CENG4480 2021F Homework 2

Due: Nov. 07, 2021

All solutions should be submitted to the blackboard in the format of **PDF/MS Word**.

- Q1 (10%) A 8 bits ADC with full scale output voltage of 2.56V is designed to have a ± 0.5 LSB accuracy. If the ADC is calibrated at 50°Cand the operating temperature ranges from 0°C to 100°C, then what's the maximum net temperature coefficient of the ADC should not exceed?
- **Q2** (20%) Given a low-pass filter as shown in Figure 1.

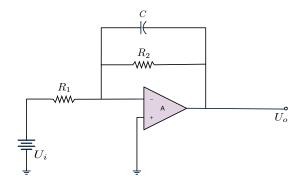


Figure 1: Q2 Circuit

- 1. If $R_1 = 10K\Omega$, $R_2 = 100K\Omega$, determine low-frequency gain $A_u(dB)$;
- 2. If cutoff frequency $f_c = 5Hz$, determine C value.
- Q3 (20%) Given the the circuit shown in Figure 2, $R_1=R_2=1k\Omega$, $R_3=10k\Omega$, $R_4=R_5=R_6=20k\Omega$, $C_1=0.05\mu F$, $C_2=0.02\mu F$, please answer the following questions.

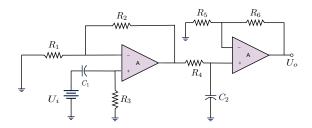


Figure 2: Q3 Circuit

- (1) Which kind of filter the circuit is?
- (2) Calculate the cutoff frequencies of the circuit. If it has both the lower and upper cutoff frequency, then you should calculate both.
- **Q4** A 5-bit D/A converter has a voltage output. For a binary input of 10100, an output voltage of 18 mV is produced. Determine the output voltage when the binary input is 11100.

Q5 For the DAC circuit shown in Figure 3 (using an ideal op-amp), what value of R_F will give an output range of $-10 \le V_0 \le 0V$? Assume that logic 0 = 0V and logic 1 = 5V.

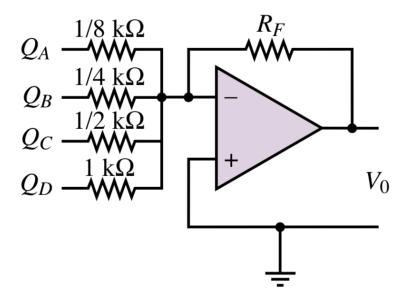


Figure 3: Q5 Circuit

Q6 For the 4-bit R-2R DAC shown in Figure 4, calculate V_0 in terms of $V_{b,0} - V_{b,4}$ if V_{ref} is grounded.

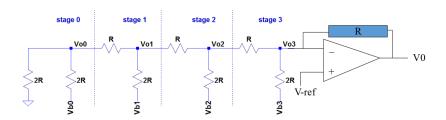


Figure 4: Q6 Circuit