainder, as well as conversion to and from integer are correctly rounded

- As if computed with infinite precision and then rounded
- Transcendental functions (that cannot be computed in a finite number of steps e.g., sine, cosine, logarithmic, , e, etc.) may not be correctly rounded

Exceptions and Status Flags

Invalid Operation, Overflow, Division by zero, Underflow, Inexact

Floating point numbers can be treated as "integer bit-patterns" for comparisons

- If Exponent is all zeroes, it represents a denormalized, very small and near (or equal to) zero number
- If Exponent is all ones, it represents a very large number and is considered infinity (see next slide.)

Dual Zeroes: +0 (0x00000000) and -0 (0x80000000): they are treated as the same

Other Features

Infinity is like the mathematical one

- Finite / Infinity ightarrow 0
- Infinity \times Infinity \rightarrow Infinity
- Non-zero / $0 \rightarrow$ Infinity
- Infinity $\{Finite or Infinity\} \rightarrow Infinity$

NaN (Not-a-Number) is produced whenever a limiting value cannot be determined:

- Infinity Infinity → NaN
- Infinity / Infinity → NaN
- $0 / 0 \rightarrow \text{NaN}$
- Infinity \times $0 \rightarrow$ NaN
- If x is a NaN, $x \neq x$
- Many systems just store the result quietly as a NaN (all 1's in exponent), some systems will signal or raise an exception

Inaccurate Floating Point Operations

• E.g. Find 1st root of a quadratic equation

```
• r = (-b + sqrt(b*b - 4*a*c)) / (2*a)
```

Sparc processor, Solaris, gcc 3.3 (ANSI C),

Expected Answer 0.00023025562642476431
double 0.00023025562638524986
float 0.00024670246057212353

• Problem is that if c is near zero,

$$sqrt(b*b - 4*a*c) \approx b$$

• Rule of thumb: use the highest precision which does not give up too much speed

Catastrophic Cancellation

- (a b) is inaccurate when a ≈ b
- Decimal Examples
 - Using 2 significant digits to compute mean of 5.1 and 5.2 using the formula (a+b) / 2:
 - a + b = 10 (with 2 sig. digits, 10.3 can only be stored as 10) 10 / 2 = 5.0 (the computed mean is less than both numbers!!!)
 - Using 8 significant digits to compute sum of three numbers:

```
(11111113 + (-11111111)) + 7.5111111 = 9.5111111
11111113 + ((-11111111) + 7.5111111) = 10.000000
```

Catastrophic cancellation occurs when

$$\frac{[round(x)" \bullet" round(y)] - round(x \bullet y)}{round(x \bullet y)} |>> \varepsilon_{mach}$$