
CENG 3420
Computer Organization & Design

Lecture 16: Cache-2

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 5.3–5.4)

Spring 2022

1 Associative Mapping

2 Replacement

3 Conclusion

Overview

2/20

Associative Mapping

412

16-bit Main Memory address

Tag Byte

Main Memory

Block 0

Block 1

Block i

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 127

• An MM block can be in arbitrary Cache block location

• In this example, all 128 tag entries must be compared with the address Tag in parallel
(by hardware)

Associative Mapping

4/20

412

16-bit Main Memory address

Tag Byte

1 CPU is looking for [A7B4] MAR = 1010011110110100

2 See if the tag 101001111011 matches one of the 128 cache tags

3 If YES, cache hit!

4 Otherwise, get the block into BINGO cache row

Associative Mapping Example

5/20

16-bit Main Memory address

6 6 4

Tag
Set

Number Byte

Main Memory

Block 0

Block 1

Block 63

Block 64

Block 65

Block 127

Block 128

Block 129

Block 4095

tag

tag

tag

Cache

Block 0

Block 1

Block 126

tag

tag

Block 2

Block 3

tag
Block 127

Set 0

Set 1

Set 63

1st

2nd

64th

Example: 2-way set associative• Combination of direct and associative

• (j mod 64) derives the Set Number

• A cache with k-blocks per set is called a k-way set associative cache.

Set Associative Mapping

6/20

16-bit Main Memory address

6 6 4

Tag
Set

Number Byte

E.g. 2-Way Set Associative:

1 CPU is looking for [A7B4] MAR = 1010011110110100

2 Go to cache Set 111011 (5910)
• Block 1110110 (11810)
• Block 1110111 (11910)

3 See if ONE of the TWO tags in the Set 111011 is 101001

4 If YES, cache hit!

5 Get the block into BINGO cache row

Set Associative Mapping Example 1

7/20

0

Cache

Main Memory

Tag DataV

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1
0
1

Way

0

1

Set Associative Mapping Example 2

8/20

Question: Direct Mapping v.s. 2-Way Set Associate

Consider the following two empty caches, calculate Cache hit rates for the reference word
addresses: “0 4 0 4 0 4 0 4”

00
01
10
11

Cache

Tag DataValidIndex

(a)

Tag DataSet
Cache

0
1

0
1

(b)

(a) Direct Mapping; (b) 2-Way Set Associative.

9/20

• 28 = 256 sets each with four ways (each with one block).

• four tags in the set are compared in parallel.
31 30 . . . 11 10 9 . . . 2 1 0 Byte offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Index DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1 select

Way 0 Way 1 Way 2 Way 3

Set Associative Mapping Example 3: MIPS

10/20

For a fixed size cache:

Block offset Byte offsetIndexTag

Decreasing associativity

Fully associative
(only one set)
Tag is all the bits except
block and byte offset

Direct mapped
(only one way)
Smaller tags, only a
single comparator

Increasing associativity

Selects the setUsed for tag compare Selects the word in the block

Range of Set Associative Caches

11/20

Replacement

• I$ and D$

• Read hit: what we want!

• Read miss: stall the pipeline, fetch the block from the next level in the memory
hierarchy, install it in the cache and send the requested word to the processor, then let
the pipeline resume.

Handling Cache Read

13/20

Only D$

Case 1: Write-Through

• Cache and memory to be consistent

• always write the data into both the cache block and the next level in the memory
hierarchy

• Speed-up: use write buffer and stall only when buffer is full

Case 2: Write-Back

• Write the data only into the cache block

• Write to memory hierarchy when that cache block is “evicted”

• Need a dirty bit for each data cache block

Handling Cache Write Hits

14/20

Case 1: Write-Through caches with a write buffer

• No-write allocate1

• skip cache write (but must invalidate that cache block since it now holds stale data)

• just write the word to the write buffer (and eventually to the next memory level)

• no need to stall if the write buffer isn’t full

Case 2: Write-Back caches

• Write allocate2

• Just write the word into the cache updating both the tag and data

• no need to check for cache hit

• no need to stall

1The block is modified in the main memory and not loaded into the cache.
2The block is loaded on a write miss, followed by the write-hit action.

Handling Cache Write Misses

15/20

Write-Through Cache with No-Write Allocation

16/20

Write-Back Cache with Write Allocation

17/20

Direct Mapping
• Position of each block fixed

• Whenever replacement is needed (i.e. cache miss→ new block to load), the choice is
obvious and thus no “replacement algorithm” is needed

Associative and Set Associative
• Need to decide which block to replace

• Keep/retain ones likely to be used in near future again

Replacement Algorithms

18/20

Strategy 1: Least Recently Used (LRU)

• e.g. for a 4-block/set cache, use a log2 4 = 2 bit counter for each block

• Reset the counter to 0 whenever the block is accessed

• counters of other blocks in the same set should be incremented

• On cache miss, replace/ uncache a block with counter reaching 3

Strategy 2: Random Replacement

• Choose random block

• ,Easier to implement at high speed

Associative & Set Associative Replacement

19/20

Strategy 1: Least Recently Used (LRU)

• e.g. for a 4-block/set cache, use a log2 4 = 2 bit counter for each block

• Reset the counter to 0 whenever the block is accessed

• counters of other blocks in the same set should be incremented

• On cache miss, replace/ uncache a block with counter reaching 3

Strategy 2: Random Replacement

• Choose random block

• ,Easier to implement at high speed

Associative & Set Associative Replacement

19/20

• Cache Organizations:
Direct, Associative, Set-Associative

• Cache Replacement Algorithms:
Random, Least Recently Used

• Cache Hit and Miss Penalty

Conclusion

20/20

	Main Talk
	Associative Mapping
	Replacement
	Conclusion

