
CENG3420
Lab 2-1: LC-3b Simulator

Chong Wing (Sirius) Cheung

Department of Computer Science and Engineering
The Chinese University of Hong Kong

cwcheung@cse.cuhk.edu.hk

Feb. 25, 2016

1 / 21

mailto:cwcheung@cse.cuhk.edu.hk


Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

2 / 21



Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

3 / 21



Assembler & Simulator

I Assembly language – symbolic (MIPS, LC-3b, ...)
I Machine language – binary

I Assembler is a program that
I turns symbols into machine instructions.
I EX: lc3b_asm, SPIM, ...

I Simulator is a program that
I mimics the behavior of a processor
I usually in high-level language
I EX: lc3b_sim, SPIM, ...

3 / 21



LC-3b

I LC-3b: Little Computer 3, b version.
I Relatively simple instruction set
I Most used in teaching for CS & CE
I Developed by Yale Patt@UT & Sanjay J. Patel@UIUC

4 / 21



LC-3b Instructions

I 16 bit instruction
I Memory address space is 16 bits → 216 locations
I Each memory address containing one byte (eight bits).

I One instruction or declaration per line

5 / 21



Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

6 / 21



LC-3b Example 1: Do nothing

“./lc3b_asm nop.asm nop.cod”

nop.asm:

.ORIG x3000
NOP
NOP
.END

nop.cod:

0x3000
0x0000
0x0000

I NOP instruction translates into machine code 0x0000.

6 / 21



Assembler Directives

I Directives give information to the assembler
I Not executed by the program
I All directives start with a period ‘.’

.ORIG Where to start in placing things in memory

.FILL Declare a memory location (variable)

.END Tells assembly where your program source ends

7 / 21



Assembler Directives: .ORIG

I Tells where to put code in memory (starting location)
I Only one .ORIG allowed per program module
I PC is set to this address at start up
I Similar to the main() function in C
I Example:

.ORIG x3000

8 / 21



Assembler Directives: .FILL

I Declaration and initialization of variables
I Always declaring words
I Examples:

flag .FILL x0001
counter .FILL x0002
letter .FILL x0041
letters .FILL x4241

9 / 21



Assembler Directives: .END

I Tells the assembler where your program ends
I Only one .END allowed in your program module
I NOT where the execution stops!

10 / 21



LC-3b Example 2: Count from 10 to 1

count10.asm:

.ORIG x3000
LEA R0, TEN
LDW R1, R0, #0

START ADD R1, R1, #-1
BRZ DONE
BR START

DONE TRAP x25
TEN .FILL x000A

.END

count10.cod:

0x3000
0xE005
0x6200
0x127F
0x0401
0x0FFD

0xF025
0x000A

I More explanations will be in Lab2-2.

11 / 21



Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

12 / 21



LC-3b Simulator: lc3b_sim

I Download from course website
(lab2-assignment.tar.gz)

I The simulator will
I Execute the input LC-3b program
I One instruction at a time
I Modify the architectural state of the LC-3b

I Two main sections: the shell and the simulation routines
I Only need to work on simulation routine part.

12 / 21



LC-3b Shell

./lc3b_sim [cod file]

13 / 21



LC-3b Architecture State

I Please refer to LC-3b_ISA for more details
I PC
I General purpose registers (REGS): 8 registers
I Condition codes: N (negative); Z (zero); P (positive).

14 / 21



LC-3b Memory Structure

Two word-aligned locations are to store one 16-bit word.
I addresses differ only in bit 0
I Locations x0006 and x0007 are word-aligned

15 / 21



How to use LC-3b Simulator?

1. Compile your C codes through make command.
2. Run the compiled LC-3b simulator through ./lc3b_sim2

bench/xxx.cod. Here the parameter is a machine code file.
3. In the simulator, run “n” instructions. When n = 3, run 3

4. In the simulator, print out register information: rdump

16 / 21



Overview

LC-3b Basis

LC-3b Assembly Examples

LC-3b Simulator

Task

17 / 21



Lab2 Task 1

architectural state:
I In process_instruction(), update NEXT_LATCHES
I At this moment, only update (increase PC value)

memory:
I Given CURRENT_LATCHES.PC, read related word in memory
I Implement function int memWord (int startAddr)

17 / 21



Task 1 Golden Results: nop.cod

Output after run 2

process_instruction()| curInstr = 0x0000
process_instruction()| curInstr = 0x0000

Output after rdump:
Instruction Count : 2
PC : 0x3004
CCs: N = 0 Z = 1 P = 0
Registers:
0: 0x0000
1: 0x0000
2: 0x0000
3: 0x0000
4: 0x0000
5: 0x0000
6: 0x0000
7: 0x0000

18 / 21



Task 1 Golden Results: count10.cod
Output after run 7:

process_instruction()| curInstr = 0xe005
process_instruction()| curInstr = 0x6200
process_instruction()| curInstr = 0x127f
process_instruction()| curInstr = 0x0401
process_instruction()| curInstr = 0x0ffd
process_instruction()| curInstr = 0xf025
Simulator halted

Output after rdump:
Instruction Count : 6
PC : 0x0000
CCs: N = 0 Z = 1 P = 0
Registers:
0: 0x0000
1: 0x0000
2: 0x0000
3: 0x0000
4: 0x0000
5: 0x0000
6: 0x0000
7: 0x300c

19 / 21



Task 1 Golden Results: toupper.cod

Output after run 18:

process_instruction()| curInstr = 0xe00f
process_instruction()| curInstr = 0x6000
process_instruction()| curInstr = 0x6000
process_instruction()| curInstr = 0xe20d
process_instruction()| curInstr = 0x6240
process_instruction()| curInstr = 0x6240
process_instruction()| curInstr = 0x2400
process_instruction()| curInstr = 0x0406
process_instruction()| curInstr = 0x14b0
process_instruction()| curInstr = 0x14b0
process_instruction()| curInstr = 0x3440
process_instruction()| curInstr = 0x1021
process_instruction()| curInstr = 0x1261
process_instruction()| curInstr = 0x0ff8
process_instruction()| curInstr = 0x3440
process_instruction()| curInstr = 0xf025
Simulator halted

20 / 21



Task 1 Golden Results: toupper.cod (cont.)

Output after rdump:

Instruction Count : 16
PC : 0x0000
CCs: N = 0 Z = 1 P = 0
Registers:
0: 0x0000
1: 0x0000
2: 0x0000
3: 0x0000
4: 0x0000
5: 0x0000
6: 0x0000
7: 0x3020

21 / 21


	Main Talk
	LC-3b Basis
	LC-3b Assembly Examples
	LC-3b Simulator
	Task


