

香港中文大學 The Chinese University of Hong Kong

CENG4480 Lecture 08: Kalman Filter

Bei Yu

byu@cse.cuhk.edu.hk (Latest update: November 8, 2017)

Fall 2017

日本学生

 QQ

Overview

[Introduction](#page-2-0)

[Complementary Filter](#page-6-0)

[Kalman Filter](#page-10-0)

[Software](#page-23-0)

Overview

[Introduction](#page-2-0)

[Complementary Filter](#page-6-0)

[Kalman Filter](#page-10-0)

[Software](#page-23-0)

Self Balance Vehicle / Robot

- <http://www.segway.com/>
- \blacktriangleright <http://wowwee.com/mip/>

Basic Idea

Motion against the tilt angle, so it can stand upright.

IMU Board

<http://www.hotmcu.com/imu-10dof-l3g4200dadxl345hmc5883lbmp180-p-190.html>

- ► L3G4200D: gyroscope, measure angular rate (relative value)
- \triangleright ADXL345: accelerometer, measure acceleration

Overview

[Introduction](#page-2-0)

[Complementary Filter](#page-6-0)

[Kalman Filter](#page-10-0)

[Software](#page-23-0)

Complementary Filter

X reads slightly negative g | X reads slightly positive. X now sees some gravity. Accelerometer

Gyro reads positive. Gyro reads negative.

Gyroscope

- \blacktriangleright response faster
- \blacktriangleright but has drift over time

- \triangleright Give accurate reading of tilt angle
- \triangleright Slower to respond than Gyro's
- \blacktriangleright prone to vibration/noise

Complementary Filter (cont.)

 \triangleright Combine two sensors to find output

Complementary Filter (cont.)

Overview

[Introduction](#page-2-0)

[Complementary Filter](#page-6-0)

[Kalman Filter](#page-10-0)

[Software](#page-23-0)

Rudolf Kalman (1930 – 2016)

- \blacktriangleright Born in Budapest, Hungary
- \triangleright BS in 1953 and MS in 1954 from MIT electrical engineering
- \blacktriangleright PhD in 1957 from Columbia University.

- \blacktriangleright Famous for his co-invention of the Kalman filter widely used in control systems to extract a signal from a series of incomplete and noisy measurements.
- ▶ Convince NASA Ames Research Center 1960
- \blacktriangleright Kalman filter was used during Apollo program

Problem Statement

Linear Estimate System

$$
\mathbf{x}_t = \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{B}_t \mathbf{u}_t + \mathbf{w}_t
$$

 \blacktriangleright **x**_{*t*}: state in time *t*

- ► \mathbf{F}_t : state transition matrix from time $t-1$ to time t
- \blacktriangleright \mathbf{u}_t : input parameter vector at time *t*
- \blacktriangleright **B**_t: control input matrix apply the effort of \mathbf{u}_t
- \blacktriangleright \mathbf{w}_t : process noise, $\mathbf{w}_t \sim N(0, \mathbf{Q}_t) *$

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A$

[∗]**w***^t* assumes zero mean multivariate normal distribution, covariance matrix **Q***^t*

Example of Linear System

Lab6: Angle Measurement

$$
\mathbf{x}_t = \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{B}_t \mathbf{u}_t + \mathbf{w}_t
$$

►
$$
\mathbf{x}_t = [x_t, \dot{x}_t]^\top: x_t
$$
 is current angle, while \dot{x}_t is current rate
\n► $\mathbf{F}_t = \begin{bmatrix} 1 & -\Delta t \\ 0 & 1 \end{bmatrix}$
\n► $\mathbf{B}_t = [\Delta t, 0]^\top$
\n► $\mathbf{u}_t = [\dot{x}_t, 0]^\top$

Problem Statement (cont.)

System Measurement

$$
\mathbf{z}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{v}_t
$$

- \blacktriangleright \mathbf{z}_t : measurement vector
- \blacktriangleright \mathbf{H}_t : transformation matrix mapping state vector to measurement
- \blacktriangleright **v**_t: measurement noise, $\mathbf{v}_t \sim N(0, \mathbf{R}_t)$ †

 $A \cap A \rightarrow A \cap B \rightarrow A \Rightarrow A \Rightarrow$

[†]**w***^t* assumes zero mean multivariate normal distribution, covariance matrix **R***^t*

Exercise

In angle measurement lab, what is the transformation matrix H_t ?

 $\mathbf{z}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{v}_t$

Model with Uncertainty

- \blacktriangleright Model the measurement w. uncertainty (due to noise \mathbf{w}_t)
- \blacktriangleright **P**_{*k*}: covariance matrix of estimation \mathbf{x}_t
- \triangleright On how much we trust our estimated value the smaller the more we trust

 $Q \cap Q$

Fuse Gaussian Distributions

Fuse Gaussian Distributions

Exercise

Given two Gaussian functions $y_1(r; \mu_1, \sigma_1)$ and $y_2(r; \mu_2, \sigma_2)$, prove the product of these two Gaussian functions are still Gaussian.

$$
y_1(r; \mu_1, \sigma_1) = \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{-\frac{(r-\mu_1)^2}{2\sigma_1^2}} \qquad y_2(r; \mu_2, \sigma_2) = \frac{1}{\sqrt{2\pi\sigma_2^2}} e^{-\frac{(r-\mu_2)^2}{2\sigma_2^2}}
$$

Step 1: Prediction

$$
\mathbf{x}_{t|t-1} = \mathbf{F}_t \mathbf{x}_{t-1|t-1} + \mathbf{B}_t \mathbf{u}_t \tag{1}
$$

$$
\mathbf{P}_{t|t-1} = \mathbf{F}_t \mathbf{P}_{t-1|t-1} \mathbf{F}_t^\top + \mathbf{Q}_t
$$
 (2)

Step 1: Prediction

$$
\mathbf{x}_{t|t-1} = \mathbf{F}_t \mathbf{x}_{t-1|t-1} + \mathbf{B}_t \mathbf{u}_t \tag{1}
$$

$$
\mathbf{P}_{t|t-1} = \mathbf{F}_t \mathbf{P}_{t-1|t-1} \mathbf{F}_t^\top + \mathbf{Q}_t
$$
 (2)

Step 2: Measurement Update

$$
\mathbf{x}_{t|t} = \mathbf{x}_{t|t-1} + \mathbf{K}_t(\mathbf{z}_t - \mathbf{H}_t \mathbf{x}_{t|t-1})
$$
\n(3)

$$
\mathbf{P}_{t|t} = \mathbf{P}_{t|t-1} - \mathbf{K}_t \mathbf{H}_t \mathbf{P}_{t|t-1} \tag{4}
$$

$$
\mathbf{K}_t = \mathbf{P}_{t|t-1} \mathbf{H}_t^\top (\mathbf{H}_t \mathbf{P}_{t|t-1} \mathbf{H}_t^\top + \mathbf{R}_t)^{-1}
$$
(5)

Basic Concepts

4 0 8 4

ミドイミド

 QQ

Overview

[Introduction](#page-2-0)

[Complementary Filter](#page-6-0)

[Kalman Filter](#page-10-0)

[Software](#page-23-0)

メロトメ 御 トメ 君 トメ 君 ト 2990 重

C Implementation

```
// Kalman filter module
float Q<sub>angle</sub> = 0.001;
float Q_qyro = 0.003;float R_angle = 0.03;
float x_angle = 0;
float x bias = 0;
float P_00 = 0, P_01 = 0, P_10 = 0, P_11 = 0;
float dt, y, S;
float K 0, K 1;
```

$$
\begin{array}{c} \triangleright \text{Q:} \\ \triangleright \text{R:} \\ \square \end{array}
$$

^I **P**:

C Implementation (cont.)

```
float kalmanCalculate(float newAngle, float newRate,int looptime)
{
   dt =float(looptime)/1000;
   x angle += dt * (newRate - x bias):
   P_00 += - dt * (P_10 + P_01) + Q_angle * dt;
   P 01 += - dt * P 11;
   P_10 += - dt * P_11;P 11 += + 0 avro * dt:
   y = newAngle - x angle:
   S = P_00 + R_1 angle:
   K_0 = P_00 / S;
   K_1 = P_10 / S;
   x angle += K 0 * y;
   x_bias += K_1 * y;P 00 -= K 0 * P 00;
   P_01 - K_0 * P_01:
   P 10 - K 1 * P 00;
   P_11 - = K_1 * P_01;return x_angle;
```


}

Summary

- \blacktriangleright Complementary Filter
- \blacktriangleright Kalman Filter

