
CENG 3420
Computer Organization & Design

Lecture 03: ISA Introduction

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 1.3 & 2.1)

Spring 2022

CPU Memory Data
Storage

Display Network
Adapter

User I/O
Devices

Hardware

Kernel File
Systems

Device
Drivers

Security User API
System Call GUI

Operation System

Text
Editors

Music
Players

Video
Players

Web
Browsers Games Misc.

Utilities

Applications

Computer System

2/17

C program

Assembly language program

Executable: Machine language

Library routineMachine language

Compiler

Assembler

Linker

Memory

Loader

Traditional Compilation Flow

3/17

• High-level language program (in C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly language program
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine (object) code
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?

Below the Program

4/17

• High-level language program (in C)
swap (int v[], int k)
(int temp;

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

)

• Assembly language program
swap: sll $2, $5, 2

add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

• Machine (object) code
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
. . .

C compiler

assembler

one-to-many

one-to-one

Max # of operations?

Below the Program

4/17

Processor

Control

Datapath

Memory

000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Input Device Inputs Object Code

5/17

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Processor fetches an instruction from memory

Object Code Stored in Memory

6/17

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network

Processor fetches an instruction from memory

Object Code Stored in Memory

6/17

Processor

Control

Datapath

Memory000000 00100 00010 0001000000100000

Devices

Input

Output

Network

• Control decodes the instruction to determine what to execute

• Datapath executes the instruction as directed by control

Decode & Excute Codes

7/17

Processor

Control

Datapath

Memory

contents Reg #4 ADD contents Reg #2
results put in Reg #2

000000 00100 00010 0001000000100000

Devices

Input

Output

Network

• Control decodes the instruction to determine what to execute

• Datapath executes the instruction as directed by control

Decode & Excute Codes

7/17

Processor

Control

Datapath

Memory
000000 00000 00101 0001000010000000
000000 00100 00010 0001000000100000
100011 00010 01111 0000000000000000
100011 00010 10000 0000000000000100
101011 00010 10000 0000000000000000
101011 00010 01111 0000000000000100
000000 11111 00000 0000000000001000

Devices

Input

Output

Network
Fetch

DecodeExec

• Processor fetches the next instruction from memory

• How does it know which location in memory to fetch from next?

What Happens Next?

8/17

Processor

Control

Datapath

Memory

00000100010100000000000000000000
00000000010011110000000000000100
00000011111000000000000000001000

Devices

Input

Output

Network

Output Device Outputs Data

9/17

Operation System

Applications

Hardware

Software

Instruction Set Architecture

ISA – Bridge between Hardware & Software

10/17

CPU Memory Data
Storage

Display Network
Adapter

User I/O
Devices

Hardware

Kernel File
Systems

Device
Drivers

Security User API
System Call GUI

Operation System

Text
Editors

Music
Players

Video
Players

Web
Browsers Games Misc.

Utilities

Applications

Operation System

Applications

Hardware

Software

Instruction Set Architecture

C program

Assembly language program

Executable: Machine language

Library routineMachine language

Compiler

Assembler

Linker

Memory

Loader

Connection

11/17

1 Instructions are represented as numbers and, as such, are indistinguishable from data

2 Programs are stored in alterable memory (that can be read or written to) just like data

Stored-Program Concept

• Programs can be shipped as files of binary numbers – binary
compatibility

• Computers can inherit ready-made software provided they are
compatible with an existing ISA – leads industry to align
around a small number of ISAs

Accounting prg
(machine code)

C compiler
(machine code)

Payroll
data

Source code in
C for Acct prg

Memory

Two Key Principles of Machine Design

12/17

The language of the machine
• Want an ISA that makes it easy to build the hardware and the compiler while

maximizing performance and minimizing cost

Our target: the RISC-V ISA
• similar to other ISAs developed since the 1980’s

• RISC-V is originated from MIPS, the latter of which is used by Broadcom, Cisco,
NEC, Nintendo, Sony, ...

Design Goals

Maximize performance, minimize cost, reduce design time (time-to-market), minimize
memory space (embedded systems), minimize power consumption (mobile systems)

Assembly Language Instructions

13/17

Complex Instruction Set Computer (CISC)

Lots of instructions of variable size, very memory optimal, typically less registers.

• Intel x86

Reduced Instruction Set Computer (RISC)

Instructions, all of a fixed size, more registers, optimized for speed. Usually called a
“Load/Store” architecture.

• RISC-V, LC-3b, MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC ...

CISC vs. RISC

14/17

• Used in many embedded systems

• E.g., Nintendo-64, Playstation 1, Playstation 2

History of MIPS (cont.)

15/17

RISC Philosophy

• fixed instruction lengths

• load-store instruction sets

• limited number of addressing modes

• limited number of operations

• Instruction sets are measured by how well compilers use them as opposed to how
well assembly language programmers use them

RISC – Reduced Instruction Set Computer

16/17

Simplicity favors regularity
• fixed size instructions

• small number of instruction formats

• opcode always the first 6 bits

Smaller is faster
• limited instruction set

• limited number of registers in register file

• limited number of addressing modes

Make the common case fast
• arithmetic operands from the register file (load-store machine)

• allow instructions to contain immediate operands

Good design demands good compromises
• For RV32I, 4 base instruction formats (R/I/S/U) and 2 extended instruction formats

(B/J)

RISC-V (RISC) Design Principles

17/17

