Lecture 11: Virtual Memory & Performance

Name: _____

ID:

TLB Event Combinations

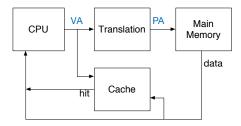
- TLB / Cache miss: page / block not in "cache"
- Page Table miss: page NOT in memory

TLB	Page Table	Cache	Possible? Under what circumstances?
Hit	Hit	Hit	
Hit	Hit	Miss	
Miss	Hit	Hit	
Miss	Hit	Miss	
Miss	Miss	Miss	
Hit	Miss	Miss / Hit	
Miss	Miss	Hit	

TLB Event Combinations

- TLB / Cache miss: page / block not in "cache"
- Page Table miss: page NOT in memory

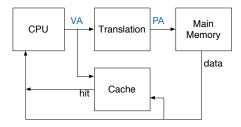
TLB	Page Table	Cache	Possible? Under what circumstances?
Hit	Hit	Hit	Yes – what we want!
Hit	Hit	Miss	Yes – although page table is not
			checked if TLB hits
Miss	Hit	Hit	Yes – TLB miss, PA in page table
Miss	Hit	Miss	Yes – TLB miss, PA in page table but
			data not in cache
Miss	Miss	Miss	Yes – page fault
Hit	Miss	Miss / Hit	
Miss	Miss	Hit	


TLB Event Combinations

- TLB / Cache miss: page / block not in "cache"
- Page Table miss: page NOT in memory

TLB	Page Table	Cache	Possible? Under what circumstances?
Hit	Hit	Hit	Yes – what we want!
Hit	Hit	Miss	Yes – although page table is not
			checked if TLB hits
Miss	Hit	Hit	Yes – TLB miss, PA in page table
Miss	Hit	Miss	Yes – TLB miss, PA in page table but
			data not in cache
Miss	Miss	Miss	Yes – page fault
Hit	Miss	Miss / Hit	Impossible – TLB translation not possible
			if page is not in memory
Miss	Miss	Hit	Impossible – data not allowd in cache if
			page is not in memory

QUESTION: Why Not a Virtually Addressed Cache?


- Access Cache using virtual address (VA)
- Only address translation when cache misses

Answer:

QUESTION: Why Not a Virtually Addressed Cache?

- Access Cache using virtual address (VA)
- Only address translation when cache misses

Answer:

- aliasing: 2 programs may share data w. different VAs for the same PA
- Coherence issues: must update all cache entries with same PAs

Question: Memory Access Time Example

- Assume 8 cycles to read a single memory word;
- 15 cycles to load a 8-word block from main memory (previous example);
- cache access time = 1 cycle
- For every 100 instructions, statistically 30 instructions are data read/ write
- Instruction fetch: 100 memory access: assume hit rate = 0.95
- Data read/ write: 30 memory access: assume hit rate = 0.90

Calculate: (1) Execution cycles without cache; (2) Execution cycles with cache.

Question: Memory Access Time Example

- Assume 8 cycles to read a single memory word;
- 15 cycles to load a 8-word block from main memory (previous example);
- cache access time = 1 cycle
- For every 100 instructions, statistically 30 instructions are data read/ write
- Instruction fetch: 100 memory access: assume hit rate = 0.95
- Data read/ write: 30 memory access: assume hit rate = 0.90

Calculate: (1) Execution cycles without cache; (2) Execution cycles with cache.

► Cycle# w/o. cache: (100 + 30) × 8

Question: Memory Access Time Example

- Assume 8 cycles to read a single memory word;
- 15 cycles to load a 8-word block from main memory (previous example);
- cache access time = 1 cycle
- For every 100 instructions, statistically 30 instructions are data read/ write
- Instruction fetch: 100 memory access: assume hit rate = 0.95
- Data read/ write: 30 memory access: assume hit rate = 0.90

Calculate: (1) Execution cycles without cache; (2) Execution cycles with cache.

- ► Cycle# w/o. cache: (100 + 30) × 8
- ► Cycle# w. cache: 100·[0.95×1+0.05×(1+15+1)]+30·[0.9×1+0.1×(1+15+1)]