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Introduction
In this lab you will complete your self-balancing robot by coding the program and tuning the PID constants such that make your robot to standing up.


Figure 1. CENG4480 self-balancing robot program flow chart
Objectives
· To learn how to develop software to control the system
· To familiar with the practical work in engineering

Procedures
1. Calculate the angle from accelerometers values
· On the provided skeleton program Lab9.ino add the angle calculation codes as following:
 Ayz=atan2(RwAcc[1],RwAcc[2])*180/PI;  //angle measured by accelerometer
 Ayz-=offset;                          //adjust to correct balance point

2. Add the complement and Kalman filters
· On the provided skeleton program Lab9.ino add the complement and Kalman filters codes as following:
Angy = 0.998*(Angy+GyroIN[0]*interval/1000)+0.002*Ayz;  //complement filter  
kang = kalmanCalculate(Angy, GyroIN[0],interval);         //kalman filter
Serial.println(kang);

3. Add the PID calculation and update the speed of motors
· On the provided skeleton program Lab9.ino add the PID calculation and update the speed of motors as following:
if ((abs(kang)>=minangle)&&(abs(kang)<maxangle)){
  delta=kang;
  diff = delta - last;
  diff2 = delta - last2;
  diff = constrain(diff,-maxdiff,maxdiff);
  diff2 = constrain(diff2,-maxdiff,maxdiff);
  last2 = last;
  last = delta;
 LRspeed = P*delta + I*accu*interval*0.001 + D*(diff*100+diff2*100)/interval;
  accu+=delta;
  accu = constrain(accu,-maxaccu,maxaccu);
}
else {
  LRspeed = 0;
  accu = 0;
  last=0;
  diff=0;
}

4. Calibrate the offset
· After adding all codes in Lab9.ino then upload it to the Arduino board
· Hold the robot vertically 
· Open the COM window and find out the offset value
· Change the offset value in Lab9.ino accordingly
· [bookmark: _GoBack]Upload the Lab9.ino to Arduino board again

5. Tuning the PID constants
· Increase the P value in the step of 50 upload to the Arduino each time until the robot start to oscillate (move back and forth)
· Increase I in the step of 50 so that the robot accelerates faster when off balance
· Increase D in the step of 10 so that the robot would move about its balanced position more gentle, and there shouldn’t be any significant overshoots
· If first attempt doesn’t give the satisfying results, reset PID values and start over again with different value of P
· Repeat the steps until you find a certain PID value which gives the satisfactory results
· A fine tuning can be done to further increase the performance of PID system
· In fine tuning, PID values are restricted to neighboring values and effects are observed in practical situations

6. Demo to your TAs
· The longer your robot standing up time the higher you will get the bonus marks
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