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Overview

Re-visit DNN Pruning
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Im2col (Image2Column) Convolution

! Filters: n x ¢ x k x k

(1 y s

>< p—

X e Rdx(kzc) W e R(k2c)><n Y ¢ Rdxn

» Transform convolution to matrix multiplication

» Unified calculation for both convolution and fully-connected layers
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T'F)
Matrix Approximation or Matrix Regression? 3#3

>< p—

X e Rdx(kzc) W e R(*k*e)xn Y € Raxn

» Matrix approximation: W ~ W’
» Matrix regression: Y =W - X~ W .- X
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Compression Approach 1: Sparsity

>< p—

X e RIx (K*c) S e INGOED Y € Rdxn

Sparse DNN

» Sparsification: weight pruning;
» Compression: compressed sparse format for storage;
» Potential acceleration: sparse matrix multiplication algorithm.
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Exploring the Granularity of Sparsity that is
Hardware-friendly

4 types of pruning granularity

r- Pypepep——
':,. ':,. .....
- Q
e Z/, o ‘e
v

irregular sparsity regular sparsity  more regular sparsity

fully-dense
model

Han et al, NIPS’15 Molchanov et al, ICLR’1
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Compression Approach 2: Low-Rank
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X

X

X e Rdx(kzc) Ue Rk ) xr

Low-rank DNN

» Low-rank approximation: matrix decomposition or tensor decomposition.

V e R12r><n

Y € Réxn
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» Compression and acceleration: less storage required and less FLOP in computation.

F g %g



1573
Non-linearity Approximation <

POAN_ 40

Erresy
3
2 . —_— .
» Activation unit: ReL.U
Lr . » Error more sensitive to positive response;
0 ! ! » Enlarge the solution space.
-2 0 2
RelLU

N N
mvivnz; WX, — Yi|, — mvivnz; |r(WX;) — Yi|
= 1=

P> X: input feature map
> Y: output feature map
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Reading List
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Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating
Very Deep Neural Networks”. In: Proc. ICCV
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Low Rank Approximation for Conv

* Layer responses lie in a low- w

rank subspace j/'@\\ ar
. i e
* Decompose a convolutional ) <W;//
layer with d filters with filter \@/
sizek X k X cto

* Alayer with d’ filters (k X k X ¢)

W!
* Alayer with d filter (1 x 1 x d’) Z”ﬁ\‘
b

(b)

S —— S

¢ channels d' channels d channels

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR’15
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Low Rank Approximation for Conv

| speedup | rank sel. | Convl

Conv2 Conv3

Conv4 Conv5

Conv6 Conv7 | err. % |

2% no 32 110 199 219 219 219 219 1.18
2% yes 32 83 182 211 239 237 253 0.93
2.4x no 32 96 174 191 191 191 191 1.77
2.4x% yes 32 74 162 187 207 205 219 1.35
3% no 32 /7] 139 153 153 153 153 2.56
3% yes 32 62 138 149 166 162 167 2.34
4% no 32 57 104 115 115 115 115 4.32
4% yes 32 50 112 114 122 117 119 4.20
5x% no 32 46 83 92 92 92 92 6:53
5% yes 32 41 94 93 98 92 90 6.47

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR’15
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Low Rank Approximation for FC

Build a mapping from row / column indices of matrix W = [W(x, y)] to
vectors ¢ and j: x <> 1 = (i1,...,ig) and y <> 5 = (j1,---,Jd)-

TT-format for matrix W:

W(i17 ceey Id; jla e 7.jd) = W(X(’L),y(j)) — Gl[ila.jl] G2[i2,j2] i Gd[id’.jd]
S—— —— S———
1xr rxr rx1
Type 1 im. time (ms) 100 im. time (ms)
CPU fully-connected layer | 16.1 97.2
CPU TT-layer 1.2 94.7
GPU fully-connected layer | 2.7 33
GPU TT-layer 1.9 12.9

Novikov et al Tensorizing Neural Networks, NIPS’15




Singular Value Decomposition

Convolutional Neural Networks With Lowrank Regularization
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Singular Value Decomposition
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Contribution

» A new algorithm for computing the low-rank tensor decomposition
» A new method for training low-rank constrained CNNs from scratch
» Evaluation on large networks



Singular Value Decomposition
Pretrained CNN Approximation

» Convolution Calculation
C X Y
Fu(x,y) = 3oy 2wt 2oy Z2C WY)W (x=xy =)
> W, € R¥X4XC g represent the n -th filter. Z € RX*Y*U pe the input feature map.

» An approximation of W
K

WE=> HE(V)"
k=1

where K is a hyper-parameter controlling the rank, H. € RV*1X@xR 5 the horizontal

filter, V € RK*4x1xC g the vertical filter (Notes: HS and V¢ are both vectors in RY ).

Both 7 and ) are learnable parameters.
» Then the convolution becomes

Wox 2 = 8 S8 1 (V) + 26 = S e+ (S Ve + 2°)
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Singular Value Decomposition

Complexity Analysis

» Standard Convolution Complexity: O(d>NCXY) operations

» Approximation Scheme Complexity
The computational cost associated with the vertical filters is O(dKCXY') and with
horizational fileters is O(dNKXY '), a total computational cost is O(dK(N + C)XY)

> IfK < ;,’Lfc acceleration can be achieved
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Singular Value Decomposition
Approximate Parameters H and V

» Minimizing the objective function

2
o K k T
EA(H, V) i= T |5 - S s (00)"|
» Theorem: Define the following bijection that maps a tensor to a matrix
T : REXdxdXN  RCAXAN tensor element (iy, iz, i3, i4) maps to (j1,/2) , where

Ji=—1)d+i, jp=({—-1)d+i;

Define W := T[W]. Let W = UDQ! be the singular Value Decomposition (SVD) of

W. Let

VE() = Upe— 1d+]k\/Dkk
7‘[];0) = n 1d+jk\/

then (7:[, f/) is a solution to minimizing the object function
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Singular Value Decomposition

» The proposed parametrization for low-rank regularization.

<’ N

Left: The original convolutional layer. Right: low-rank constraint convolutional layer with rank-K.
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Singular Value Decomposition
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Training Low-rank Constrained CNN From Scratch

» The effect of SVD Decomposition
Each convolutional layer is parameterized as the composition of two convolutional
layers,

» Exploding and vanishing gradients expecially for large networks

» Batch Normalition can handle this problem
(Recall the theory of Batch Normalization)
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Singular Value Decomposition

Read the paper if you want to learn the specific details of the
algorithm

CONVOLUTIONAL NEURAL NETWORKS WITH Low-
RANK REGULARIZATION

Cheng Tai', Tong Xiao?, Yi Zhang®, Xiaogang Wang?, Weinan E!

The Program in Applied and Computational Mathematics, Princeton University

2Department of Electronic Engineering, The Chinese University of Hong Kong

3Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
{chengt, weinan}@math.princeton.edu: yeezhang@umich.edu

{xiaotong, xgwang}@ee.cuhk.edu.hk

Cheng Tai et al. (2015). “Convolutional neural networks with low-rank regularization”. In: arXiv preprint arXiv:1514.06067.
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Tucker Decomposition

Compression of Deep Convolutional Neural Networks for Fast and
Low Power Mobile Applications
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Tucker Decomposition S

Contribution

» Propose a one-shot whole network compression scheme which consists of simple
three steps: (1) rank selection, (2) low-rank tensor decomposition, and (3) fine-tuning.

» Tucker decomposition (Tucker, 1966) with the rank determined by a global analytic
solution of variational Bayesian matrix factorization is applied on each kernel tensor.
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Tucker Decomposition "gﬁ

Kernel Tensor Approximation

» Convolution Calculation
D D S
Vit =D D1 D KigsuXigys
i=1 j=1 s=I
hi=(—-1)A+i—Pandwj=(w —-1)A+;—P

where K is a 4-way kernel tensor of size D x D x S x T, ¢ is stride, and P is
zero-padding size

» Tucker Decomposition:The rank-(R;; Ry; R3; R4) Tucker decomposition of 4-way kernel
tensor K has the form:

_ (1) 772) 7,3) 7,(4)
IC[;/}SJ - Zrl 1 Zrz 1 ng 1 Zm 1 Cr17r27r37r4 Ul 7l U] mn Us 3 Uty”4
where C' is a core tensor of size Ry X Ry x Rz x Ry and UV, U®) UG and UW are
factor matrices of sizes D X R;,D X R, S X R3, and T X R4, respectively.
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Tucker Decomposition
Tucker Decomposition

» Every mode does not have to be decomposed(e.g. For example, we do not
decompose mode-1 and mode-2 which are associated with spatial dimensions
because they are already quite small).

» Under this variant called Tucker-2 decomposition, the kernel tensor is decomposed to:
_ (3) 7,4
’Ci,ﬁs,t - Zro 1 Zm 1 u ry,ra Usir Ut,r4
where C is a core tensor of size D X D X R3 X Ry
> With the approximation of kernel, the convolution is as following:

Zh)W7r3 = Z Us(ar)q Xh w,s

D D R

/
Zh’,w’,m = § : § : E CiJJSJAZhqu,rg

i=1 j=1 ro=1

Ry
_ § : (4) =1
yh’,w’,t - Ut,mzh’,w’,m
r4:1
22/45




Tucker Decomposition &

P Tucker-2 decompositions for speeding-up a convolution

» Complexity Analysis

_ D*ST _ D*STH'W'
M = SR3+D2R3R4+TR, and £ = SR3HW+D2R3R,H' W/ +TRyH' W'

M represents the compression ratio, E represents the speed-up ratio
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Tucker Decomposition ?ﬁg_
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Rank Selection With Global Analytic VBMF

» Motivation: The rank-(Rs; R4) control the trade-off between performance (memory,
speed, energy) improvement and accuracy loss.

» Method: variational Bayesian atrix factorization?

» Advantages: VBMF can automatically find noise variance, rank and even provide
theoretical condition for perfect rank recovery

2Shinichi Nakajima et al. (2013). “Global analytic solution of fully-observed variational Bayesian matrix factorization”. In:
Journal of Machine Learning Research 14.Jan, pp. 1-37.



Tucker Decomposition

» One-shot whole network compression scheme

» B »» I - K

FC
<: Back-propagation |

Three parts: (1) rank selection with VBMF; (2) Tucker decomposition on kernel tensor; (3) fine-tuning of entire network.

I + I+ -+ I+ [

» Notes:Tucker-2 decomposition is applied from the second convolutional layer to the
first fully connected layers, and Tucker-1 decomposition to the other layers.
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Tucker Decomposition

Read the paper® if you want to learn the specific details of the
algorithm

COMPRESSION OF DEEP CONVOLUTIONAL NEURAL
NETWORKS FOR FAST AND LOW POWER MOBILE AP-
PLICATIONS

Yong-Deok Kim', Eunhyeok Park?, Sungjoo Yoo?, Taelim Choi', Lu Yang' & Dongjun Shin'

!Software R&D Center, Device Solutions, Samsung Electronics, South Korea
{yd.mlg.kim, tl.choi, lu20l4.yang, d.j.shin}@samsung.com

2Department of Computer Science and Engineering, Seoul National University, South Korea
{canusglow, sungjoo.yoo}@gmail.com

3Yong-Deok Kim et al. (2015). “Compression of deep convolutional neural networks for fast and low power mobile
applications”. In: arXiv preprint arXiv:1511.06530.
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CP Decomposition
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Advantages

» Ease of the decomposition implementation
P> Ease of the CNN implementation

» Ease of fine-tuning

> Efficiency



CP-Decomposition

Speeding-up Convolutional Neural Networks Using Fine-tuend
CP-Decomposition
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CP-Decomposition
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Method Overview

» Take a convolutional layer and decompose its kernel using CP-decomposition
» Fine-tune the entire network using backpropagation.



CP-Decomposition
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A low-rank decomposition of a matrix A of size n X m with rank R is given by

A(iaj) = Zf:lAl(i7 V)Az(j, r)7 i= 1,7, ] = l,m
For a d-dimensional array A of size n; x - - - x ng a CP-decomposition has the
following form

A (i], . .,id) = Zf:lAl (i],r) . .Ad (id,r)
where the minimal possible R is called canonical rank.

Profit we need to store only (n; + - - - + ng) R elements instead of the whole tensor
with ny . .. ng elements.

There is no finite algorithm for determining canonical rank of a tensor when d > 2

Non-linear least squares (NLS) method is applied in this paper, which minimizes the
L2-norm of the approximation residual (for a user-defined fixed R) using
Gauss-Newton optimization.




CP-Decomposition
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Kernel Tensor Approximation

>

Convolution Calculation

5 ) s : . ..
V(xayv t) = Zj’cix—d Z;:y—d Zs:l K(l —x+ 57] -y + 57 S, t)U(lvjv S)

K(-,-,-,-)is a 4D kernel tensor of size d x d x S x T d is the spatial dimensions, S is
input channels, T is output channels, while J denotes "half-width" (d — 1)/2
Kernel Approximation

K(i,j,5,0) = S8 K*(i —x+ 6,r)K*(j — y + 6,r)K*(s, r)K'(t,7)
where K*(-,-),K”(+,-), K*(+,-), K'(-, -) are the four components of the composition
representing 2D tensors (matrices) of sizesd X R,d X R,S Xx R,and T X R
respectively.



CP-Decomposition
Convolution Approximation

» Substitue the Kernel Approx to Conv

x+6 y+6
V(x,y,1) ZK’tr ZKx(i—x—i—é,r)(Z K'(j—y+34,
J

i=x—4 j=y—30

» Step by Step Calculation

U'(irj,r) = ZKsr iJys

y+9o
US(,y,r) = > K —y+6,n)U(i,j,r)

j=y—46

x+6
UY(x,y,r) = Z K*(i —x+ 6, r)U” (i,y,r)

i=x—0

R
V(x,y,t) = Z K' (¢, r)UY*(x,y,7)
r=1
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CP-Decomposition

» Complexity Comparison

(a) Full convolution

(b) Two-component decomposition (Jaderberg et al., 2014a)

(c) CP-decomposition

33/45
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CP-Decomposition

Read the paper” if you want to learn the specific details of the

algorithm

SPEEDING-UP CONVOLUTIONAL NEURAL NETWORKS
USING FINE-TUNED CP-DECOMPOSITION

Vadim Lebedev', Yaroslav Ganin', Maksim Rakhuba'3, Ivan Oseledets'#, and Victor Lempitsky'

!Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
2Yandex, Moscow, Russia
3Moscow Institute of Physics and Technology, Moscow Region, Russia
“Institute of Numerical Mathematics RAS. Moscow, Russia

4Vadim Lebedev et al. (2014). “Speeding-up convolutional neural networks using fine-tuned cp-decomposition”. In: arXiv
preprint arXiv:1412.6553.
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Overview

Unified Framework
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Proposed Unified Structure

X WXE:

ReLU -

X —

» Simultaneous low-rank approximation and network sparsification;
» Non-linearity is taken into account.
» Acceleration is achieved with structured sparsity.
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£
Formulation -}‘Eﬁ_

Given a pre-trained network, the goal is to minimize the reconstruction error of the response
in each layer after activation, using sparse component and low-rank component.

N
min Y [|¥; — r((4 +B)X)r,
=1

st JlAllp < S,
rank(B) < L.

» X: input feature map
> Y: output feature map

Not easy to solve: [y minimization and rank minimization are NP-hard.
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Relaxation

2
manIIY —r((A+B)X)[r + A[[All,; + A2 B

» The [y constraint is relaxed by /> 1 norm such that the zero elements in A appear
column-wise;

» The rank constraint on B is relaxed by nuclear norm of B, which is the sum of the
singular values;

> Apply alternating direction method of multipliers (ADMM) to solve it;
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Alternating Direction Method of Multipliers (ADMM)

Reformulating the problem with an auxiliary variable M,

N
in > 1Y r(MX) [} 4+ A Al + 2 B,
bh bh l:
st. A+B=M.

Then the augmented Lagrangian function is

Lt(AvBa ) )

S
(i

N

t
=" 1¥i = r(MX)IE + M Al + 2o Bl + (A A+ B — M)+ [A+B - M2,
i=1
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Alternating Direction Method of Multipliers (ADMM) _‘ #9
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Iteratively solve with following rules. All of them can be solved efficiently.

2

t A
Ajy = argmin )\ ||A||2’1 +§ HA +Bk—Mk+J 7
A U llF
. t AP
Bj, | = argmin )\2||B||*+§ B+Ap ) — M+ —| ,
B U llF

N
. t
My, = argmin Y [|¥; — r(MX,)|7 + (Ax, Ax1 + Biyr — M) + 5 Akt + Bryr — M,
M

i=1

[ Akr1 =Ag + t(Agr1 + Brrr — Myq).



Solving /> 1-norm
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) t AP
min Al HAHZ,I + E A+ B, — M, + T

F

Closed Form Update Rule®

A
Aper = proxay - (M= Bi= =5),
A
€=M~ B~ —F,
IClill, = 2 Al
— g 1Cli G [[[Clll, > —;
[Ak—H]:,i = H[C]:,in l o2 t
0, otherwise.

5G. Liu et al., “Robust recovery of subspace structures by low-rank representation”, TPAMI, 2013.
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Solving nuclear norm

) t Acll
min A, |B||, + = ||B +Aky1 — Mix + —
B 2 t g
Closed Form Update Rule®
A
Bk—H = PrOXﬁH.” (Mk _Ak—l—l - Tk)7
A
D =M~ A — =",
A

Bi 1 = UD», (2)V, where Dy, (%) = diag({(0; — =2)4+}).

t

8J-F. Cai et al., “A singular value thresholding algorithm for matrix completion”, SIOPT, 2010.
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Comparison on CIFAR-10 dataset

Model | Method | Accuracy | | CR | Speed-up

Original 0.00% 1.00 1.00

VGG-16 | ICLR177 0.06% 2.70 1.80

Ours 0.40% 4.44 2.20

Original 0.00% 1.00 1.00

NIN ICLR’168 1.43% 1.54 1.50
IJCAI'18° 1.43% 1.45 -

Ours 0.41% 2.77 1.70

7Hao Li et al. (2017). “Pruning filters for efficient convnets”. In: Proc. ICLR.

8Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In: Proc. ICLR.
9Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin (2018). “Network Approximation using Tensor

Sketching”. In: Proc. IJCAI, pp. 2319-2325.
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Preliminary Results

——Non-linear —— Linear
S 1 83 |
o o
o e 2 R
Q 05) 4 e
S =} 17 |
Q Q
[&] Q
< o \ \ < 0 \ ]
04 06 038 1 04 06 0.8 1
Compression Rate Compression Rate

(@) (b)

Comparison of reconstructing linear response and non-linear response: (a) layer conv2-1; (b) layer conv3-1.
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Approximation Example

0 500 1000 1500

100
150
200
250+

Approximated filters of conv3-1. Blue dots have non-zero values. Low-rank filter B with rank 136 is decomposed into UV,
both of which have rank 136. (a) Matrix U; (b) Matrix V. (c) Column-wise sparse filter A.
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Comparison on ImageNet dataset

Model | Method | Top-5Accu.l | CR | Speed-up

Original 0.00% 1.00 1.00

AlexNet ICLR’1610 0.37% 5.00 1.82
ICLR16'" 1.70% 5.46 1.81
CVPR’18'2 1.43% 1.50 -

Ours 1.27% 5.56 1.10

Original 0.00% 1.00 1.00

GoogleNet ICLR’'162 0.42% 2.84 1.20
ICLR’'163 0.24% 1.28 1.23

CVPR'18'4 0.21% 1.50 -

Ours 0.00% 2.87 1.35

10Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In: Proc. ICLR.
"Yong-Deok Kim et al. (2016). “Compression of deep convolutional neural networks for fast and low power mobile
applications”. In: Proc. ICLR.
12SPEED-CVPR2018-Yu.
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