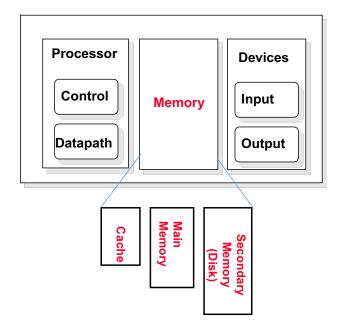
CENG 3420 Computer Organization & Design

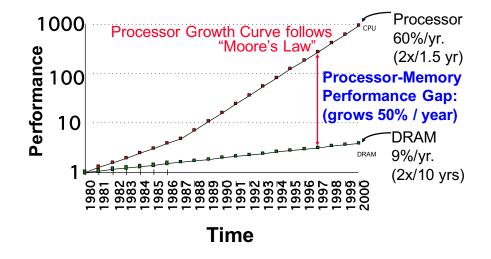
Lecture 13: Memory Organization-1


- Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk
- (Textbook: Chapters 5.1–5.2 & A.8–A.9)
- Spring 2022

Introduction

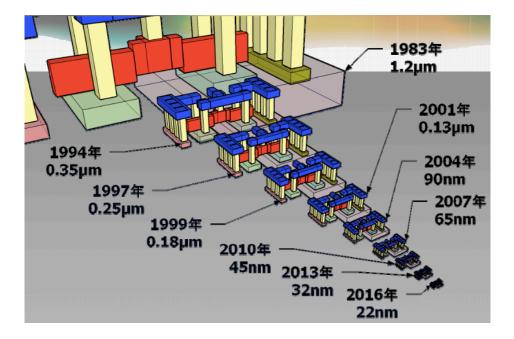
Review: Major Components of a Computer

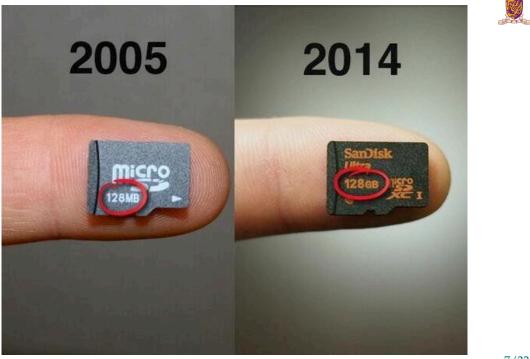
×.


Combinational Circuit:

- Always gives the same output for a given set of inputs
- E.g., adders

Sequential Circuit:


- Store information
- Output depends on stored information
- E.g., counter
- Need a storage element

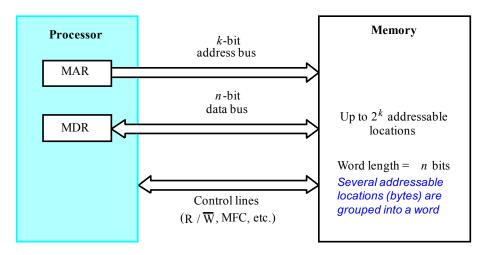


Processor-DRAM Memory Performance Gap

• Maximum size of memory is determined by addressing scheme

E.g.

16-bit addresses can only address $2^{16} = 65536$ memory locations

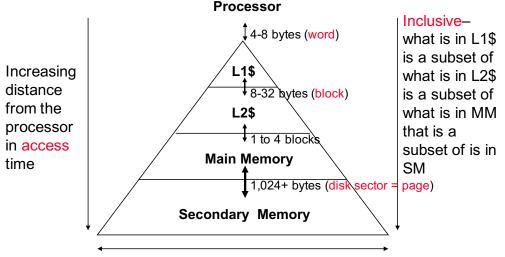

- Most machines are byte-addressable
- each memory address location refers to a byte
- Most machines retrieve/store data in words
- Common abbreviations
 - $1k \approx 2^{10}$ (kilo)
 - $1M \approx 2^{20}$ (Mega)
 - $1G \approx 2^{30}$ (Giga)
 - $1T \approx 2^{40}$ (Tera)

Simplified View

Data transfer takes place through

- MAR: memory address register
- MDR: memory data register

Processor usually runs much faster than main memory:


- Small memories are fast, large memories are slow.
- Use a cache memory to store data in the processor that is likely to be used.

Main memory is limited:

- Use virtual memory to increase the apparent size of physical memory by moving unused sections of memory to disk (automatically).
- A translation between virtual and physical addresses is done by a memory management unit (MMU)
- To be discussed in later lectures

Characteristics of the Memory Hierarchy

(Relative) size of the memory at each level

Temporal Locality (locality in time)

If a memory location is referenced then it will tend to be referenced again soon

• Keep most recently accessed data items closer to the processor

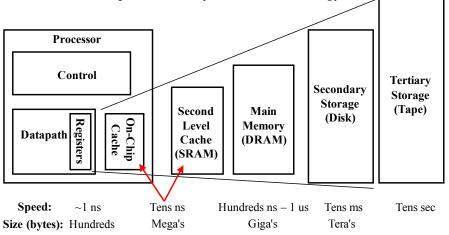
Temporal Locality (locality in time)

If a memory location is referenced then it will tend to be referenced again soon

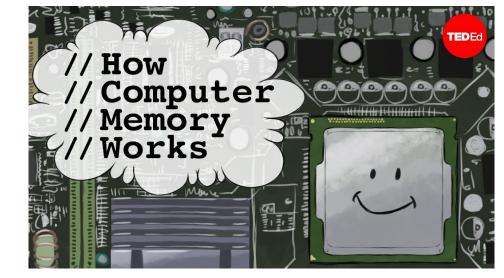
• Keep most recently accessed data items closer to the processor

Spatial Locality (locality in space)

If a memory location is referenced, the locations with nearby addresses will tend to be referenced soon


Move blocks consisting of contiguous words closer to the processor

Memory Hierarchy



Taking advantage of the **principle of locality**:

- Present the user with as much memory as is available in the cheapest technology.
- Provide access at the speed offered by the fastest technology

https://youtu.be/p3q5zWCw8J4

Random Access Memory (RAM)

Property: comparable access time for any memory locations

Block (or line)

the minimum unit of information that is present (or not) in a cache

- Hit Rate: the fraction of memory accesses found in a level of the memory hierarchy
- Miss Rate: the fraction of memory accesses not found in a level of the memory hierarchy, i.e. 1 (Hit Rate)

Hit Time

Time to access the block + Time to determine hit/miss

Miss Penalty

Time to replace a block in that level with the corresponding block from a lower level

Hit Time << Miss Penalty

Example

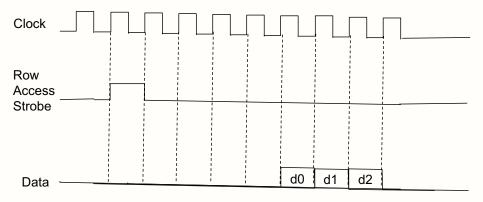
- Mary acts FAST but she's always LATE.
- Peter is always **PUNCTUAL** but he is **SLOW**.

Example

- Mary acts FAST but she's always LATE.
- Peter is always **PUNCTUAL** but he is **SLOW**.

Bandwidth:

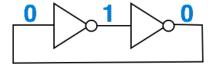
• talking about the "number of bits/bytes per second" when transferring a block of data steadily.


Latency:

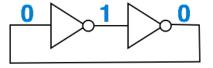
- amount of time to transfer the first word of a block after issuing the access signal.
- Usually measure in "number of clock cycles" or in $ns/\mu s$.

Question:

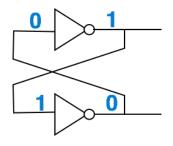
Suppose the clock rate is 500 MHz. What is the latency and what is the bandwidth, assuming that each data is 64 bits?



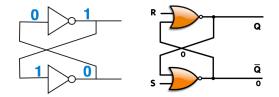
Information Storage



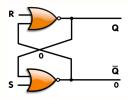
• What if we add feedback to a pair of inverters?



• What if we add feedback to a pair of inverters?



- Usually drawn as a ring of cross-coupled inverters
- Stable way to store one bit of information (w. power)



- Replace inverter with NOR gate
- SR-Latch

QUESTION:

What's the Q value based on different R, S inputs?

Input		Output
А	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

• R=S=1:

- S=0, R=1:
- S=1, R=0:
- R=S=0:

GPP PRO