CENG 3420 Lecture 05: Arithmetic and Logic Unit

Bei Yu

byu@cse.cuhk.edu.hk

香港中文大學 The Chinese University of Hong Kong

CENG3420 L05.1 Spring 2017

Outline

- 1. Overview
- 2. Addition
- 3. Multiplication & Division
- 4. Shift
- □ 5. Floating Point Number

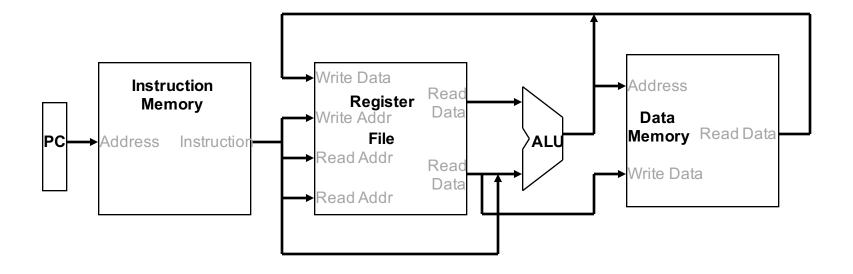
CENG3420 L05.2 Spring 2017

Outline

- 1. Overview
- □ 2. Addition
- □ 3. Multiplication & Division
- 4. Shift
- □ 5. Floating Point Number

CENG3420 L05.3 Spring 2017

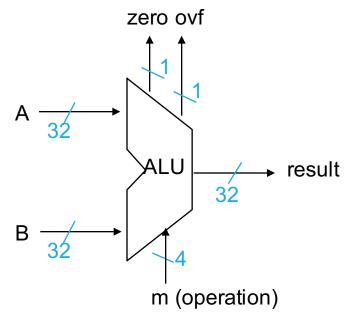
Abstract Implementation View



CENG3420 L05.4 Spring 2017

Arithmetic

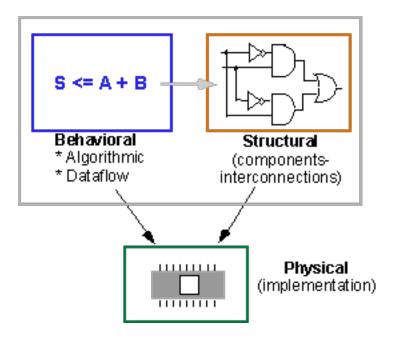
- Where we've been
 - Abstractions
 - Instruction Set Architecture (ISA)
 - Assembly and machine language
- What's up ahead
 - Implementing the ALU architecture



CENG3420 L05.5 Spring 2017

Review: VHDL

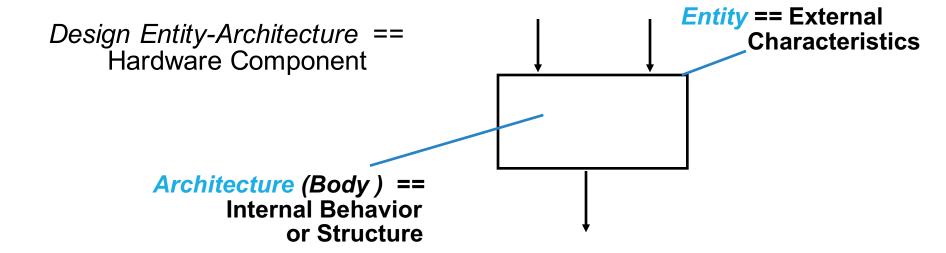
- Supports design, documentation, simulation & verification, and synthesis of hardware
- Allows integrated design at behavioral & structural levels



CENG3420 L05.6 Spring 2017

Review: VHDL

- Basic structure
 - Design entity-architecture descriptions
 - Time-based execution (discrete event simulation) model



CENG3420 L05.7 Spring 2017

Review: Entity-Architecture Features

- Entity defines externally visible characteristics
 - Ports: channels of communication
 - signal names for inputs, outputs, clocks, control
 - Generic parameters: define class of components
 - timing characteristics, size (fan-in), fan-out
- □ Architecture defines the internal behavior or structure of the circuit
 - Declaration of internal signals
 - Description of behavior
 - collection of Concurrent Signal Assignment (CSA) statements (indicated by <=); can also model temporal behavior with the delay annotation
 - one or more processes containing CSAs and (sequential)
 variable assignment statements (indicated by :=)
 - Description of structure
 - interconnections of components; underlying behavioral models of each component must be specified

CENG3420 L05.8 Spring 2017

ALU VHDL Representation

```
entity ALU is
  port(A, B: in std logic vector (31 downto 0);
          m: in std logic vector (3 downto 0);
          result: out std logic vector (31 downto 0);
          zero: out std logic;
          ovf: out std logic)
end ALU;
architecture process behavior of ALU is
begin
   ALU: process(A, B, m)
   begin
       result := A + B;
   end process ALU;
end process behavior;
```

CENG3420 L05.9 Spring 2017

Machine Number Representation

- Bits are just bits (have no inherent meaning)
 - conventions define the relationships between bits and numbers
- □ Binary numbers (base 2) integers

 0000 -> 0001 -> 0010 -> 0011 -> 0100 -> 0101 ->
 - in decimal from 0 to 2ⁿ-1 for n bits
- Of course, it gets more complicated
 - storage locations (e.g., register file words) are finite, so have to worry about overflow (i.e., when the number is too big to fit into 32 bits)
 - have to be able to represent negative numbers, e.g., how do we specify -8 in

```
addi \$sp, \$sp, -8 \#\$sp = \$sp - 8
```

 in real systems have to provide for more than just integers, e.g., fractions and real numbers (and floating point) and alphanumeric (characters)

CENG3420 L05.10 Spring 2017

MIPS Representations

□ 32-bit signed numbers (2's complement):

```
0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 = 0_{ten}
0000 0000 0000 0000 0000 0000 0001<sub>two</sub> = + 1_{ten}
                                                         maxint
1111 \ 1111_{\text{two}} = + 2,147,483,647_{\text{ten}}
    1111 1111 1111 1111 1111
               0000 0000 0000 0000 0000_{two} = -2,147,483,648_{ten}
1000
    0000 0000
1000 0000 0000 0000 0000 0000 0001<sub>two</sub> = -2,147, 483,647_{ten}
                          0000 \ 0000 \ 0010_{\text{two}} = -2,147,483,646_{\text{ten}}
1000 0000 0000 0000 0000
                                                         minint
1111 1111 1111 1111 1111 1111 1111 1101_{two} = -3_{ten}
                               1111 \ 1110_{\text{two}} = - 2_{\text{ten}}
          1111
                1111 1111 1111
               1111 \ 1111 \ 1111 \ 1111 \ 1111_{two} = -1_{ten}
```

- What if the bit string represented addresses?
 - need operations that also deal with only positive (unsigned) integers

CENG3420 L05.11 Spring 2017

Two's Complement Operations

- Negating a two's complement number complement all the bits and then add a 1
 - remember: "negate" and "invert" are quite different!
- Converting n-bit numbers into numbers with more than n bits:
 - MIPS 16-bit immediate gets converted to 32 bits for arithmetic
 - sign extend copy the most significant bit (the sign bit) into the other bits

```
0010 -> 0000 0010
1010 -> 1111 1010
```

sign extension versus zero extend (1b vs. 1bu)

CENG3420 L05.12 Spring 2017

Design the MIPS Arithmetic Logic Unit (ALU)

zero ovf

ALU

Must support the Arithmetic/Logic operations of the ISA

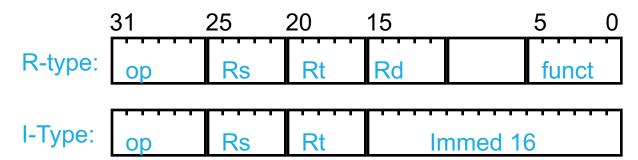
```
add, addi, addiu, addu sub, subu mult, multu, div, divu sqrt
```

and, andi, nor, or, ori, xor, xori m (operation) beq, bne, slt, slti, sltiu, sltu

- With special handling for
 - sign extend addi, addiu, slti, sltiu
 - zero extend andi, ori, xori
 - Overflow detected add, addi, sub

CENG3420 L05.13 Spring 2017

MIPS Arithmetic and Logic Instructions



Type	ор	funct
ADDI	001000	XX
ADDIU	001001	XX
SLTI	001010	XX
SLTIU	001011	XX
ANDI	001100	XX
ORI	001101	XX
XORI	001110	XX
LUI	001111	XX

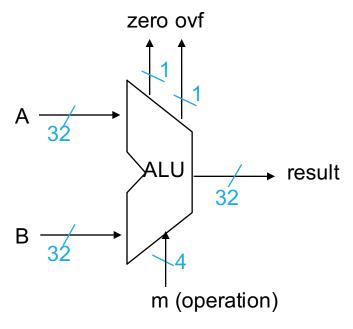
Type	ор	funct
ADD	000000	100000
ADDU	000000	100001
SUB	000000	100010
SUBU	000000	100011
AND	000000	100100
OR	000000	100101
XOR	000000	100110
NOR	000000	100111

Type	ор	funct	
	000000	101000	
	000000	101001	
SLT	000000	101010	
SLTU	000000	101011	
	000000	101100	

CENG3420 L05.14 Spring 2017

Design Trick: Divide & Conquer

- Break the problem into simpler problems, solve them and glue together the solution
- Example: assume the immediates have been taken care of before the ALU
 - now down to 10 operations
 - can encode in 4 bits



0	add
1	addu
2	sub
3	subu
4	and
5	or
6	xor
7	nor
а	slt
b	sltu

CENG3420 L05.15 Spring 2017

Outline

- 1. Overview
- 2. Addition
- □ 3. Multiplication & Division
- 4. Shift
- □ 5. Floating Point Number

CENG3420 L05.16 Spring 2017

Addition & Subtraction

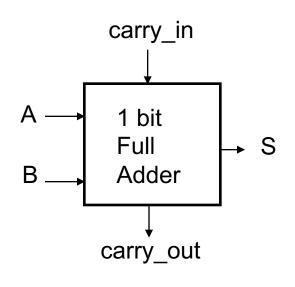
Just like in grade school (carry/borrow 1s)

$$\begin{array}{r} 0111 \\ + 0110 \\ \hline 1101 \end{array}$$

- Two's complement operations are easy
 - do subtraction by negating and then adding

- Overflow (result too large for finite computer word)
 - e.g., adding two n-bit numbers does not yield an n-bit number

Building a 1-bit Binary Adder

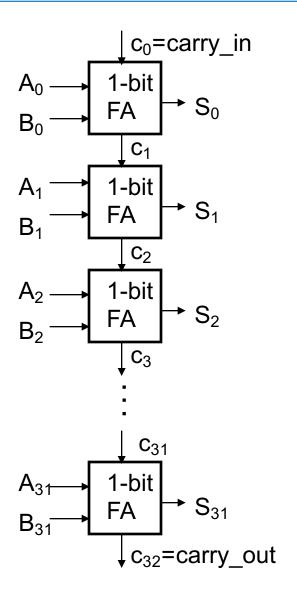


Α	В	carry_in carry_o		S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- How can we use it to build a 32-bit adder?
- How can we modify it easily to build an adder/subtractor?

CENG3420 L05.18 Spring 2017

Building 32-bit Adder



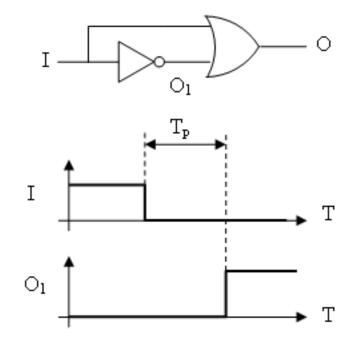
■ Just connect the carry-out of the least significant bit FA to the carry-in of the next least significant bit and connect . . .

- □ Ripple Carry Adder (RCA)
 - advantage: simple logic, so small (low cost)
 - disadvantage: slow and lots of glitching (so lots of energy consumption)

CENG3420 L05.19 Spring 2017

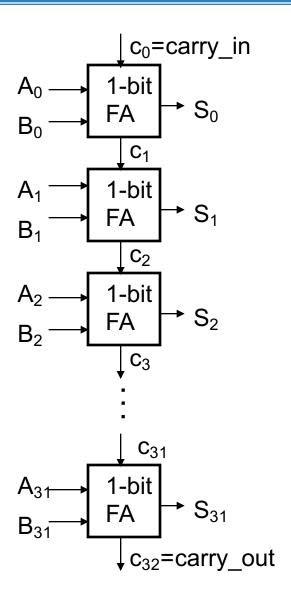
Glitch

- Glitch: invalid and unpredicted output that can be read by the next stage and result in a wrong action
- Example: Draw the propagation delay



CENG3420 L05.20 Spring 2017

Glitch in RCA

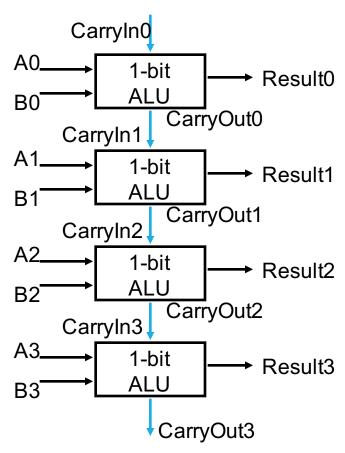


Α	В	carry_in	carry_out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

CENG3420 L05.21 Spring 2017

But What about Performance?

Critical path of n-bit ripple-carry adder is n*CP



Design trick – throw hardware at it (Carry Lookahead)

CENG3420 L05.22 Spring 2017

A 32-bit Ripple Carry Adder/Subtractor

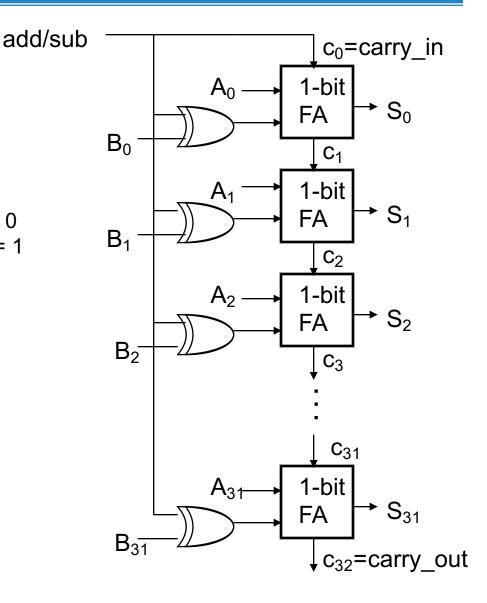
- Remember 2's complement is just
 - complement all the bits

control

$$(0=add,1=sub)$$
 B_0 if control = 0
 B_0 if control = 1

 add a 1 in the least significant bit

A 0111
$$\rightarrow$$
 0111
B $-$ 0110 \rightarrow + 1001
0001 $\frac{1}{10001}$



CENG3420 L05.23 Spring 2017

Minimal Implementation of a Full Adder

□ Gate library: inverters, 2-input nands, or-and-inverters

```
architecture concurrent behavior of full adder is
   signal t1, t2, t3, t4, t5: std logic;
begin
      t1 <= not A after 1 ns;
      t2 <= not cin after 1 ns;
      t4 <= not((A or cin) and B) after 2 ns;
      t3 \le not((t1 \text{ or } t2) \text{ and } (A \text{ or } cin)) \text{ after } 2 \text{ ns};
      t5 <= t3 nand B after 2 ns;
      S <= not((B or t3) and t5) after 2 ns;</pre>
      cout <= not((t1 or t2) and t4) after 2 ns;</pre>
end concurrent behavior;
```

[Optional] Can you create the equivalent schematic? Can you determine worst case delay (the worst case timing path through the circuit)?

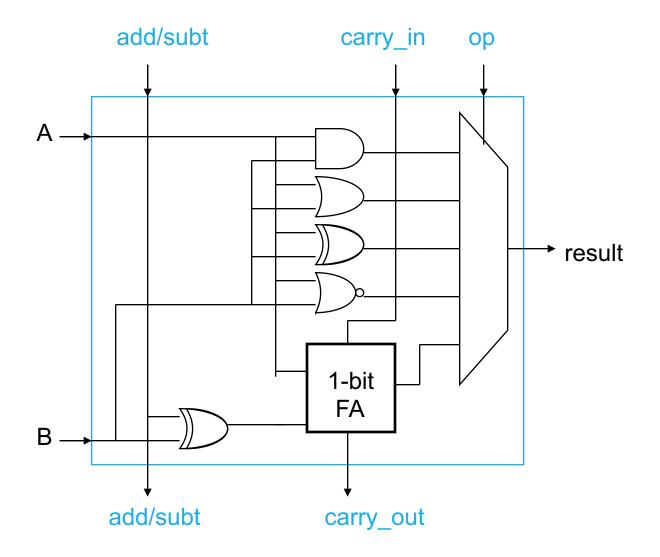
CENG3420 L05.24 Spring 2017

Tailoring the ALU to the MIPS ISA

- Also need to support the logic operations (and, nor, or, xor)
 - Bit wise operations (no carry operation involved)
 - Need a logic gate for each function and a mux to choose the output
- Also need to support the set-on-less-than instruction (slt)
 - Uses subtraction to determine if (a b) < 0 (implies a < b)
- Also need to support test for equality (bne, beq)
 - Again use subtraction: (a b) = 0 implies a = b
- Also need to add overflow detection hardware
 - overflow detection enabled only for add, addi, sub
- Immediates are sign extended outside the ALU with wiring (i.e., no logic needed)

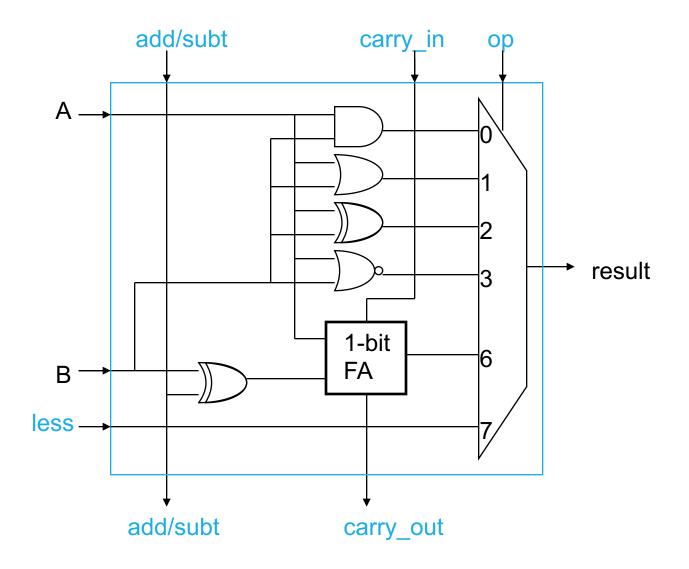
CENG3420 L05.25 Spring 2017

A Simple ALU Cell with Logic Op Support



CENG3420 L05.26 Spring 2017

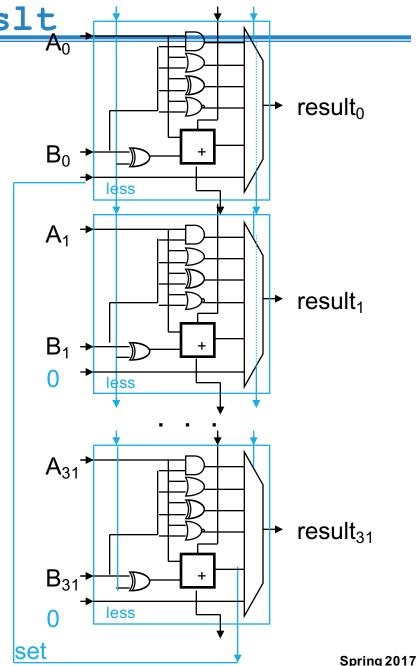
Modifying the ALU Cell for slt



CENG3420 L05.27 Spring 2017

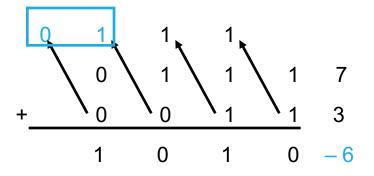
Modifying the ALU for slt

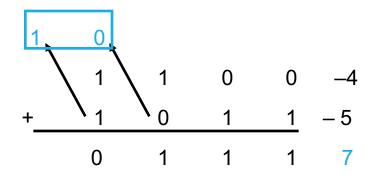
- First perform a subtraction
- Make the result 1 if the subtraction yields a negative result
- Make the result 0 if the subtraction yields a positive result
 - tie the most significant sum bit (sign bit) to the low order less input



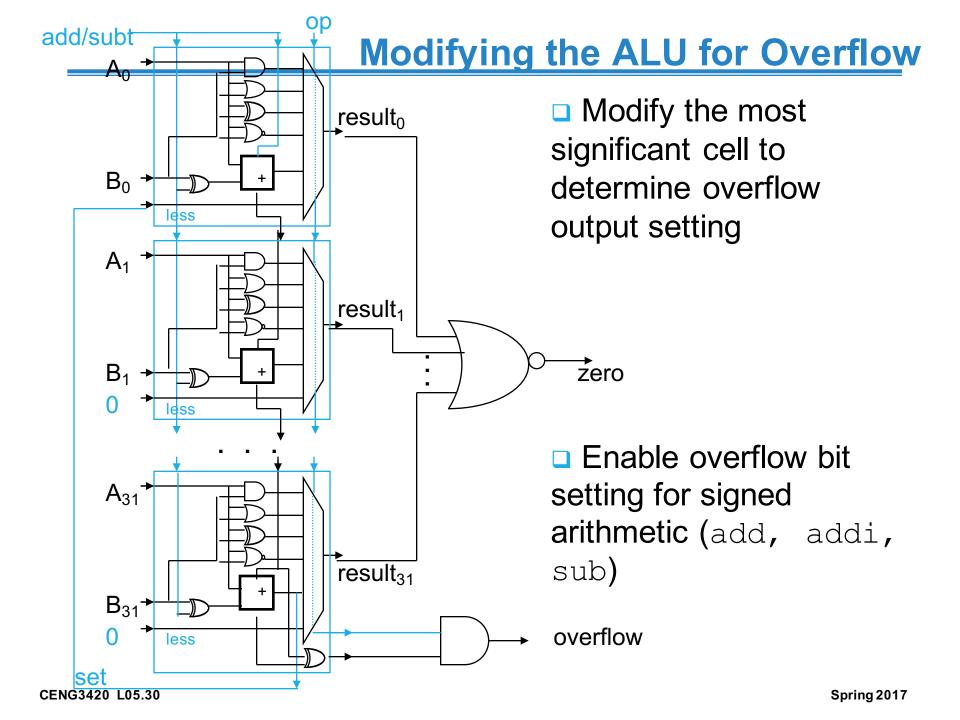
Overflow Detection

- Overflow occurs when the result is too large to represent in the number of bits allocated
 - adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive gives a negative
 - or, subtract a positive from a negative gives a positive
- On your own: Prove you can detect overflow by:
 - Carry into MSB xor Carry out of MSB





CENG3420 L05.29 Spring 2017



Overflow Detection and Effects

- On overflow, an exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address (address of instruction causing the overflow) is saved for possible resumption
- Don't always want to detect (interrupt on) overflow

CENG3420 L05.31 Spring 2017

New MIPS Instructions

Category	Instr	Op Code	Example	Meaning
Arithmetic	add unsigned	0 and 21	addu \$s1, \$s2, \$s3	s \$s1 = \$s2 + \$s3
(R & I	sub unsigned	0 and 23	subu \$s1, \$s2, \$s3	\$s1 = \$s2 - \$s3
format)	add imm.unsigned	9	addiu \$s1, \$s2, 6	\$s1 = \$s2 + 6
Data Transfer	ld byte unsigned	24	lbu \$s1, 20(\$s2)	\$s1 = Mem(\$s2+20)
	ld half unsigned	25	lhu \$s1, 20(\$s2)	\$s1 = Mem(\$s2+20)
Cond. Branch (I & R	set on less than unsigned	0 and 2b	sltu \$s1, \$s2, \$s3	if (\$s2<\$s3) \$s1=1 else \$s1=0
format)	set on less than imm unsigned	b	sltiu \$s1, \$s2, 6	if (\$s2<6) \$s1=1 else \$s1=0

- □ Sign extend addi, addiu, slti
- □ Zero extend andi, ori, xori
- Overflow detected add, addi, sub

CENG3420 L05.32 Spring 2017

Outline

- 1. Overview
- □ 2. Addition
- 3. Multiplication & Division
- 4. Shift
- □ 5. Floating Point Number

CENG3420 L05.33 Spring 2017

Multiplication

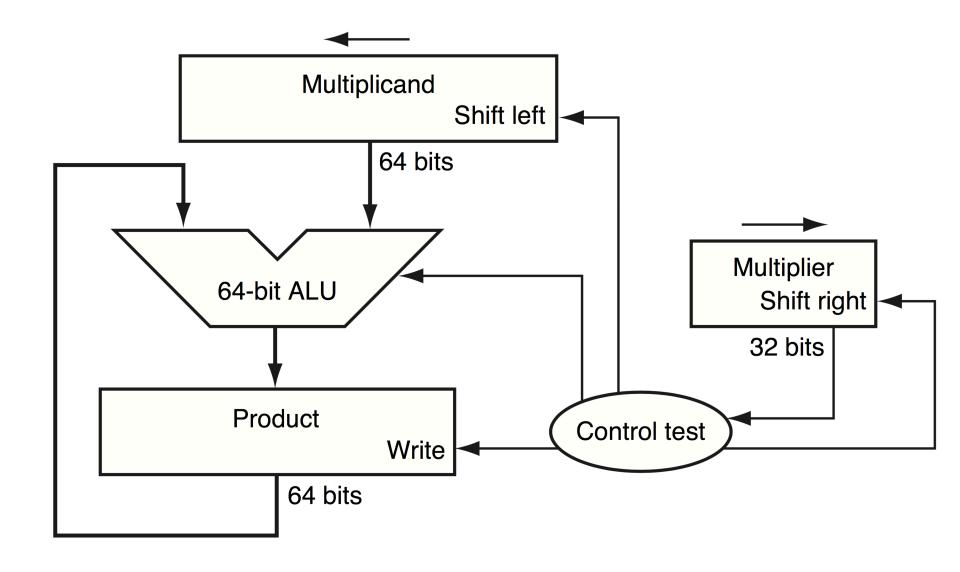
- More complicated than addition
 - Can be accomplished via shifting and adding

```
0010 (multiplicand)
x_1011 (multiplier)
0010
0010 (partial product
array)
0010
00010110 (product)
```

- Double precision product produced
- More time and more area to compute

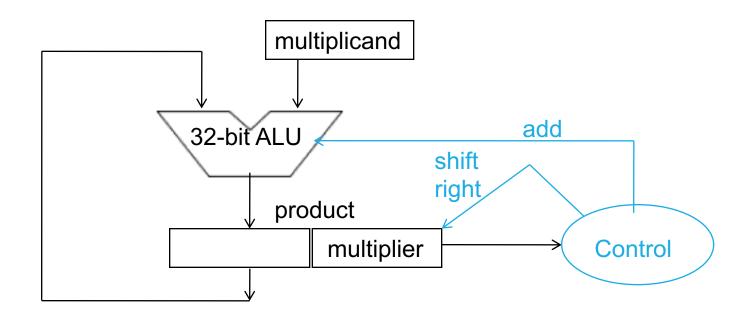
CENG3420 L05.34 Spring 2017

First Version of Multiplication Hardware



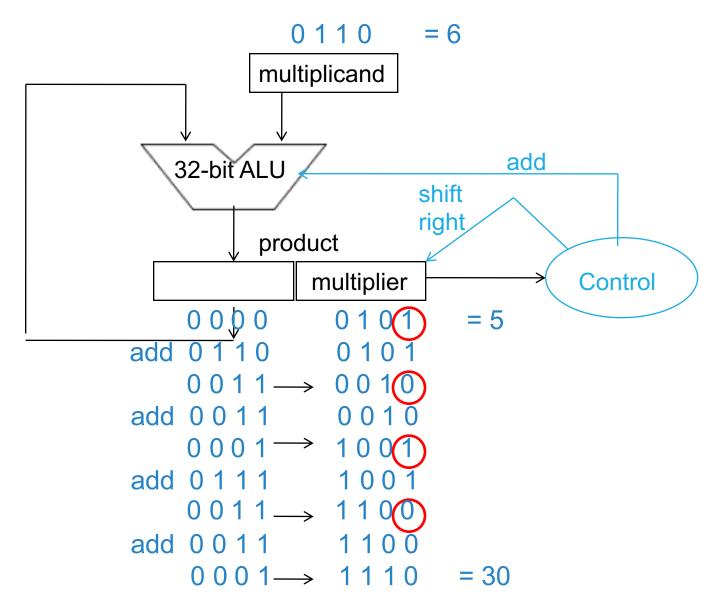
CENG3420 L05.35 Spring 2017

Add and Right Shift Multiplier Hardware



CENG3420 L05.36 Spring 2017

Add and Right Shift Multiplier Hardware



CENG3420 L05.37 Spring 2017

MIPS Multiply Instruction

Multiply (mult and multu) produces a double precision product

mult \$s0, \$s1 # hi||lo = \$s0 * \$s1

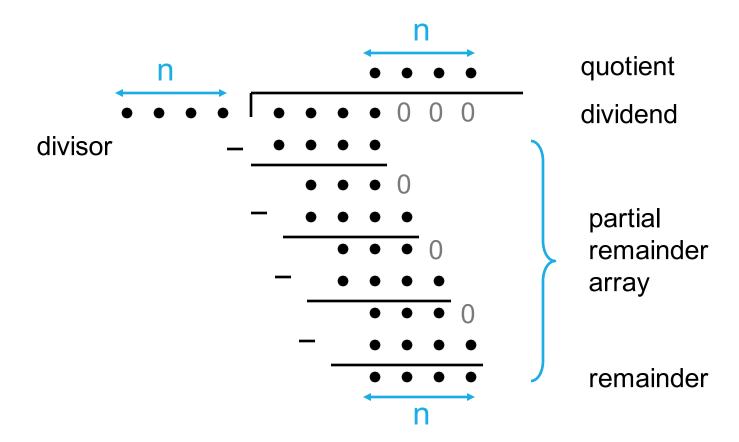
0 16 17 0 0 0x18

- Low-order word of the product is left in processor register
 lo and the high-order word is left in register
- Instructions mfhi rd and mflo rd are provided to move the product to (user accessible) registers in the register file
- Multiplies are usually done by fast, dedicated hardware and are much more complex (and slower) than adders

CENG3420 L05.38 Spring 2017

Division

Division is just a bunch of quotient digit guesses and left shifts and subtracts



CENG3420 L05.39 Spring 2017

Example: Division

Dividing 1001010 by 1000

CENG3420 L05.40 Spring 2017

MIPS Divide Instruction

Divide generates the reminder in hi and the quotient in lo

- Instructions mflo rd and mfhi rd are provided to move the quotient and reminder to (user accessible) registers in the register file
- As with multiply, divide ignores overflow so software must determine if the quotient is too large. Software must also check the divisor to avoid division by 0.

CENG3420 L05.41 Spring 2017

Outline

- 1. Overview
- □ 2. Addition
- □ 3. Multiplication & Division
- 4. Shift
- □ 5. Floating Point Number

CENG3420 L05.42 Spring 2017

Shift Operations

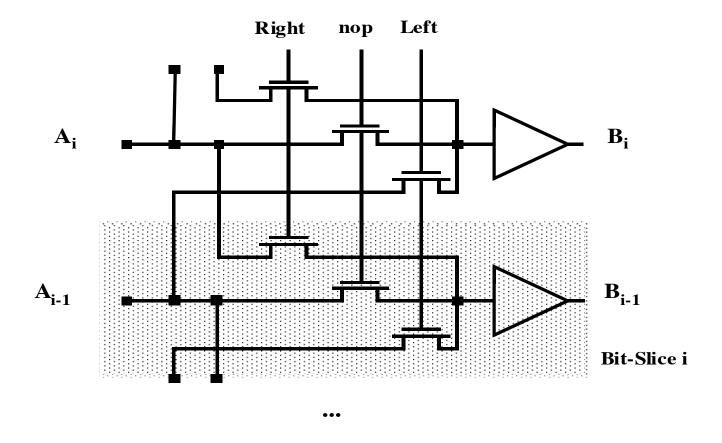
Shifts move all the bits in a word left or right

```
sll $t2, $s0, 8 #$t2 = $s0 << 8 bits srl $t2, $s0, 8 #$t2 = $s0 >> 8 bits sra $t2, $s0, 8 #$t2 = $s0 >> 8 bits op rs rt rd shamt funct
```

- Notice that a 5-bit shamt field is enough to shift a 32-bit value 2⁵ − 1 or 31 bit positions
- Logical shifts fill with zeros, arithmetic left shifts fill with the sign bit
- The shift operation is implemented by hardware separate from the ALU
 - using a barrel shifter (which would takes lots of gates in discrete logic, but is pretty easy to implement in VLSI)

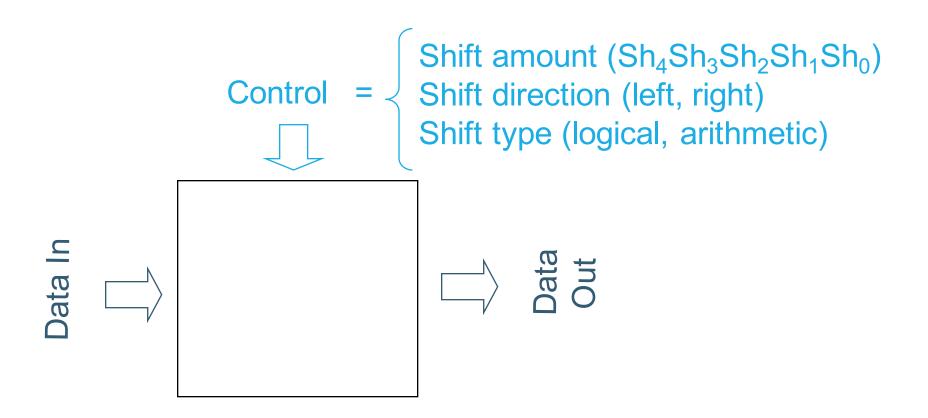
CENG3420 L05.43 Spring 2017

A Simple Shifter



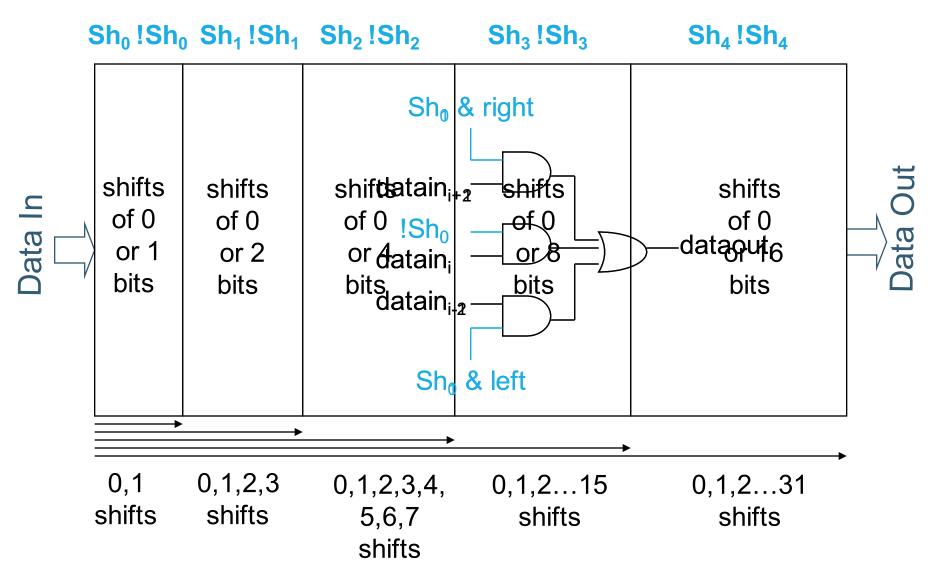
CENG3420 L05.44 Spring 2017

Parallel Programmable Shifters



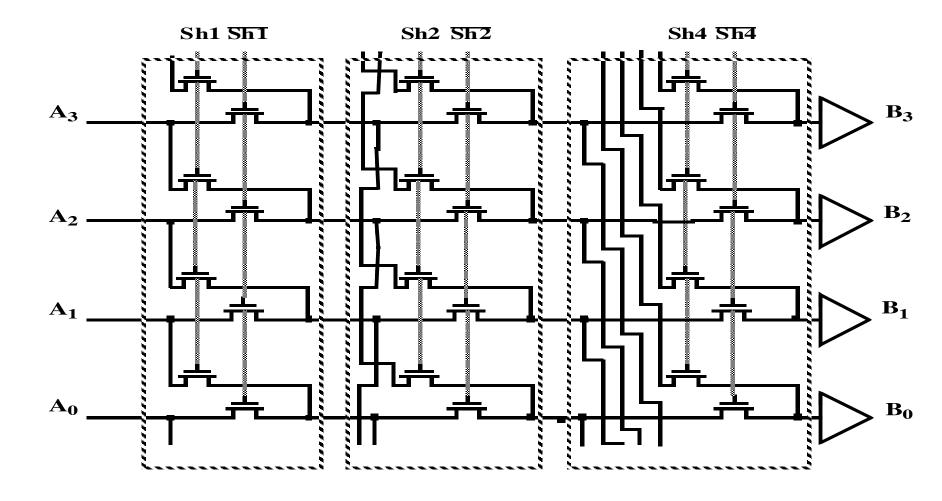
CENG3420 L05.45 Spring 2017

Logarithmic Shifter Structure



CENG3420 L05.46 Spring 2017

Logarithmic Shifter Structure



CENG3420 L05.47 Spring 2017

Outline

- 1. Overview
- □ 2. Addition
- □ 3. Multiplication & Division
- 4. Shift
- 5. Floating Point Number

CENG3420 L05.48 Spring 2017

Floating Point Number

- □ Scientific notation: 6.6254 ×10⁻²⁷
 - A normalized number of certain accuracy
 e.g. 6.6254 is called the mantissa
 - Scale factors to determine the position of the decimal point
 e.g. 10⁻²⁷ indicates position of decimal point and is called the exponent (the base is implied)
 - Sign bit

CENG3420 L05.49 Spring 2017

Normalized Form

□ Floating Point Numbers can have multiple forms, e.g.

```
0.232 \times 10^4 = 2.32 \times 10^3
= 23.2 x 10<sup>2</sup>
= 2320. x 10<sup>0</sup>
= 232000. x 10<sup>-2</sup>
```

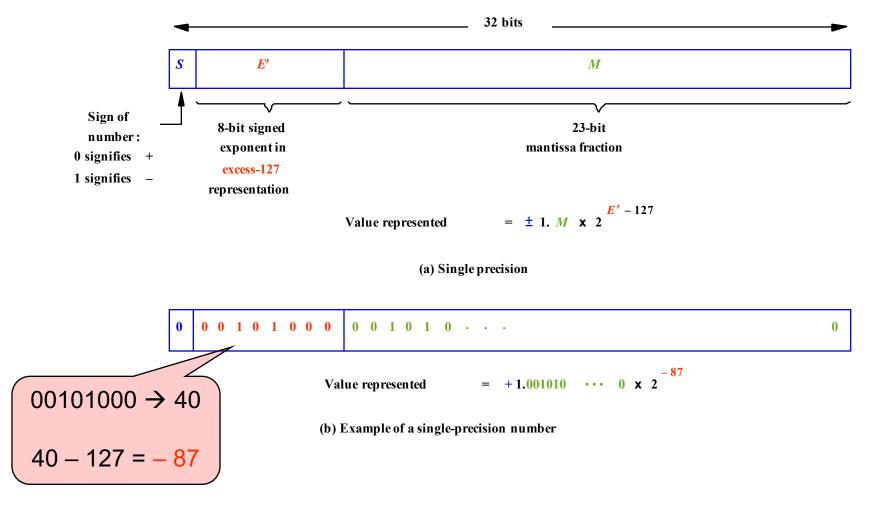
- It is desirable for each number to have a unique representation => Normalized Form
- We normalize Mantissa's in the Range [1 .. R) where R is the Base, e.g.:

[1 .. 2) for BINARY

[1 .. 10) for DECIMAL

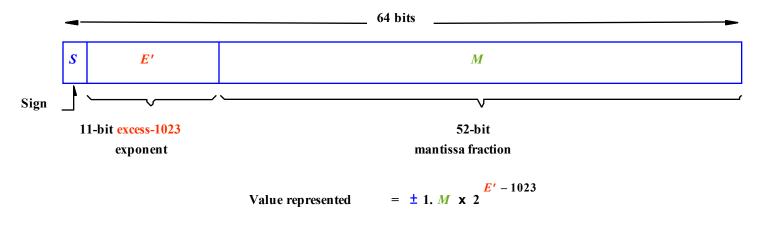
CENG3420 L05.50 Spring 2017

IEEE Standard 754 Single Precision (32-bit, float in C/ C++/ Java)



CENG3420 L05.51 Spring 2017

IEEE Standard 754 Double Precision (64-bit, double in C/ C++/ Java)



(c) Double precision

CENG3420 L05.52 Spring 2017

Example

■ What is the IEEE single precision number 40C0 0000₁₆ in decimal?

- Binary:
 0100 0000 1100 0000 0000 0000 0000
- Sign: +
- Exponent: 129 127 = +2
- Mantissa: $1.100\ 0000\ \dots_2 \rightarrow 1.5_{10}\ x\ 2^{+2}$ $\rightarrow +110.0000\ \dots_2$
- Decimal Answer = +6.0₁₀

CENG3420 L05.53 Spring 2017

Class Exercise

■ What is –0.5₁₀ in IEEE single precision binary floating point format?

- \bullet 0.5 = 1.0... * 2^{-1} (in binary)
- Exponent bit= 127 + (-1) = 011111110
 Sign bit = 1
 Mantissa = 1.000 0000 0000 0000 0000
- binary representation =
- 1 01111110 000 0000 0000 0000 0000 0000

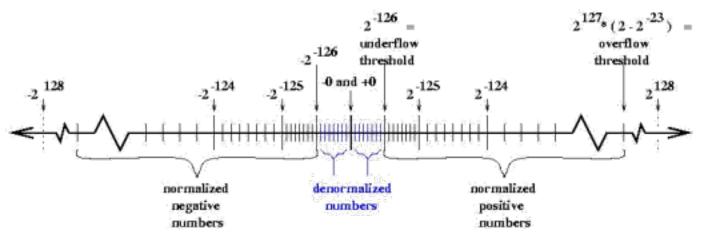
CENG3420 L05.54 Spring 2017

Ref: IEEE Standard 754 Numbers

- Normalized +/- 1.d...d x 2^{exp}
- **Denormalized** +/-0.d...d x 2^{min_exp} \rightarrow to represent <u>near-zero</u> numbers e.g. + 0.0000...0000001 x 2^{-126} for Single Precision

Format	# bits	# significant bits	macheps	# exponent bits	exponent range
Single	32	1+23	2 ⁻²⁴ (~10 ⁻⁷)	8	$2^{-126} - 2^{+127} (\sim 10^{\pm 38})$
Double	64	1+52	2 ⁻⁵³ (~10 ⁻¹⁶)	11	$2^{-1022} - 2^{+1023} (\sim 10^{\pm 308})$
Double Extended	>=80	>=64	<=2 ⁻⁶⁴ (~10 ⁻¹⁹)	>=15	2 ⁻¹⁶³⁸² - 2 ⁺¹⁶³⁸³ (~10

(Double Extended is 80 bits on all Intel machines) macheps = Machine Epsilon = $_{mach}$ = 2^{- (# significand bits)}



CENG3420 L05.55 Spring 2017

Other Features

- +, -, x, /, sqrt, remainder, as well as conversion to and from integer are correctly rounded
 - As if computed with infinite precision and then rounded
 - Transcendental functions (that cannot be computed in a finite number of steps e.g., sine, cosine, logarithmic, π , e, etc.) may not be correctly rounded
- Exceptions and Status Flags
 - Invalid Operation, Overflow, Division by zero, Underflow, Inexact
- Floating point numbers can be treated as "integer bitpatterns" for comparisons
 - If Exponent is all zeroes, it represents a denormalized, very small and near (or equal to) zero number
 - If Exponent is all ones, it represents a very large number and is considered infinity (see next slide.)

CENG3420 L05.56 Spring 2017

Special Values

- Exponents of all 0's and all 1's have special meaning
 - E=0, M=0 represents 0 (sign bit still used so there is +/-0)
 - \bullet E=0, M<>0 is a denormalized number ± 0 .M x 2^{-127} (smaller than the smallest normalized number)
 - E=All 1's, M=0 represents ±Infinity, depending on Sign
 - E=All 1's, M<>0 represents NaN

CENG3420 L05.57 Spring 2017

Other Features

- Dual Zeroes: +0 (0x00000000) and -0 (0x80000000) (they are treated as the same)
- Infinity is like the mathematical one
 - Finite / Infinity $\rightarrow 0$
 - Infinity x Infinity → Infinity
 - Non-zero / 0 → Infinity
 - Infinity ^ (Finite or Infinity) → Infinity
- NaN (Not-a-Number) is produced whenever a *limiting value* cannot be determined:
 - Infinity Infinity → NaN
 - Infinity / Infinity → NaN
 - 0 / 0 → NaN
 - Infinity x 0 → NaN
 - Many systems just store the result quietly as a NaN (all 1's in exponent) some systems will signal or raise an exception

☐ If x is a NaN, x != x

CENG3420 L05.58 Spring 2017

Inaccurate Floating Point Operations

■ E.g. Find 1st root of a quadratic equation

$$r = (-b + sqrt(b*b - 4*a*c)) / (2*a)$$

Sparc processor, Solaris, gcc 3.3 (ANSI C),

Expected Answer 0.00023025562642476431 double 0.00023025562638524986 float 0.00024670246057212353

Problem is that if c is near zero,

$$sqrt(b*b - 4*a*c) \approx b$$

Rule of thumb: use the highest precision which does not give up too much speed

CENG3420 L05.59 Spring 2017

Catastrophic Cancellation

- (a b) is inaccurate when a ≈ b
- Decimal Examples
 - Using 2 significant digits to compute mean of 5.1 and 5.2 using the formula (a+b) / 2:

```
a + b = 10 (with 2 sig. digits, 10.3 can only be stored as 10) 10 / 2 = 5.0 (the computed mean is less than both numbers!!!)
```

Using 8 significant digits to compute sum of three numbers:

```
(11111113 + (-11111111)) + 7.5111111 = 9.5111111

1111113 + ((-11111111)) + 7.5111111) = 10.000000
```

Catastrophic cancellation occurs when

$$|\frac{[round(x)"\bullet"round(y)] - round(x \bullet y)}{round(x \bullet y)}| >> \varepsilon_{mach}$$

CENG3420 L05.60 Spring 2017