CMSC 5743 Efficient Computing of Deep Neural Networks

Lecture 07: Binary/Ternary Network

- Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk
- (Latest update: October 5, 2021)
- Fall 2021

These slides contain/adapt materials developed by

- Ritchie Zhao et al. (2017). "Accelerating binarized convolutional neural networks with software-programmable FPGAs". In: *Proc. FPGA*, pp. 15–24
- Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542

Binary / Ternary Net: Motivation

Binarized Neural Networks (BNN)

CNN

Key Differences

- 1. Inputs are binarized (−1 or +1)
- 2. Weights are binarized (-1 or +1)
- 3. Results are binarized after **batch normalization**

BNN

BNN CIFAR-10 Architecture [2]

- ► 6 conv layers, 3 dense layers, 3 max pooling layers
- \blacktriangleright All conv filters are 3x3
- \blacktriangleright First conv laver takes in floating-point input
- ▶ **13.4 Mbits total model size** (after hardware optimizations)

Advantages of BNN

1. Floating point ops replaced with binary logic ops

- Encode {+1,−1} as {0,1} à multiplies become XORs
- Conv/dense layers do dot products \rightarrow XOR and popcount
- Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size

– Fewer bits per weight may be offset by having more weights

BNN vs CNN Parameter Efficiency

* Assuming each float param can be quantized to 8-bit fixed-point

Comparison:

- Conservative assumption: ResNet can use 8-bit weights
- BNN is based on VGG (less advanced architecture)
- BNN seems to hold promise!

^[2] M. Courbariaux et al. **Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1**. *arXiv:1602.02830*, Feb 2016.

^[3] K. He, X. Zhang, S. Ren, and J. Sun. **Identity Mappings in Deep Residual Networks.** *ECCV 2016.*

1 [Minimize the Quantization Error](#page-8-0)

2 [Improve Network Loss Function](#page-52-0)

³ [Reduce the Gradient Error](#page-60-0)

1 [Minimize the Quantization Error](#page-8-0)

2 [Improve Network Loss Function](#page-52-0)

³ [Reduce the Gradient Error](#page-60-0)

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

 $W^B = sign(W)$

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Quantization Error

 $W^B = sign(W)$

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Optimal Scaling Factor

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

How to train a CNN with binary filters?

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Training Binary Weight Networks

Naive Solution:

1. Train a network with real value parameters 2. Binarize the weight filters

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

AlexNet Top-1 (%) ILSVRC2012

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Binary Weight Network

Train for binary weights:

- 1. Randomly initialize W
- 2. For $iter = 1$ to N
- 3. Load a random input image X

4.
$$
W^B = sign(W)
$$

$$
5. \qquad \alpha = \frac{\|W\|_{\ell 1}}{n}
$$

- 6. Forward pass with α , $\mathbf{W}^{\mathbf{B}}$
- 7. Compute loss function C

8.
$$
\frac{\partial \mathbf{C}}{\partial \mathbf{W}} =
$$
 Backward pass with α , $\mathbf{W}^{\mathbf{B}}$

9. Update W
$$
(W = W - \frac{\partial C}{\partial W})
$$

convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34 ¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary

Binary Weight Network

Train for binary weights:

- 1. Randomly initialize W
- 2. For $iter = 1$ to N
- Load a random input image X $3.$

4.
$$
W^B = sign(W)
$$

$$
5. \qquad \alpha = \frac{\|W\|_{\ell 1}}{n}
$$

- Forward pass with α , W^B 6.
- 7. Compute loss function C

8.
$$
\frac{\partial C}{\partial W} =
$$
 Backward pass with α , W^B

9. Update W
$$
(W = W - \frac{\partial C}{\partial W})
$$

W

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

W **Binary Weight Network** \mathbb{R} \mathbb{R} Train for binary weights: 1. Randomly initialize W **WB** 2. For iter = 1 to N \mathbb{B} \mathbb{B} Load a random input image X $W^B = sign(W)$ $\alpha = \frac{\|W\|_{\ell 1}}{n}$ Forward pass with α , W^B Compute loss function C

 \mathbf{B}

4.

 $5₁$

 $6.$ $7.$

8.

9.

 $\frac{\partial C}{\partial W}$ = Backward pass with α , W^B

Update W (W = W $-\frac{\partial C}{\partial W}$)

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Binary Input and Binary Weight (XNOR-Net)

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Binary Input and Binary Weight (XNOR-Net)

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

(1) Binarizing Weights

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

AlexNet Top-1 (%) ILSVRC2012

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Network Structure in XNOR-Networks

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Network Structure in XNOR-Networks

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Network Structure in XNOR-Networks

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

✓ 32x'Smaller'Model'

convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34 ¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary

AlexNet **Top-1 & 5** (%) ILSVRC2012

¹Mohammad Rastegari et al. (2016). "XNOR-NET: Imagenet classification using binary convolutional neural networks". In: *Proc. ECCV*, pp. 525–542. 6/34

Motivation

• Naive methods (Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David (2015). "Binaryconnect: Training deep neural networks with binary weights during propagations". In: *Advances in neural information processing systems*, pp. 3123–3131, Matthieu Courbariaux, Itay Hubara, et al. (2016). "Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1". In: *arXiv preprint arXiv:1602.02830*) suffer the accuracy loss

Intuition

• Quantized parameter should approximate the full precision parameter as closely as possible

DoReFa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients

Contribution

- Succeeded in quantizing gradients to numbers with bitwidth less than 8 bits during the backward pass
- Creating DoReFa-Net which has arbitrary bitwidth in weights, activations and gradients
- Explore the the configuration space of bitwidth for weights, activations and gradients for DoReFa-Net

Weights Quantization

• Weights binarization

Activations Quantization

• Assume the output of the previous layer has passed through a bounded activation function *h*, which ensures $r \in [0, 1]$

 $f^k_\alpha(r)$ = quantize $_k(r)$

Gradient Quantization

• Gradients are unbounded and may have significantly larger value range than activations

$$
f_{\gamma}^{k}(dr) = 2 \max_{0}(|dr|)[quantize_{k}[\frac{dr}{2 \max_{0}(|dr|)} + \frac{1}{2} + N(k)] - \frac{1}{2}]
$$

$$
N(k) = \frac{\sigma}{2^{k} - 1} where \sigma \sim Uniform(-0.5, 0.5)
$$

Read the paper² if you want to learn the specific details of the algorithm

DOREFA-NET: TRAINING LOW BITWIDTH CONVOLU-TIONAL NEURAL NETWORKS WITH LOW BITWIDTH **GRADIENTS**

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, Yuheng Zou Megvii Inc. {zsc, wyx, nzk, zxy, wenhe, zouvuheng}@megvii.com

2 Shuchang Zhou et al. (2016). "Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients". In: *arXiv preprint arXiv:1606.06160*. 12/34

Towards Accurate Binary Convolutional Neural Network

Contribution

- Approximate full-precision weights with the linear combination of multiple binary weight bases
- Introduce multiple binary activations

Weights Binarization

• Weights tensors in one layer: $W \in \mathbb{R}^{w \times h \times c_{in} \times c_{out}}$

$$
B_1, B_2, \ldots, B_M \in \{-1, +1\}^{w \times h \times c_{in} x_{out}}
$$

\n
$$
W \approx \alpha_1 B_1 + \alpha_2 B_2 + \ldots + \alpha_M B_M
$$

\n
$$
B_i = F_{u_i}(W) = \text{sign}(\bar{W} + u_i \text{ std}(W)), i = 1, 2, \ldots, M
$$

where $\bar{W} = W - \text{mean}(W)$, u_i is a shift parameter(e.g. $u_i = -1 + (i - 1)\frac{2}{M-1}$) α can be calculated via $\min_a J(\alpha) = ||W - B\alpha||^2$

ABC-Net

Forward and Backward

• Forward

$$
B_1, B_2, \cdots, B_M = F_{u_1}(W), F_{w_2}(W), \cdots, F_{u,u}(W)
$$

solve $\min_a J(\alpha) = ||W - B\alpha||^2$ for α

$$
O = \sum_{m=1}^M \alpha_m \text{Conv}(B_m, A)
$$

• Backward

$$
\frac{\partial c}{\partial W} = \frac{\partial c}{\partial O} \left(\sum_{m=1}^{M} \alpha_m \frac{\partial O}{\partial B_m} \frac{\partial B_m}{\partial W} \right) \stackrel{STE}{=} \frac{\partial c}{\partial O} \left(\sum_{m=1}^{M} \alpha_m \frac{\partial O}{\partial B_m} \right) = \sum_{m=1}^{M} \alpha_m \frac{\partial c}{\partial B_m}
$$

ABC-Net

Multiple Binary Activations

• Bounded Activation Function

 $h(x) \in [0, 1]$ $h_r(x) = \text{clip}(x + v, 0, 1)$ where *v* is a shift parameter

• Binarization Function

$$
H_v(\mathbf{R}) := 2\mathbb{I}_{h_v(\mathbf{R})\geq 0.5} - 1
$$

\n
$$
A_1, A_2, \dots, A_N = H_{v_1}(R), H_{v_2}(R), \dots, H_{v_N}(R)
$$

\n
$$
R \approx \beta_1 A_1 + \beta_2 A_2 + \dots + \beta_N A_N
$$

\nwhere *R* is the real-value activation

• A_1, A_2, \ldots, A_N is the base to represent the real-valued activations

- ApproxConv is expected to approximate the conventional full-precision convolution with linear combination of binary convolutions
- The right part is the overall block structure of the convolution in ABC-Net.The input is binarized using different functions $H_v 1, H_v 2, H_v 3$ Conv $(\mathbf{W}, \mathbf{R}) \approx$ Conv $\left(\sum_{m=1}^{M} \alpha_m \mathbf{B}_m, \sum_{n=1}^{N} \beta_n \mathbf{A}_n\right) = \sum_{m=1}^{M} \sum_{n=1}^{N} \alpha_m \beta_n$ Conv $(\mathbf{B}_m, \mathbf{A}_n)$

Read the paper³if you want to learn the specific details of the algorithm

Towards Accurate Binary Convolutional Neural Network

Xiaofan Lin Cong Zhao Wei Pan^{*} DJI Innovations Inc, Shenzhen, China {xiaofan.lin, cong.zhao, wei.pan}@dji.com

³Xiaofan Lin, Cong Zhao, and Wei Pan (2017). "Towards accurate binary convolutional neural network". In: *Advances in Neural Information Processing Systems*, pp. 345–353.

1 [Minimize the Quantization Error](#page-8-0)

2 [Improve Network Loss Function](#page-52-0)

³ [Reduce the Gradient Error](#page-60-0)

Motivation

- Only focusing on the **local layers** can hardly promise the exact final output passed through a series of layers.
- It is highly required that the network training should **globally** take the **binarization** as well as the **task-specific objective** into account.

Intuition

• Finding the desired loss function contribute to **guide the learning of parameter with restriction**

Training binary neural networks with real-to-binary convolutions

Contribution

- Use an attention matching strategy called "a sequence of teacher-student pairs", so that the real-valued network can more closely guide the binary network during optimization
- Use the real-valued activations of the binary network to compute scale factors that are used to re-scale the activations right after the application of the binary convolution.

• Proposed Real-to-Bin Block

Supervision is injected at the end of each binary block

Loss Term

- Compare attention maps between real-valued and binary network
- Gradients do not have to travel the whole network and suffer degradation

$$
\mathcal{L}_{att} = \sum_{j=1}^{\mathcal{J}} \left\| \frac{\mathcal{Q}_s^j}{\left\| \mathcal{Q}_s^j \right\|_2} - \frac{\mathcal{Q}_T^j}{\left\| \mathcal{Q}_T^j \right\|_2} \right\| \text{ where } \mathcal{Q}^j = \sum_{i=1}^c |A_i|^2 \qquad (23/34)
$$

Progressive Teacher-Student

• Step1

teacher: real-valued network with standard ResNet architecture student: real-valued network with the same architecture as the binary ResNet-18

• Step2

teacher: student network from step1 student: binary ResNet-18 with binary activations and real-valued weights

• Step3

teacher: student network from step2 student: binary ResNet-18 with binary activations and binary weights

Real-to-Bin

Data-driven Channel Rescaling

- To solve limited representation problem
- Rely on the full-precision activation signal to predict the scaling factors used to re-scale the output of the binary convolution channel-wise

 $\mathcal{A} * \mathcal{W} \approx (\text{sign}(\mathcal{A}) \bigotimes \text{sign}(\mathcal{W})) \odot \alpha \odot G(\mathcal{A}; \mathcal{W}_G)$

The proposed data-driven channel re-scaling approach.

Read the paper 4 if you want to learn the specific details of the algorithm

TRAINING BINARY NEURAL NETWORKS WITH REAL-**TO-BINARY CONVOLUTIONS**

Brais Martinez¹, Jing Yang^{1,2,*}, Adrian Bulat^{1,*} & Georgios Tzimiropoulos^{1,2}

¹ Samsung AI Research Center, Cambridge, UK

² Computer Vision Laboratory, The University of Nottingham, UK

{brais.a, adrian.bulat, georgios.t}@samsung.com

⁴Brais Martinez et al. (2020). "Training binary neural networks with real-to-binary convolutions". In: *arXiv preprint arXiv:2003.11535*. 26/34

1 [Minimize the Quantization Error](#page-8-0)

2 [Improve Network Loss Function](#page-52-0)

³ [Reduce the Gradient Error](#page-60-0)

Motivation

- Although STE is often adopted to estimate the gradients in BP, there exists obvious gradient mismatch between the gradient of the binarization function
- With the restriction of STE, the parameters outside the range of $[-1: +1]$ will not be updated.

Bi-real net: Enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm

Naive Binarization Function

• Recall the partial derivative calculation in back propagation

$$
\tfrac{\partial \mathcal{L}}{\partial \mathbf{A}^{l,t}_r} = \tfrac{\partial \mathcal{L}}{\partial \mathbf{A}^{l,t}_b} \tfrac{\partial \mathbf{A}^{l,t}_b}{\partial \mathbf{A}^{l,t}_r} = \tfrac{\partial \mathcal{L}}{\partial \mathbf{A}^{l,t}_b} \tfrac{\partial \operatorname{Sign} \left(\hat{\mathbf{A}}^{l,t}_r\right)}{\partial \mathbf{A}^{l,t}_r} \approx \tfrac{\partial \mathcal{L}}{\partial \mathbf{A}^{l,t}_b} \tfrac{\partial F\left(\mathbf{A}^{l,t}_r\right)}{\partial \mathbf{A}^{l,t}_r}
$$

• *Sign* function is a non-differentiable function, so *F* is an approximation differentiable function of *Sign* function

Bi-Real

Approximation of *Sign* function

- Naive Approximation $F(x) = clip(x, 0, 1)$, see fig(b)
- More Precious Approximation in Bi-Real, see fig(c)

$$
Approxign(x) = \begin{cases} -1, & \text{if } x < -1 \\ 2x + x^2, & \text{if } -1 \le x < 0 \\ 2x - x^2, & \text{if } 0 \le x < 1 \end{cases} \quad \frac{\partial \text{Approxign}(x)}{\partial x} = \begin{cases} 2 + 2x, & \text{if } -1 \le x < 0 \\ 2 - 2x, & \text{if } 0 \le x < 1 \\ 0, & \text{otherwise} \end{cases}
$$

Read the paper⁵ if you want to learn the specific details of the algorithm

Bi-Real Net: Enhancing the Performance of 1-bit CNNs With Improved Representational Capability and Advanced Training Algorithm

Zechun Liu¹, Baoyuan Wu², Wenhan Luo², Xin Yang^{3*}, Wei Liu², and Kwang-Ting Cheng¹

> ¹ Hong Kong University of Science and Technology 2 Tencent AI lab ³ Huazhong University of Science and Technology

⁵Zechun Liu et al. (2018). "Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm". In: *Proceedings of the European conference on computer vision (ECCV)*, pp. 722–737.

31/34

Trained ternary quantization

Overview of the trained ternary quantization procedure.

⁶Chenzhuo Zhu et al. (2017). "Trained ternary quantization". In: *Proc. ICLR*.

Ternary weights value (above) and distribution (below) with iterations for different layers of ResNet-20 on CIFAR-10.

⁶Chenzhuo Zhu et al. (2017). "Trained ternary quantization". In: *Proc. ICLR*.

- Hyeonuk Kim et al. (2017). "A Kernel Decomposition Architecture for Binary-weight Convolutional Neural Networks". In: *Proc. DAC*, 60:1–60:6
- Jungwook Choi et al. (2018). "Pact: Parameterized clipping activation for quantized neural networks". In: *arXiv preprint arXiv:1805.06085*
- Dongqing Zhang et al. (2018). "Lq-nets: Learned quantization for highly accurate and compact deep neural networks". In: *Proceedings of the European conference on computer vision (ECCV)*, pp. 365–382
- Aojun Zhou et al. (2017). "Incremental network quantization: Towards lossless cnns with low-precision weights". In: *arXiv preprint arXiv:1702.03044*
- Zhaowei Cai et al. (2017). "Deep learning with low precision by half-wave gaussian quantization". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5918–5926