CMSC 5743 Efficient Computing of Deep Neural Networks

Lecture 06: Quantization

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Latest update: September 12, 2021)

Fall 2021

1 Overview

2 Non-differentiable Quantization

3 Differentiable Quantization

4 Reading List

1 Overview

2 Non-differentiable Quantization

3 Differentiable Quantization

These slides contain/adapt materials developed by

- Hardware for Machine Learning, Shao Spring 2020 @ UCB
- 8-bit Inference with TensorRT
- Junru Wu et al. (2018). "Deep *k*-Means: Re-training and parameter sharing with harder cluster assignments for compressing deep convolutions". In: *Proc. ICML*
- Shijin Zhang et al. (2016). "Cambricon-x: An accelerator for sparse neural networks". In: *Proc. MICRO*. IEEE, pp. 1–12
- Jorge Albericio et al. (2016). "Cnvlutin: Ineffectual-neuron-free deep neural network computing". In: ACM SIGARCH Computer Architecture News 44.3, pp. 1–13

- · Normalized form: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0 x 10⁻⁹
 - Not normalized: 0.1 x 10⁻⁸,10.0 x 10⁻¹⁰

radix (base)

 Computer arithmetic that supports it called <u>floating point</u>, because it represents numbers where the binary point is not fixed, as it is for integers

"binary point"

• Floating Point Numbers can have multiple forms, e.g.

 $\begin{array}{l} 0.232 \times 10^4 = 2.32 \times 10^3 \\ = 23.2 \times 10^2 \\ = 2320. \times 10^0 \\ = 232000. \times 10^{-2} \end{array}$

- It is desirable for each number to have a unique representation => Normalized Form
- We normalize Mantissa's in the Range [1..*R*), where R is the Base, e.g.:
 - [1..2) for BINARY
 - [1..10) for DECIMAL

• Normal format: +1.xxx...x_{two}*2^{yyy...y}two

31 30 23	22 0
S Exponent	Significand
1 bit 8 bits	23 bits

- S represents Sign
- Exponent represents y's
- Significand represents x's
- Represent numbers as small as 2.0 x 10⁻³⁸ to as large as 2.0 x 10³⁸

• IEEE 754 Floating Point Standard

- · Called Biased Notation, where bias is number subtracted to get real number
- IEEE 754 uses bias of 127 for single prec.
- Subtract 127 from Exponent field to get actual value for exponent
- 1023 is bias for double precision

Summary (singl 31 30 23	e precision, or fp32): 22 0
S Exponent	Significand
1 bit 8 bits	23 bits
• (-1) ^s x (1 + Sign	ificand) x 2 ^(Exponent-127)

• IEEE 754 Floating Point Standard

- · Called Biased Notation, where bias is number subtracted to get real number
- IEEE 754 uses bias of 15 for half prec.
- Subtract 15 from Exponent field to get actual value for exponent

• Sumn	nary (half	precision, or fp15	5):
15 15	10 9	0	,
S Ex	ponent	Significand	
1 bit	5 bits	10 bits	
• (-1) ^s >	(1 + Sig	nificand) x 2 ^{(Expor}	nent-15)

What is the IEEE single precision number $40C0\ 0000_{16}$ in decimal?

What is the IEEE single precision number $40C0\ 0000_{16}$ in decimal?

- Sign: +
- Exponent: 129 127 = +2
- Mantissa: 1.100 0000 ... $_2 \rightarrow 1.5_{10} \times 2^{+2}$
- \rightarrow +110.0000 ...₂
- Decimal Answer = $+6.0_{10}$

What is -0.5_{10} in IEEE single precision binary floating point format?

What is -0.5₁₀ in IEEE single precision binary floating point format?

- Binary: $1.0... \times 2^{-1}$ (in binary)
- Exponent: 127 + (-1) = 01111110
- Sign bit: 1
- Mantissa: 1.000 0000 0000 0000 0000 0000

Integers with a binary point and a bias

- "slope and bias": $y = s^*x + z$
- Qm.n: m (# of integer bits) n (# of fractional bits)

	s = 1, z = 0				s = 1/4, z = 0				s = 4, z = 0				s = 1.5, z =10			
2^2	2^1	2^0	Val	2^0	2^-1	2^-2	Val	2^4	2^3	2^2	Val		2^2	2^1	2^0	Val
0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	1.5*0 +10
0	0	1	1	0	0	1	1/4	0	0	1	4		0	0	1	1.5*1 +10
0	1	0	2	0	1	0	2/4	0	1	0	8		0	1	0	1.5*2 +10
0	1	1	3	0	1	1	3/4	0	1	1	12		0	1	1	1.5*3 +10
1	0	0	4	1	0	0	1	1	0	0	16		1	0	0	1.5*4 +10
1	0	1	5	1	0	1	5/4	1	0	1	20		1	0	1	1.5*5 +10
1	1	0	6	1	1	0	6/4	1	1	0	24		1	1	0	1.5*6 +10
1	1	1	7	1	1	1	7/4	1	1	1	28		1	1	1	1.5*7 +10

Multipliers

Floating-point multiplier

Fixed-point multiplier

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

Do we really need bias?

Two matrices:

A = scale_A * QA + bias_A B = scale_B * QB + bias_B

Let's multiply those 2 matrices:

Do we really need bias?

Two matrices:

A = scale_A * QA + bias_A B = scale_B * QB + bias_B

Let's multiply those 2 matrices:

Do we really need bias? No!

Two matrices:

 $A = scale_A * QA$ $B = scale_B * QB$

Let's multiply those 2 matrices:

```
A * B = scale A * scale B * QA * QB
```


Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

MINIMUM QUANTIZED VALUE

- Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]
 - If use [-127, 127], $s = \frac{127}{\alpha}$
 - Range is symmetric
 - 1/256 of int8 range is not used. 1/16 of int4 range is not used
 - If use full range [-128, 127], $s = \frac{128}{\alpha}$
 - Values should be quantized to 128 will be clipped to 127
 - Asymmetric range may introduce bias

EXAMPLE OF QUANTIZATION BIAS Bias introduced when int values are in [-128, 127]

$$A = \begin{bmatrix} -2.2 & -1.1 & 1.1 & 2.2 \end{bmatrix}, B = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.3 \\ 0.5 \end{bmatrix}, AB = 0$$

8bit scale quantization, use [-128, 127]. $s_A = \frac{128}{2.2}$, $s_B = \frac{128}{0.5}$

$$\begin{bmatrix} -128 & -64 & 64 & 127 \end{bmatrix} * \begin{bmatrix} 127 \\ 77 \\ 77 \\ 127 \end{bmatrix} = -127$$

Dequantize -127 will get -0.00853. A small bias is introduced towards ----

EXAMPLE OF QUANTIZATION BIAS

No bias when int values are in [-127, 127]

$$A = \begin{bmatrix} -2.2 & -1.1 & 1.1 & 2.2 \end{bmatrix}, B = \begin{bmatrix} 0.5 \\ 0.3 \\ 0.3 \\ 0.5 \end{bmatrix}, AB = 0$$

8-bit scale quantization, use [-127, 127]. $s_A = 127/2.2$, $s_B = 127/0.5$ [-127 -64 64 127] * $\begin{bmatrix} 127\\76\\76\\127 \end{bmatrix} = 0$

Dequantize 0 will get 0

MATRIX MULTIPLY EXAMPLE Scale Quantization

$$\begin{pmatrix} -1.54 & 0.22 \\ -0.26 & 0.65 \end{pmatrix} * \begin{pmatrix} 0.35 \\ -0.51 \end{pmatrix} = \begin{pmatrix} -0.651 \\ -0.423 \end{pmatrix}$$

MATRIX MULTIPLY EXAMPLE Scale Quantization

$$\begin{pmatrix} -1.54 & 0.22 \\ -0.26 & 0.65 \end{pmatrix} * \begin{pmatrix} 0.35 \\ -0.51 \end{pmatrix} = \begin{pmatrix} -0.651 \\ -0.423 \end{pmatrix}$$

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale = 127/1=127) for the second

$$\begin{pmatrix} -98 & 14 \\ -17 & 41 \end{pmatrix} * \begin{pmatrix} 44 \\ -65 \end{pmatrix} = \begin{pmatrix} -5222 \\ -3413 \end{pmatrix}$$

MATRIX MULTIPLY EXAMPLE Scale Quantization

$$\begin{pmatrix} -1.54 & 0.22 \\ -0.26 & 0.65 \end{pmatrix} * \begin{pmatrix} 0.35 \\ -0.51 \end{pmatrix} = \begin{pmatrix} -0.651 \\ -0.423 \end{pmatrix}$$

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale = 127/1=127) for the second

$$\begin{pmatrix} -98 & 14 \\ -17 & 41 \end{pmatrix} * \begin{pmatrix} 44 \\ -65 \end{pmatrix} = \begin{pmatrix} -5222 \\ -3413 \end{pmatrix}$$

The result has an overall scale of 63.5*127. We can dequantize back to float

$$\binom{-5222}{-3413} * \frac{1}{63.5 * 127} = \binom{-0.648}{-0.423}$$

REQUANTIZE Scale Quantization

$$\begin{pmatrix} -1.54 & 0.22 \\ -0.26 & 0.65 \end{pmatrix} * \begin{pmatrix} 0.35 \\ -0.51 \end{pmatrix} = \begin{pmatrix} -0.651 \\ -0.423 \end{pmatrix}$$

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second

$$\begin{pmatrix} -98 & 14 \\ -17 & 41 \end{pmatrix} * \begin{pmatrix} 44 \\ -65 \end{pmatrix} = \begin{pmatrix} -5222 \\ -3413 \end{pmatrix}$$

Requantize output to a different quantized representation with fp range [-3, 3]:

$$\binom{-5222}{-3413} * \frac{127/3}{63.5 * 127} = \binom{-27}{-18}$$

24 📀 NVIDIA

1 Overview

2 Non-differentiable Quantization

3 Differentiable Quantization

Quantization flow

• For a fixed-point number, it representation is:

$$\iota = \sum_{i=0}^{bw-1} B_i \cdot 2^{-f_l} \cdot 2^i,$$

where bw is the bit width and f_l is the fractional length which is dynamic for different layers and feature map sets while static in one layer.

• Weight quantization: find the optimal *f*_l for weights:

$$f_l = \arg\min_{f_l} \sum |W_{float} - W(bw, f_l)|,$$

where *W* is a weight and $W(bw, f_l)$ represents the fixed-point format of *W* under the given bw and f_l .

¹Jiantao Qiu et al. (2016). "Going deeper with embedded fpga platform for convolutional neural network". In: *Proc. FPGA*, pp. 26–35. 14/25

Quantization flow

• Feature quantization: find the optimal *f*_l for features:

$$f_l = \arg\min_{f_l} \sum |x^+_{float} - x^+(bw, f_l)|,$$

where x^+ represents the result of a layer when we denote the computation of a layer as $x^+ = A \cdot x$.

Network		VGG16								
Data Bits	Single-float	16	16		8		8	8		
Weight Bits	Single-float	16	8		8	8	8	8 or 4		
Data Precision	N/A	2 ⁻²	2-2	Imp	ossible	2-5/2-	Dynamic	Dynamic		
Weight Precision	N/A	2 ⁻¹⁵	2-7	Impossil		2-7	Dynamic	Dynamic		
Top-1 Accuracy	68.1%	68.0%	53.0%	6 Impossi		28.2%	66.6%	67.0%		
Top-5 Accuracy	88.0%	87.9% 76.6% Impossi				49.7%	87.4%	87.6%		
Network		CaffeNe	et			V	GG16-SVD			
Network Data Bits	Single-float	CaffeNe 16	et 8		Single	V float	GG16-SVD 16	8		
Network Data Bits Weight Bits	Single-float Single-float	CaffeNe 16 16	et 8 8		Single-	V float float	<mark>GG16-SVD</mark> 16 16	8 8 or 4		
Network Data Bits Weight Bits Data Precision	Single-float Single-float N/A	CaffeNe 16 16 Dynamic	et 8 8 c Dyna	mic	Single Single	V -float -float A	GG16-SVD 16 16 Dynamic	8 8 or 4 Dynamic		
Network Data Bits Weight Bits Data Precision Weight Precision	Single-float Single-float N/A N/A	CaffeNe 16 16 Dynamic Dynamic	et 8 8 0 Dyna 0 Dyna	mic mic	Single- Single- N//	-float -float A A	GG16-SVD 16 16 Dynamic Dynamic	8 8 or 4 Dynamic Dynamic		
Network Data Bits Weight Bits Data Precision Weight Precision Top-1 Accuracy	Single-float Single-float N/A N/A 53.9%	CaffeNe 16 16 Dynamic Dynamic 53.9%	et 8 8 c Dyna c Dyna 53.0	mic mic)%	Single Single N// N// 68.0	float float A A %	GG16-SVD 16 16 Dynamic Dynamic 64.6%	8 8 or 4 Dynamic Dynamic 64.1%		

No Saturation Quantization - INT8 Inference

- Map the maximum value to 127, with unifrom step length.
- Suffer from outliers.

Industrial Implementations – Nvidia TensorRT

Saturation Quantization - INT8 Inference

- Set a threshold as the maxiumum value.
- Divide the value domain into 2048 groups.
- Traverse all the possible thresholds to find the best one with minimum KL divergence.

Relative Entropy of two encodings

- INT8 model encodes the same information as the original FP32 model.
- Minimize the loss of information.
- Loss of information is measured by Kullback-Leibler divergence (*a.k.a.*, relative entropy or information divergence).
 - *P*, *Q* two discrete probability distributions:

$$D_{KL}(P||Q) = \sum_{i=1}^{N} P(x_i) \log \frac{P(x_i)}{Q(x_i)}$$

• Intuition: KL divergence measures the amount of information lost when approximating a given encoding.

1 Overview

2 Non-differentiable Quantization

3 Differentiable Quantization

4 Reading List

- A straight-through estimator is a way of estimating gradients for a threshold operation in a neural network.
- The threshold could be as simple as the following function:

$$f(x) = \begin{cases} 1, & x \ge 0\\ 0, & \text{else} \end{cases}$$

• The derivate of this threshold function will be 0 and during back-propagation, the network will learn anything since it gets 0 gradients and the weights won't get updated.

²Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). "Estimating or propagating gradients through stochastic neurons for conditional computation". In: *arXiv preprint arXiv:1308.3432*.

- A new activation quantization scheme in which the activation function has a parameterized clipping level α .
- The clipping level is dynamically adjusted vias stochastic gradient descent (SGD)-based training with the goal of minimizing the quantization error.
- In PACT, the convolutional ReLU activation function in CNN is replaced with:

$$f(x) = 0.5 (|x| - |x - \alpha| + \alpha) = \begin{cases} 0, & x \in (\infty, 0) \\ x, & x \in [0, \alpha) \\ \alpha, & x \in [\alpha, +\infty) \end{cases}$$

where α limits the dynamic range of activation to $[0, \alpha]$.

³Jungwook Choi et al. (2019). "Accurate and efficient 2-bit quantized neural networks". In: *Proceedings of Machine Learning and Systems* 1.

PArameterized Clipping acTivation Function (PACT)

• The truncated activation output is the linearly quantized to *k*-bits for the dot-product computations:

$$y_q = \text{round} (y \cdot \frac{2^k - 1}{\alpha}) \cdot \frac{\alpha}{2^k - 1}$$

- With this new activation function, α is a variable in the loss function, whose value can be optimized during training.
- For back-propagation, gradient $\frac{\partial y_q}{\partial \alpha}$ can be computed using STE to estimate $\frac{\partial y_q}{\partial y}$ as 1.

PACT activation function and its gradient.

Is Straight-Through Estimator (STE) the best?

PACT activation function and its gradient.

- Gradient mismatch: the gradients of the weights are not generated using the value of weights, but rather its quantized value.
- Poor gradient: STE fails at investigating better gradients for quantization training.

Knowledge Distillation-Based Quantization⁴

- Knowledge distillation trains a student model under the supervision of a well trained teacher model.
- Regard the pre-trained FP32 model as the teacher model and the quantized models as the student models.

$$\mathcal{L}(x; W_T, W_A) = \alpha \mathcal{H}(y, p^T) + \beta \mathcal{H}(y, p^A) + \gamma \mathcal{H}(z^T, p^A)$$
(1)

where, W_T and W_A are the parameters of the teacher and the student (apprentice) network, respectively, y is the ground truth, $\mathcal{H}(\cdot)$ denotes a loss function and, α , β and γ are weighting factors to prioritize the output of a certain loss function over the other.

⁴ A sit Mishro and Dabhia Marr (2017) "Appropriate Using Imaxuladas distillation tashni guas to

1 Overview

- 2 Non-differentiable Quantization
- 3 Differentiable Quantization

- Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy (2016). "Fixed point quantization of deep convolutional networks". In: *Proc. ICML*, pp. 2849–2858
- Soroosh Khoram and Jing Li (2018). "Adaptive quantization of neural networks". In: *Proc. ICLR*
- Jan Achterhold et al. (2018). "Variational network quantization". In: Proc. ICLR
- Antonio Polino, Razvan Pascanu, and Dan Alistarh (2018). "Model compression via distillation and quantization". In: *arXiv preprint arXiv:1802.05668*
- Yue Yu, Jiaxiang Wu, and Longbo Huang (2019). "Double quantization for communication-efficient distributed optimization". In: *Proc. NIPS*, pp. 4438–4449
- Markus Nagel et al. (2019). "Data-free quantization through weight equalization and bias correction". In: *Proc. ICCV*, pp. 1325–1334