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Self Balance Vehicle / Robot
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» http://www.segway.com/
» http://wowwee.com/mip/
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http://www.segway.com/
http://wowwee.com/mip/

Basic Idea
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Normal Tilt Angle Normal

Motor Direction
—_—

Motion against the tilt angle, so it can stand upright.
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IMU Board

MC5883L

L3G4200D
Magnetometer

Gyroscope
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"ADXL385
Accelerometer

~ BMPOS5
Barometer/Temp

http://www.hotmcu.com/imu-10dof-13g4200dadx1345hmc58831bmpl80-p-190.html

P> L3G4200D: gyroscope, measure angular rate (relative value)
> ADXL345: accelerometer, measure acceleration



http://www.hotmcu.com/imu-10dof-l3g4200dadxl345hmc5883lbmp180-p-190.html
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Complementary Filter

gl

X now sees some gravity.

X reads slightly positive. X reads slightly negative

Accelerometer

» Give accurate reading of tilt angle
» Slower to respond than Gyro’s

» prone to vibration/noise
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Gyro reads positive. Gyro reads negative.

Gyroscope

» response faster

» but has drift over time
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Complementary Filter (cont.)

» Since

Gyroscope

High

frequency

» Combine two sensors to find output
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Accelerometer

Low

frequency




Complementary Filter (cont.)
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Mapping Sensors

Complementary Filter

Low-Pass
Filter %: ~

» Angle

Numeric |

High-Pass
Filter

Integration

»  Angular Velocity

Read_acc () ;

Read_gyro();

Ayz=atan2 (RwAcc[1l],RwAcc([2])*180/PI;
Ayz—-=offset;

Angy = 0.98% (Angy+GyroIN[0]+interval/1000)+0.02%Ayz;

//angle by accelerometer
//adjust to correct
//complement filter
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Overview

Kalman Filter
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Rudolf Kalman (1930 — 2016)

» Born in Budapest, Hungary
» BSin 1953 and MS in 1954 from MIT electrical engineering
» PhD in 1957 from Columbia University.

» Famous for his co-invention of the Kalman filter — widely used in control systems to
extract a signal from a series of incomplete and noisy measurements.

» Convince NASA Ames Research Center 1960
» Kalman filter was used during Apollo program

9/26



Problem Example 1

Self-Driving Car Location Problem

| Terrain 1 ﬁ

Tkm

1
1

T
Self-driving car : !
locates itself using GPS ; :
|

|

| Terrain 100 ’ ﬂ
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Problem Example 1
Self-Driving Car Location Problem

Car's Process noise
Velocity position w ~ N(0,Q)
u, z, = Az, _, + Bu, + w, Y, \03\»
—
y, =Cz, + 7,
Car dynamics 4_Q N
0
z, = Az, , + Bu, w
g, =C1z,
Car model L X Measurement noise
T v~ N(0,R)
T, = [position]
c=1 A [ N
v

10/26



Problem Example 1

Self-Driving Car Location Problem

Prediction

&, = AZ,_, + Bu,

- T
P =AP_A"+Q

I
* CPC"+R

K,

j:k = :i; + Kk(yk - C:i;)

L
Probability
density

function

P =(I- KkC)P;

Optimal state estimate
Zy

Predicted state

estimate Measurement

zk—l

Initial state estimate

10/26
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Exercise: Analyse Kalman Gain

What is Kalman Gain K, if measurement noise R is very small? What if R is very big?



Problem Example 2
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Angle Measurement System

X, = Ax;—1 + B 4w,

> x,: state intime ¢

> A, state transition matrix from time r — 1 to time ¢
P u,: input parameter vector at time ¢

> B;: control input matrix — apply the effort of u,

> w,: process noise, w, ~ N(0,0,)x

*w; assumes zero mean multivariate normal distribution, covariance matrix O,



Problem Example 2 (Update on Oct. 29, 2018)

Angle Measurement System
x; =Ax; 1 +Bu +w,

> x; = [x,%]": x, is current angle, while ¥; is current rate

1 At
>A’:[O 1]

(Ar)> o
>Bt:[ 2 ,At]

> u,:AX,
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Problem Example 2

System Measurement
Zz - Cxl’ + Vt
> z;: measurement vector

> (: transformation matrix mapping state vector to measurement
> v,;: measurement noise, v, ~ N(0,R,)t

1w, assumes zero mean multivariate normal distribution, covariance matrix R,
14/26
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Exercise

In angle measurement lab, what is the transformation matrix C?

= Cx[+vt



Model with Uncertainty

> Model the measurement w. uncertainty (due to noise w;)
» P,: covariance matrix of estimation x;
» On how much we trust our estimated value — the smaller the more we trust

note: here F;, = A,
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Fuse Gaussian Distributions

Measurement (Noisy)

Prediction (Estimate)
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Fuse Gaussian Distributions

Measurement (Noisy)

Prediction (Estimate)

Measurement (Noisy)

Prediction (Estimate)
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Exercise

Given two Gaussian functions y; (r; p1, 01) and y(r; pz, 02), prove the product of these two
Gaussian functions are still Gaussian.

(r—u)? r=pp)?
1 -3 1 —Lj%*
e 1 e 92

yi(rip, o) = —/— yo(r; pa, 02) = ———
\/ZWU% \/2%0%

N
2
[ . M )



Step 1: Prediction

x, :A[x[_] —i—B,ut
Py =AP_ Al + 0
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Step 1: Prediction
xt_ ZAtx[_] —i—B,ut

Py =AP_ Al + 0

Step 2: Measurement Update
X = xt_ + K[(Z; — Cxt_)
Pt ES Pt_ - KICP[_
K, =P C"(CP,CT +R)!

o B W
g & &8



Basic Concepts

Prior knowledge Pr_1jk—1 _:;Ziiec;ig:es;ep

of state
. Xk—1[k—1 physical model

Next timestep 1?k|k—1

k+—k+1 Xklk—1
Pk|k Update step Measurements
)gk'k -<—Compare prediction -«— Yy -

to measurements

/

Output estimate
of state
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More Applications: Robot Localization
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More Applications: Object Tracking

a b

The 50" frame The 118" frame

The 124" frame The 127" frame
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Overview

Software
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C Implementation

// Kalman filter module
float Q_angle = 0.001;
float Q_gyro 0.003;
float R_angle 0.03;

float x_angle = 0;
float x_bias
float P_00 =
float dt, vy,
float K 0, K

0
S
1

| 2 (Z
> R:
> P:
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C Implementation (cont.)

float kalmanCalculate (float newAngle, float newRate,int looptime)
{

dt = float (looptime) /1000;

x_angle += dt x (newRate - x_bias);

P_00 += dt  (P_10 + P_01) + Q_angle x dt;
pP_01 += dt + P_11;
P_10 += dt *« P_11;
P_11 += Q_gyro x dt;

y = newAngle - x_angle;
S| = P_00 + R_angle;

K_0 =P_00 / S;

K 1 =P_10 / s;

x_angle += K_0 x y;
x_bias += K_1 x y;

P_00 -= K_0 = P_00;

P_01 -= K_ 0 = P_01;

P_10 -= K_1 * P_00;

P_11 -= K_1 * P_01;

return x_angle;
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Summary
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» Complementary Filter
> Kalman Filter
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