
CENG3420

Lab 2-1: RISC-V RV32I Assembler

Chen BAI
Department of Computer Science & Engineering
Chinese University of Hong Kong
cbai@cse.cuhk.edu.hk

Spring 2022



1 Introduction

2 Introduction to RV32I

3 RISCV-LC RV32I Specifications

4 Lab 2-1 Assignment

Outline

2/33



Introduction



• Assembly language – symbolic (RISC-V, MIPS, ARM, X86, LC-3b, ...)

• Machine language – binary

• Assembler is a program that

• turns symbols into machine instructions.
• EX: lc3b_asm, riscv64-unknown-elf-as, ...

• Simulator is a program that

• mimics the behavior of a processor
• usually in high-level language
• EX: lc3b_sim, spike, ...

Introduction
Assembler & Simulator

4/33



• LC-3b: Little Computer 3, b version.

• Relatively simple instruction set

• Most used in teaching for CS & CE

• Developed by Yale Patt@UT & Sanjay J. Patel@UIUC

Introduction
LC-3b

5/33



• RISC-V 32 general-purpose registers

• 32-bit data and address

• 28+ instructions (including pseudo instructions)

Plus 4 special-purpose registers:
• Program Counter (PC)

• Instruction Register (IR)

• Memory Access Register (MAR)

• Memory Data Register (MDR)

NOTICE
To make labs easy, I have added some self-defined directives!

Introduction
RISCV-LC

6/33



Introduction to RV32I



• Instruction encoding width is 32-bit.

• Align on a four-byte boundary in memory

• Manipulate integer numbers.

• Our labs are based on RV32I version 2.0.

Introduction to RV32I

8/33



• Four core instruction formats

• Two variants of the instruction formats

Why does the RISC-V specification add two variant instructions B/J ?

Introduction to RV32I

9/33



Immediate values encodings

Introduction to RV32I

10/33



• Integer Computational Instructions

• Control Transfer Instructions

• Load and Store Instructions

• Memory Odering Instructions

• Environment Call and Breakpoints

• HINT Instructions

Introduction to RV32I

11/33



• Integer Register-Immediate Instructions

• Integer Register-Register Instructions

• NOP Instructions

Integer Computational Instructions

12/33



Introduction to RV32I
Integer Register-Immediate Instructions

13/33



Integer Register-Register Instructions

14/33



NOP Instructions

15/33



• Unconditional Jumps

• Conditional Branches

Control Transfer Instructions

16/33



Unconditional Jumps

17/33



The difference between RISC-V ISA and other ISA like MIPS, X86, ARM, SPARC?

Conditional Branches

18/33



The EEI will define whether the memory system is little-endian or big-endian. In
RISC-V, endianness is byte-address invariant.

Load and Store Instructions

19/33



Memory Ordering Instructions

20/33



Environment Call and Breakpoints

21/33



HINTs are encoded as integer computational instructions with rd=x0

HINT Instructions

22/33



RISCV-LC RV32I Specifications



NOTICE
To make labs easy, I have added some self-defined directives!

• Label specification: do not support the colon, and labels should be on the same line
with RV32I instructions

• No .data and .text directives

• Add one pseudo instruction: LA

• Add one self-customized directive: .FILL

• Add one halt instruction: HALT

RISCV-LC RV32I Specifications

24/33



Do not support the colon, and labels should be on the same line with RV32I
instructions

The code snippet under our specifications

RISCV-LC RV32I Specifications
Label specification

25/33



LA is translated to two RV32I instructions: lui and addi.

Translate la to lui and addi

RISCV-LC RV32I Specifications
LA pseudo instruction

26/33



.FILL is similar to .byte, .word, etc.

.FILL directive

RISCV-LC RV32I Specifications
FILL self-customized instruction

27/33



Lab 2-1 Assignment



Get Latest Updates of the Lab

• Click https://github.com/baichen318.

• Follow my GitHub.
Follow me through GitHub, so that you can see any latest updates of the lab!

Lab 2-1 Assignment
Pre-requisites

29/33

https://github.com/baichen318


Get the RV32I Assembler

• $ git clone https://github.com/baichen318/ceng3420.git

• $ cd ceng3420

• $ git checkout lab2.1

Compile (Linux/MacOS environment is suggested)

• $ make

Run the assembler

• $ ./asm benchmarks/isa.asm isa.bin # you can check the output machine code:
isa.bin if you have implemented the assembler

Lab 2-1 Assignment
Pre-requisites

30/33



Finish the RV32I assembler including 26+ instructions in asm.c as follows
• Pseudo instruction: la

• Integer Register-Immediate Instructions: slli, xori, srli, srai, ori, andi, lui

• Integer Register-Register Operations: sub, sll, xor, srl, sra, or, and

• Unconditional Jumps: jalr, jal

• Conditional Branches: bne, blt, bge

• Load and Store Instructions: lb, lh, lw, sb, sh, sw

These unimplemented codes are commented with Lab2-1 assignment

Lab 2-1 Assignment

31/33



Verification of Implementations

Verify your codes with these benchmarks (inside the benchmarks directory)

• isa.asm

• count10.asm

• swap.asm

Compare your output with .bin file. If both of them are the same, you are correct!
A quick verification command: $ make validate # generate reports inside tools

Submission Method:
Submit the source code and report after the whole lectures of Lab2 into Blackboard.

Lab 2-1 Assignment

32/33



Tips

Inside docs, there are three valuable documents for your reference!

• opcodes-rv32i: RV32I opcodes

• riscv-spec-20191213.pdf: RV32I specifications

• risc-v-asm-manual.pdf: RV32I assembly programming manual

Lab 2-1 Assignment

33/33


	Introduction
	Introduction to RV32I
	RISCV-LC RV32I Specifications
	Lab 2-1 Assignment

