CENG4480 Embedded System Development and Applications
Computer Science and Engineering Department
The Chinese University of Hong Kong
Laboratory 9: Self-balancing Robot (2) (software)
November, 2017
Introduction
In this lab you will complete your self-balancing robot by coding the program and tuning the PID constants such that make your robot to standing up.

Figure 1. CENG4480 self-balancing robot program flow chart
Objectives
· To learn how to develop software to control the system
· To familiar with the practical work in engineering

Procedures
1. Calculate the angle from accelerometers values
· On the provided skeleton program Lab9.ino add the angle calculation codes as following:
 Ayz=atan2(RwAcc[1],RwAcc[2])*180/PI; //angle measured by accelerometer
 Ayz-=offset; //adjust to correct balance point

2. Add the complement and Kalman filters
· On the provided skeleton program Lab9.ino add the complement and Kalman filters codes as following:
Angy = 0.998*(Angy+GyroIN[0]*interval/1000)+0.002*Ayz; //complement filter
kang = kalmanCalculate(Angy, GyroIN[0],interval); //kalman filter
Serial.println(kang);

3. Add the PID calculation and update the speed of motors
· On the provided skeleton program Lab9.ino add the PID calculation and update the speed of motors as following:
if ((abs(kang)>=minangle)&&(abs(kang)<maxangle)){
 delta=kang;
 diff = delta - last;
 diff2 = delta - last2;
 diff = constrain(diff,-maxdiff,maxdiff);
 diff2 = constrain(diff2,-maxdiff,maxdiff);
 last2 = last;
 last = delta;
 LRspeed = P*delta + I*accu*interval*0.001 + D*(diff*100+diff2*100)/interval;
 accu+=delta;
 accu = constrain(accu,-maxaccu,maxaccu);
}
else {
 LRspeed = 0;
 accu = 0;
 last=0;
 diff=0;
}

4. Calibrate the offset
· After adding all codes in Lab9.ino then upload it to the Arduino board
· Hold the robot vertically
· Open the COM window and find out the offset value
· Change the offset value in Lab9.ino accordingly
· [bookmark: _GoBack]Upload the Lab9.ino to Arduino board again

5. Tuning the PID constants
· Increase the P value in the step of 50 upload to the Arduino each time until the robot start to oscillate (move back and forth)
· Increase I in the step of 50 so that the robot accelerates faster when off balance
· Increase D in the step of 10 so that the robot would move about its balanced position more gentle, and there shouldn’t be any significant overshoots
· If first attempt doesn’t give the satisfying results, reset PID values and start over again with different value of P
· Repeat the steps until you find a certain PID value which gives the satisfactory results
· A fine tuning can be done to further increase the performance of PID system
· In fine tuning, PID values are restricted to neighboring values and effects are observed in practical situations

6. Demo to your TAs
· The longer your robot standing up time the higher you will get the bonus marks

END

oleObject1.bin
�

�

Start

Read accelerometer, gyro values and record the time interval

Calculate the angle from accelerometer values

Apply complement and Kalman filters

Calculate PID value and adjust the speed of the robot

image1.emf

