FaFXREF

The Chinese University of Hong Kong

CMSC5743
LO5: Quantization

Bei Yu

I
|
> |

(Latest update: October 12, 2020)

Fall 2020

1/25

Overview

2/25

Fixed-Point Representation

Non-differentiable Quantization

Differentiable Quantization

Reading List

Overview

Fixed-Point Representation

3/25

3/25

These slides contain/adapt materials developed by

» Hardware for Machine Learning, Shao Spring 2020 @ UCB

8-bit Inference with TensorRT

v

» Junru Wu et al. (2018). “Deep k-Means: Re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions”. In: Proc. ICMIL

» Shijin Zhang et al. (2016). “Cambricon-x: An accelerator for sparse neural networks”.
In: Proc. MICRO. |IEEE, pp. 1-12

» Jorge Albericio et al. (2016). “Cnvlutin: Ineffectual-neuron-free deep neural network
computing”. In: ACM SIGARCH Computer Architecture News 44.3, pp. 1-13

’Fﬁ)
Scientific Notation 3#9

Decimal representation
mantissa _—exponent

T~6.02,,x 103

decimal point radix (base)

» Normalized form: no leadings 0s (exactly one digit to left of decimal point)
* Alternatives to representing 1/1,000,000,000
* Normalized: 1.0x10°

* Not normalized: 0.1 x10%8,10.0 x 1010

4/25

Scientific Notation

Binary representation

mantissa __—~exponent
—~1.01,, x21
“binary point” radix (base)

» Computer arithmetic that supports it called floating point, because it
represents numbers where the binary point is not fixed, as it is for
integers

5/25

Normalized Form

» Floating Point Numbers can have multiple forms, e.g.

0.232 x 10* =2.32 x 10°
=232 x 10?
=2320. x 10°
= 232000. x 1072

> |t is desirable for each number to have a unique representation => Normalized Form
» We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

> [1..2) for BINARY
> [1..10) for DECIMAL

6/25

Floating-Point Representation

* Normal format: +1. two 2YYY Ytwo
3130 23 22
S| Exponent |
1bit 8 bits 23 bits

* S represents Sign
* Exponent represents y’s
represents x’s

* Represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

7/25

Floating-Point Representation (FP32)

* IEEE 754 Floating Point Standard
 Called Biased Notation, where bias is number subtracted to get real number
» |EEE 754 uses bias of 127 for single prec.
« Subtract 127 from Exponent field to get actual value for exponent
* 1023 is bias for double precision

» Summary (single precision, or fp32):
3130 23 22 0
[5| Exponent | Significand |

1bit 8 bits 23 bits
¢ (-1)S x (1 + Significand) x 2(Exponent-127)

8/25

32—

Floating-Point Representation (FP16)

* IEEE 754 Floating Point Standard
 Called Biased Notation, where bias is number subtracted to get real number
» |IEEE 754 uses bias of 15 for half prec.
» Subtract 15 from Exponent field to get actual value for exponent

» Summary (half precision, or fp15):

1515 109 0
IS | Exponent| Significand |
1bit 5 bits 10 bits

*(-1) x (1 + Significand) x 2(Exponent-15)

9/25

32—

10/25

Question:

What is the IEEE single precision number 40C0 00004 in decimal?

11/25

Question:

What is -0.5¢ in IEEE single precision binary floating point format?

Fixed-Point Arithmetic

* Integers with a binary point and a bias
“slope and bias”y =s™x + z
* Qm.n: m (# of integer bits) n (# of fractional bits)

s=1,z=0 s=1/4,2=0 s=4,2=0 s=15,z=10
EIEIEINN EIEDENEN EICIEIN EE
0 1.5%0 +10
0 0 1 1 0 0 1 1/a 0 0 1 4 0 0 1 15*1+10
0 1 0 2 0 1 0 2/4 0 1 0 8 0 1 0 1.5*2+10
0 1 1 3 0 1 1 3/a 0 1 1 12 0 1 1 1.5*3+10
1 0 0 4 1 0 0 1 1 0 0 16 1 0 0 1.5*4+10
1 0 1 5 1 0 1 5/4 1 0 1 20 1 0 1 15*5+10
1 1 0 6 1 1 0 6/4 1 1 0o 24 1 1 0 1.5%6+10
1 1 1 7 1 1 1 7/4 1 1 1 28 1 1 1 1.5*7+10

12/25

Hardware Implications

Multipliers

Multiplier Example: C=Ax B

Sp Sg €a €g Ma mg

me

Floating-point multiplier

13/25

Fixed-point multiplier

Overview

Non-differentiable Quantization

14/25

7
C

Greedy Layer-wise Quantization'

Rach

b
:
&

Quantization flow

P For a fixed-point number, it representation is:

bw—1
n=> Bi-2/.2"
i=0

where bw is the bit width and f; is the fractional length which is dynamic for different
layers and feature map sets while static in one layer.

P> Weight quantization: find the optimal f; for weights:
fi=avgmin} Wioa = W(bw.fi),
i

where W is a weight and W (bw, f;) represents the fixed-point format of W under the
given bw and f;.

1Jiantao Qiu et al. (2016). “Going deeper with embedded fpga platform for convolutional neural network”. In: Proc. FPGA,
pp. 26-35.

14/25

Greedy Layer-wise Quantization

Quantization flow

[Inputimages] (CNN model]
T I

2

Weight quantization phase

Weight dynamic range analysis

» Feature quantization: find the optimal f;

for features: /e :

i

| Weight quantization configuration

Data quantization phase

fi=arg n}lin Z \xj?l;m —x"(bw, fi)l, 3

Fixed-point CNN model Floating-point CNN model

| Layer 1 | | Layer 1 |

where x™ represents the result of a layer 2 -
. Foature maps__|emfmg—]_ Festurc maps
when we denote the computation of a L | L B rangeandysis and i '

optimal quantization strategy
+ = . Feature maps Feature maps
ayer as x X.

v 3
| Layer N | | Layer N |

1

[Weight and data quantization configuration

15/25

Dynamic-Precision Data Quantization Results

Data Bits 16 8 8

Weight Bits Single-float 8 8 8
Data Precision N/A 22 a2 Impossible 2521 Dynamic Dynamic
Weight Precision N/A 215 27 Impossible 27 Dynamic Dynamic

Top-1 Accuracy 68.1% 68.0% 53.0% Impossible 28.2% 66.6% 67.0%

Top-5 Accuracy 87.9% 76.6% Impossible 49.7% 87.4%
[Network | CaffeNet VGG16-SVD

Data Bits Single-float 16 8 Single-float 16 8
Weight Bits Single-float 16 8 Single-float 16 8or4
Data Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Weight Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Top-1 Accuracy 53.9% 53.9% 53.0% 68.0% 64.6% 64.1%

Top-5 Accuracy 77.7% 77.1% 76.6% 88.0% 86.7% 86.3%

16/25

Industrial Implementations — Nvidia TensorRT i%g

No Saturation Quantization — INT8 Inference

e No saturation: map |max| to 127

-|max| .0- +|max|
3¢ 3¢ 9% 3% 9. MK MK

> Map the maximum value to 127, with unifrom step length.
> Suffer from outliers.

17/25

Industrial Implementations — Nvidia TensorRT

Saturation Quantization — INT8 Inference

e Saturate above |threshold| to 127

-|T] 0.0- +[T|

P> Set a threshold as the maxiumum value.
» Divide the value domain into 2048 groups.
» Traverse all the possible thresholds to find the best one with minimum KL divergence.

18/25

Industrial Implementations — Nvidia TensorRT &

19/25

Relative Entropy of two encodings

>

>

INT8 model encodes the same information as the original FP32 model.

Minimize the loss of information.

Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative entropy
or information divergence).

> P, O - two discrete probability distributions:

N

Dy (P||Q) = P(x;) log

i=1

P(x;)
Q(Xi)

Intuition: KL divergence measures the amount of information lost when approximating
a given encoding.

Overview

Differentiable Quantization

20/25

Straight-Through Estimator (STE)? gj

20/25

/

POAN_ 48

G 3

&

> A straight-through estimator is a way of estimating gradients for a threshold operation
in a neural network.

» The threshold could be as simple as the following function:

f(X)={1’ =0

0, else

» The derivate of this threshold function will be 0 and during back-propagation, the
network will learn anything since it gets 0 gradients and the weights won’t get updated.

2Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). “Estimating or propagating gradients through stochastic
neurons for conditional computation”. In: arXiv preprint arXiv:1308.3432.

24
xS

b

PArameterized Clipping acTivation Function (PACT)?

P> A new activation quantization scheme in which the activation function has a
parameterized clipping level a.

» The clipping level is dynamically adjusted vias stochastic gradient descent
(SGD)-based training with the goal of minimizing the quantization error.

» In PACT, the convolutional ReLU activation function in CNN is replaced with:

0, x € (00,0)
fx)=05(x|—|jx—a|+a)=¢ x, x€[0,q)

a, x € [a,+00)

where « limits the dynamic range of activation to [0, «].

3Jungwook Choi et al. (2019). “Accurate and efficient 2-bit quantized neural networks”. In: Proceedings of Machine
Learning and Systems 1.

21/25

7
C

Rach

§
)
6

PArameterized Clipping acTivation Function (PACT)

» The truncated activation output is the linearly quantized to k-bits for the dot-product
computations:
2k —1 oY
=round (y - ——) —/——
Ya O =)
P> With this new activation function, « is a variable in the loss function, whose value can
be optimized during training.

» For back-propagation, gradient % can be computed using STE to estimate aa—yy" as 1.

y=05(x| = |x —al +)
a 9y

Ja

a X a X

PACT activation function and its gradient.

22/25

Better Gradients

132
{i
=\
P

Rachy

b
:
&

Is Straight-Through Estimator (STE) the best?

y=05(x| —|x — a| + a)
a dy
oa

a X a X

PACT activation function and its gradient.

» Gradient mismatch: the gradients of the weights are not generated using the value of
weights, but rather its quantized value.

» Poor gradient: STE fails at investigating better gradients for quantization training.

23/25

1677
Knowledge Distillation-Based Quantization* &

(=
» Knowledge distillation trains a student model under the supervision of a well trained
teacher model.

P> Regard the pre-trained FP32 model as the teacher model and the quantized models as
the student models.

L(z; Wr, Wa) = oH(y,p") + BH(y, p*) + YH(T,p?))

where, W and Wy are the parameters of the teacher and the student (apprentice) network, respec-

tively, y is the ground truth, 7(-) denotes a loss function and, o, 8 and are weighting factors to
prioritize the output of a certain loss function over the other.

Teacher network

W
. | i‘ j v
Hard
Knowledge

Apprentice network distillation label

PN

x

=

g
8
i

“Asit Mishra and Debbie Marr (2017). “Apprentice: Using knowledge distillation techniques to improve low-precision
24/25 O onwark accuracy” Inc arXiv preprint arXiv-1711 05852

s

I

Filter bank

Input image
x

Overview

Reading List

25/25

Further Reading List

25/25

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy (2016). “Fixed point
quantization of deep convolutional networks”. In: Proc. ICML, pp. 2849-2858

Soroosh Khoram and Jing Li (2018). “Adaptive quantization of neural networks”. In:
Proc. ICLR

Jan Achterhold et al. (2018). “Variational network quantization”. In: Proc. ICLR

Antonio Polino, Razvan Pascanu, and Dan Alistarh (2018). “Model compression via
distillation and quantization”. In: arXiv preprint arXiv:1802.05668

Yue Yu, Jiaxiang Wu, and Longbo Huang (2019). “Double quantization for
communication-efficient distributed optimization”. In: Proc. NIPS, pp. 4438-4449

Markus Nagel et al. (2019). “Data-free quantization through weight equalization and
bias correction”. In: Proc. ICCV, pp. 1325—-1334

	Main Talk
	Fixed-Point Representation
	Non-differentiable Quantization
	Differentiable Quantization
	Reading List

