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• High-level language program (in C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly language program 
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine (object) code 
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?

Below the Program
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• Control decodes the instruction to determine what to execute

• Datapath executes the instruction as directed by control

Decode & Excute Codes
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• Processor fetches the next instruction from memory

• How does it know which location in memory to fetch from next?

What Happens Next?
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Instruction Set Architecture

ISA – Bridge between Hardware & Software
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1 Instructions are represented as numbers and, as such, are indistinguishable from data

2 Programs are stored in alterable memory (that can be read or written to) just like data

Stored-Program Concept

• Programs can be shipped as files of binary numbers – binary
compatibility

• Computers can inherit ready-made software provided they are
compatible with an existing ISA – leads industry to align
around a small number of ISAs
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C  compiler    
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Payroll                  
data

Source  code  in  
C  for  Acct  prg

Memory

Two Key Principles of Machine Design
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The language of the machine
• Want an ISA that makes it easy to build the hardware and the compiler while

maximizing performance and minimizing cost

Our target: the RISC-V ISA
• similar to other ISAs developed since the 1980’s

• RISC-V is originated from MIPS, the latter of which is used by Broadcom, Cisco,
NEC, Nintendo, Sony, ...

Design Goals

Maximize performance, minimize cost, reduce design time (time-to-market), minimize
memory space (embedded systems), minimize power consumption (mobile systems)

Assembly Language Instructions
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Complex Instruction Set Computer (CISC)

Lots of instructions of variable size, very memory optimal, typically less registers.

• Intel x86

Reduced Instruction Set Computer (RISC)

Instructions, all of a fixed size, more registers, optimized for speed. Usually called a
“Load/Store” architecture.

• RISC-V, LC-3b, MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC ...

CISC vs. RISC
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• Used in many embedded systems

• E.g., Nintendo-64, Playstation 1, Playstation 2

History of MIPS (cont.)
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RISC Philosophy

• fixed instruction lengths

• load-store instruction sets

• limited number of addressing modes

• limited number of operations

• Instruction sets are measured by how well compilers use them as opposed to how
well assembly language programmers use them

RISC – Reduced Instruction Set Computer
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Simplicity favors regularity
• fixed size instructions

• small number of instruction formats

• opcode always the first 6 bits

Smaller is faster
• limited instruction set

• limited number of registers in register file

• limited number of addressing modes

Make the common case fast
• arithmetic operands from the register file (load-store machine)

• allow instructions to contain immediate operands

Good design demands good compromises
• For RV32I, 4 base instruction formats (R/I/S/U) and 2 extended instruction formats

(B/J)

RISC-V (RISC) Design Principles
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