CENG4480 Homework 2

Due: Nov. 03, 2020

- Q1 (15%) The circuit shown in Figure 1 represents an n-bit weighted digital-to-analog converter. Each switch S_i is controlled by the corresponding bit of the digital number D_i if the bit is 1 the switch is up; if the bit is 0 the switch is down. Please answer the following two questions:
 - (1) Determine an expression relating V_0 to the binary input bits D_i and V_{ref} .
 - (2) If n = 8, $V_{ref} = -10V$ and input digits $(D_{n-1}...D_0)_2$ is 32_{10} , please callate V_0 .

Figure 1: n-bit DAC.

Q2 (10%) For R-2R DAC showed in Figure 2, please calculate V_1 .

Figure 2: R-2R DAC.

- Q3 (15%) A 8-bit analog-to-digital converter (ADC) has the analog input voltage ranging from 0 to +10V. Please answer the following questions.
 - (1) When the input voltage is 4.48V, calculate the binary output.
 - (2) What is the smallest voltage step size that can be discerned by this ADC?
 - (3) What is the function of sample-and-hold amplifier?
- Q4 (10%) A simple Infra-Red Sensor system to detect passing human is presented as in Figure 3.A and B are IR Sensors which will generate different output voltages for different infra-red intensity, and higher voltage level corresponds to high light intensity.

(1) Explain how this system works for counting passing pedestrians.

(2) To increase counting accuracy, usually B is covered with materials that can reflect infra-red light. Explain why.

Figure 3: IR-System.

- Q5 (10%) Exemplify the working principles of sensors that measure: (1) Flow; (2) Temperature;
 (3) Pressure; (4) Motion; (5) Liquid Level.
- Q6 (10%) Briefly describe how PID affects motor control.
- **Q7** (15%) Given two Gaussian distributions $N(x_0; \mu_0, \sigma_0)$ and $N(x_1; \mu_1, \sigma_1)$, try to give the expectation and variance of a new distribution which is the product of these two Gaussian distributions.
- **Q8** (15%) Assume the liner estimate system equation is $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{w}_t$. Given a second-autoregression random series:

$$x(t) = 1.48x(t-1) - 0.52x(t-2) + \omega_t \tag{1}$$

Kalman Filter is used to estimate x(t) (Here x(t) is a scalar). Try to give the formulations of state transition matrix A and noise vector w_t .