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Memory Hierarchy

I Aim: to produce
fast, big and cheap
memory

I L1, L2 cache are
usually SRAM

I Main memory is
DRAM

I Relies on locality of
reference

Processor

Primary
cache

Secondary
cache

Main

Magnetic disk

memory

Increasing
size

Increasing
speed

secondary
memory

Increasing
cost per bit

Registers

L1

L2

Increasing
latency
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Cache-Main Memory Mapping

I A way to record which part of the Main Memory is now in cache

I Synonym: Cache line == Cache block

I Design concerns:
I Be Efficient: fast determination of cache hits/ misses

I Be Effective: make full use of the cache; increase probability of
cache hits

Two questions to answer (in hardware)

Q1 How do we know if a data item is in the cache?
Q2 If it is, how do we find it?
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Imagine: Trivial Conceptual Case

I Cache size == Main Memory size

I Trivial one-to-one mapping

I Do we need Main Memory any more?

Cache

64kB

FAST

Main  
Memory

64kB

SLOW

CPU

FASTEST
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Reality: Cache Block / Cache Line

I Cache size is much smaller than the
Main Memory size

I A block in the Main Memory maps to
a block in the Cache

I Many-to-One Mapping

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

1st

2nd

32nd
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Direct Mapping

7 4 16-bit Main Memory address

Cache
tag

Cache
Block No

Byte Address
within block (4-bit)

5

12-bit Main Memory
Block number/ address

I 24 = 16 bytes in a block
I 27 = 128 Cache blocks
I 2(7+5) = 4096 main memory blocks

Main
Memory

Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

1st

2nd

32nd

I Block j of main memory maps to block (j mod 128) of Cache
(same colour in figure)

I Cache hit occurs if tag matches desired address
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Direct Mapping

Memory address divided into 3 fields

I Main Memory Block number determines position of block in cache
I Tag used to keep track of which block is in cache (as many MM

blocks can map to same position in cache)
I The last bits in the address selects target word in the block

Example: given an address (t,b,w) (16-bit)
1. See if it is already in cache by comparing t with the tag in block b
2. If not, cache miss! Replace the current block at b with a new one

from memory block (t,b) (12-bit)
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Direct Mapping Example 1

7 4 16-bit Main Memory address

Cache
tag

Cache
Block No

Byte Address
within block (4-bit)

5

12-bit Main Memory
Block number/ address

1. CPU is looking for [A7B4] MAR = 1010011110110100
2. Go to cache block 1111011, see if the tag is 10100
3. If YES, cache hit!
4. Otherwise, get the block into cache row 1111011
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Direct Mapping Example 2
Main Memory

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

00
01
10
11

Cache

Tag DataValidIndex
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Direct Mapping Example 2

00
01
10
11

Cache

Main Memory

Tag DataValid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Index
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Question: Direct Mapping Cache Hit Rate

Consider a 4-block empty Cache, and all blocks initially marked as
not valid), Given the main memory word addresses “0 1 2 3 4 3 4
15”, calculate Cache hit rate.

00
01
10
11

Cache

Tag DataValidIndex
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Example 3: MIPS
I One word blocks, cache size = 1K words (or 4KB)
I What kind of locality are we taking advantage of?

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30       . . .        13 12  11     . . .        2  1  0
Byte 
offset

20

Data

32

Hit
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Example 4: MIPS w. Multiword Block
I Four words/block, cache size = 1K words
I What kind of locality are we taking advantage of?

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30   . . .         13 12  11    . . .    4  3 2  1 0 Byte 
offset

20

20Tag

Hit Data

32

Block offset
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Question: Multiword Direct Mapping Cache Hit Rate

Consider a 2-block empty Cache, and each block is with 2-words. All
blocks initially marked as not valid). Given the main memory
word addresses “0 1 2 3 4 3 4 15”, calculate Cache hit rate.

Cache

Tag DataIndex
00
01
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MIPS Cache Field Sizes
The number of bits includes both the storage for data and for the tags

I For a direct mapped cache with 2n blocks, n bits are used for the
index

I For a block size of 2m words (2m+2 bytes), m bits are used to
address the word within the block

I 2 bits are used to address the byte within the word

Size of the tag field?
32− (n + m + 2)

Total number of bits in a direct-mapped cache
2n × (block size+ tag field size+ valid field size)
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Question: Bit number in a Cache
How many total bits are required for a direct mapped cache with 16KB
of data and 4-word blocks assuming a 32-bit address?
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Associative Mapping

412

16-bit Main Memory address

Tag Byte

Main Memory

Block 0

Block 1

Block i

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

I A MM block can be in arbitrary Cache block location
I In this example, all 128 tag entries must be compared with the

address Tag in parallel (by hardware)
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Associative Mapping Example

412

16-bit Main Memory address

Tag Byte

1. CPU is looking for [A7B4] MAR = 1010011110110100
2. See if the tag 101001111011 matches one of the 128 cache tags
3. If YES, cache hit!
4. Otherwise, get the block into BINGO cache row
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Set Associative Mapping

16-bit Main Memory address

6 6 4

Tag
Set

Number Byte

Main Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

Example: 2-way set associativeI Combination of direct and associative
I (j mod 64) derives the Set Number
I A cache with k-blocks per set is called a k-way set associative

cache.
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Set Associative Mapping Example 1

16-bit Main Memory address

6 6 4

Tag
Set

Number Byte

E.g. 2-Way Set Associative:
1. CPU is looking for [A7B4] MAR = 1010011110110100
2. Go to cache Set 111011 (5910)

I Block 1110110 (11810)
I Block 1110111 (11910)

3. See if ONE of the TWO tags in the Set 111011 is 101001
4. If YES, cache hit!
5. Get the block into BINGO cache row
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Set Associative Mapping Example 2

0

Cache

Main Memory

Tag DataV

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1
0
1

Way

0

1
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Question: Direct Mapping v.s. 2-Way Set Associate

Consider the following two empty caches, calculate Cache hit rates for
the reference word addresses: “0 4 0 4 0 4 0 4”

00
01
10
11

Cache

Tag DataValidIndex

(a)

Tag DataSet
Cache

0
1

0
1

(b)

(a) Direct Mapping; (b) 2-Way Set Associative.
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Set Associative Mapping Example 3: MIPS
I 28 = 256 sets each with four ways (each with one block).
I four tags in the set are compared in parallel.

31 30       . . .          11 10  9     . . .        2  1  0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3
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Range of Set Associative Caches

For a fixed size cache:

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a 
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

24 / 38



Overview

Introduction

Direct Mapping

Associative Mapping

Replacement

Conclusion

25 / 38



Handling Cache Read

I I$ and D$
I Read hit: what we want!
I Read miss: stall the pipeline, fetch the block from the next level in

the memory hierarchy, install it in the cache and send the
requested word to the processor, then let the pipeline resume.
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Handling Cache Write Hits
Only D$

Case 1: Write-Through

I Cache and memory to be consistent
I always write the data into both the cache block and the next level

in the memory hierarchy
I Speed-up: use write buffer and stall only when buffer is full

Case 2: Write-Back

I Write the data only into the cache block
I Write to memory hierarchy when that cache block is “evicted”
I Need a dirty bit for each data cache block
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Handling Cache Write Misses
Case 1: Write-Through caches with a write buffer

I No-write allocate
I skip the cache write (but must invalidate that cache block since it

will now hold stale data)
I just write the word to the write buffer (and eventually to the next

memory level)
I no need to stall if the write buffer isn’t full

Case 2: Write-Back caches

I Write allocate
I Just write the word into the cache updating both the tag and data
I no need to check for cache hit
I no need to stall
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Write-Through Cache with No-Write Allocation
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Write-Back Cache with Write Allocation
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Replacement Algorithms

Direct Mapping
I Position of each block fixed
I Whenever replacement is needed (i.e. cache miss→ new block

to load), the choice is obvious and thus no “replacement
algorithm” is needed

Associative and Set Associative
I Need to decide which block to replace
I Keep/retain ones likely to be used in near future again
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Associative & Set Associative Replacement

Strategy 1: Least Recently Used (LRU)

I e.g. for a 4-block/set cache, use a log24 = 2 bit counter for each
block

I Reset the counter to 0 whenever the block is accessed
I counters of other blocks in the same set should be incremented
I On cache miss, replace/ uncache a block with counter reaching 3

Strategy 2: Random Replacement

I Choose random block
I ,Easier to implement at high speed
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Cache Example

short A[10][4];
int sum = 0;
int j, i;
double mean;

// forward loop
for (j = 0; j <= 9; j++)

sum += A[j][0];

mean = sum / 10.0;

// backward loop
for (i = 9; i >= 0; i--)

A[i][0] = A[i][0]/mean;

I Assume separate instruction and
data caches

I So we consider only the data

I Cache has space for 8 blocks

I A block contains one word (byte)

I A[10][4] is an array of words
located at 7A00-7A27 in row-major
order
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Cache Example

A[0][0]
A[0][1]

A[0][2]
A[0][3]
A[1][0]

A[9][0]
A[9][1]
A[9][2]
A[9][3]

Array Contents (40 elements)

Tag for Direct Mapped

Tag for Set-Associative

Tag for Associative

0 1 1 1 1 10 0 0 0 0 0 0 0 0 0
1 1 1 10 10 0 0 0 0 0 0 0 0 1

0 1 1 1 1 10 0 0 0 0 0 0 0 01
0 1 1 1 1 10 0 0 0 0 0 0 0 1 1

0 1 1 1 1 10 0 0 0 0 0 0 1 0 0

0 1 1 1 1 10 0 0 0 1 0 0 1 0 0
1 1 1 10 10 0 0 0 1 0 0 1 0 1

0 1 1 1 1 10 0 0 0 1 0 0 1 01

0 1 1 1 1 10 0 0 0 1 0 0 1 1 1

Memory word address in binary

(7A00)
(7A01)
(7A02)

(7A03)
(7A04)

(7A24)
(7A25)

(7A26)
(7A27)

Memory word
address in hex

8 blocks in cache, 3 bits encodes cache block number

4 blocks/ set,  2 cache sets, 1 bit encodes cache set number

To simplify discussion: 16-bit word (byte) address; i.e. 1 word = 1 byte.
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Direct Mapping
I Least significant 3-bits of address determine location
I No replacement algorithm is needed in Direct Mapping
I When i == 9 and i == 8, get a cache hit (2 hits in total)
I Only 2 out of the 8 cache positions used
I Very inefficient cache utilization

Content of data cache after loop pass: (time line)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block
number

0 A[0][0] A[0][0] A[2][0] A[2][0] A[4][0] A[4][0] A[6][0] A[6][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[6][0] A[6][0] A[4][0] A[4][0] A[2][0] A[2][0] A[0][0]

1

2

3

4 A[1][0] A[1][0] A[3][0] A[3][0] A[5][0] A[5][0] A[7][0] A[7][0] A[9][0] A[9][0] A[9][0] A[7][0] A[7][0] A[5][0] A[5][0] A[3][0] A[3][0] A[1][0] A[1][0]

5

6

7

Tags not shown but are needed.
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Associative Mapping
I LRU replacement policy: get cache hits for i = 9, 8, . . . , 2
I If i loop was a forward one, we would get no hits!

Content of data cache after loop pass: (time line)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block
number

0 A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[0][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[0][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[1][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[1][0] A[1][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0] A[3][0]

4 A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0] A[4][0]

5 A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0] A[5][0]

6 A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0]

7 A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0]

Tags not shown but are needed; LRU Counters not shown but are needed.
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Set Associative Mapping
I Since all accessed blocks have even addresses (7A00, 7A04,
7A08, ...), only half of the cache is used, i.e. they all map to
set 0

I LRU replacement policy: get hits for i = 9, 8, 7 and 6
I Random replacement would have better average performance
I If i loop was a forward one, we would get no hits!

Content of data cache after loop pass: (time line)

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 i = 9 i = 8 i = 7 i = 6 i = 5 i = 4 i = 3 i = 2 i = 1 i = 0

Cache

Block
number

0 A[0][0] A[0][0] A[0][0] A[0][0] A[4][0] A[4][0] A[4][0] A[4][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[8][0] A[4][0] A[4][0] A[4][0] A[4][0] A[0][0]

1 A[1][0] A[1][0] A[1][0] A[1][0] A[5][0] A[5][0] A[5][0] A[5][0] A[9][0] A[9][0] A[9][0] A[9][0] A[9][0] A[5][0] A[5][0] A[5][0] A[5][0] A[1][0] A[1][0]

2 A[2][0] A[2][0] A[2][0] A[2][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[6][0] A[2][0] A[2][0] A[2][0]

3 A[3][0] A[3][0] A[3][0] A[3][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[7][0] A[3][0] A[3][0] A[3][0] A[3][0]

4

5

6

7

Set 0

Set 1

Tags not shown but are needed; LRU Counters not shown but are needed.
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Comments on the Example

I In this example, Associative is best, then Set-Associative, lastly
Direct Mapping.

I What are the advantages and disadvantages of each scheme?

I In practice,
I Low hit rates like in the example is very rare.
I Usually Set-Associative with LRU replacement scheme is used.

I Larger blocks and more blocks greatly improve cache hit rate, i.e.
more cache memory
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Conclusion

I Cache Organizations:
Direct, Associative, Set-Associative

I Cache Replacement Algorithms:
Random, Least Recently Used

I Cache Hit and Miss Penalty
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