

CMSC5743

L05: Quantization

Bei Yu

(Latest update: October 12, 2020)

Fall 2020

Overview

Fixed-Point Representation

Non-differentiable Quantization

Differentiable Quantization

Reading List

Overview

Fixed-Point Representation

Non-differentiable Quantization

Differentiable Quantization

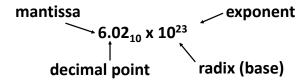
Reading Lis

These slides contain/adapt materials developed by

- Hardware for Machine Learning, Shao Spring 2020 @ UCB
- 8-bit Inference with TensorRT
- ▶ Junru Wu et al. (2018). "Deep k-Means: Re-training and parameter sharing with harder cluster assignments for compressing deep convolutions". In: *Proc. ICML*
- Shijin Zhang et al. (2016). "Cambricon-x: An accelerator for sparse neural networks". In: Proc. MICRO. IEEE, pp. 1–12
- ▶ Jorge Albericio et al. (2016). "Cnvlutin: Ineffectual-neuron-free deep neural network computing". In: ACM SIGARCH Computer Architecture News 44.3, pp. 1–13

Scientific Notation

Decimal representation



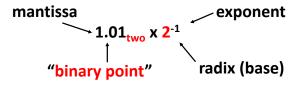
- Normalized form: no leadings 0s (exactly one digit to left of decimal point)
- Alternatives to representing 1/1,000,000,000

• Normalized: 1.0 x 10⁻⁹

• Not normalized: 0.1 x 10⁻⁸,10.0 x 10⁻¹⁰

Scientific Notation

Binary representation



 Computer arithmetic that supports it called <u>floating point</u>, because it represents numbers where the binary point is not fixed, as it is for integers

Normalized Form

Floating Point Numbers can have multiple forms, e.g.

$$0.232 \times 10^{4} = 2.32 \times 10^{3}$$

$$= 23.2 \times 10^{2}$$

$$= 2320. \times 10^{0}$$

$$= 232000. \times 10^{-2}$$

- lt is desirable for each number to have a unique representation => Normalized Form
- \blacktriangleright We normalize Mantissa's in the Range [1..R), where R is the Base, e.g.:
 - ► [1..2) for BINARY
 - ► [1..10) for DECIMAL

Floating-Point Representation

• Normal format: +1.xxx...x_{two}*2^{yyy...y}two

- S represents Sign
- Exponent represents y's
- Significand represents x's
- Represent numbers as small as 2.0 x 10⁻³⁸ to as large as 2.0 x 10³⁸

Floating-Point Representation (FP32)

- IEEE 754 Floating Point Standard
 - Called **Biased Notation**, where bias is number subtracted to get real number
 - IEEE 754 uses bias of 127 for single prec.
 - Subtract 127 from Exponent field to get actual value for exponent
 - 1023 is bias for double precision

 Summary (single precision, or fp32): 									
31 30 23	<u>0</u>								
S Exponent	Significand								
1 bit 8 bits	23 bits								
• (-1) ^S x (1 + Significand) x 2 ^(Exponent-127)									

Floating-Point Representation (FP16)

- IEEE 754 Floating Point Standard
 - Called Biased Notation, where bias is number subtracted to get real number
 - IEEE 754 uses bias of 15 for half prec.
 - Subtract 15 from Exponent field to get actual value for exponent

```
• Summary (half precision, or fp15):

15 15 10 9 0

S Exponent Significand

1 bit 5 bits 10 bits

• (-1)<sup>S</sup> x (1 + Significand) x 2<sup>(Exponent-15)</sup>
```


Question:

What is the IEEE single precision number 40C0 0000_{16} in decimal?

Question:

What is -0.5 $_{10}$ in IEEE single precision binary floating point format?

Fixed-Point Arithmetic

c - 1 7 - 0

- Integers with a binary point and a bias
 - "slope and bias": y = s*x + z
 - Qm.n: m (# of integer bits) n (# of fractional bits)

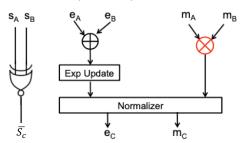
	5 – 1, 2 – 0				5 - 1/4, 2 - 0			5 – 4, 2 – 0				5 - 1.5, 2 -10			
2^2	2^1	2^0	Val	2^0	2^-1	2^-2	Val	2^4	2^3	2^2	Val	2^2	2^1	2^0	Val
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.5*0 +10
0	0	1	1	0	0	1	1/4	0	0	1	4	0	0	1	1.5*1 +10
0	1	0	2	0	1	0	2/4	0	1	0	8	0	1	0	1.5*2 +10
0	1	1	3	0	1	1	3/4	0	1	1	12	0	1	1	1.5*3 +10
1	0	0	4	1	0	0	1	1	0	0	16	1	0	0	1.5*4 +10
1	0	1	5	1	0	1	5/4	1	0	1	20	1	0	1	1.5*5 +10
1	1	0	6	1	1	0	6/4	1	1	0	24	1	1	0	1.5*6 +10
1	1	1	7	1	1	1	7/4	1	1	1	28	1	1	1	1.5*7 +10

 $c = 1/\Lambda \quad z = 0$ $c = \Lambda \quad z = 0$

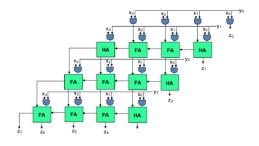
c = 1 5 7 = 10

Hardware Implications

Multipliers



Floating-point multiplier



Fixed-point multiplier

Overview

Fixed-Point Representation

Non-differentiable Quantization

Differentiable Quantization

Reading Lis

Greedy Layer-wise Quantization¹

Quantization flow

For a fixed-point number, it representation is:

$$n = \sum_{i=0}^{bw-1} B_i \cdot 2^{-f_l} \cdot 2^i,$$

where bw is the bit width and f_l is the fractional length which is dynamic for different layers and feature map sets while static in one layer.

▶ Weight quantization: find the optimal f_l for weights:

$$f_l = \arg\min_{f_l} \sum |W_{float} - W(bw, f_l)|,$$

where W is a weight and $W(bw,f_l)$ represents the fixed-point format of W under the given bw and f_l .

¹Jiantao Qiu et al. (2016). "Going deeper with embedded fpga platform for convolutional neural network". In: *Proc. FPGA*, pp. 26–35.

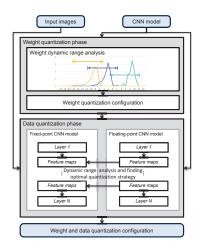
Greedy Layer-wise Quantization

Quantization flow

Feature quantization: find the optimal f_l for features:

$$f_l = \arg\min_{f_l} \sum |x_{float}^+ - x^+(bw, f_l)|,$$

where x^+ represents the result of a layer when we denote the computation of a layer as $x^+ = A \cdot x$.



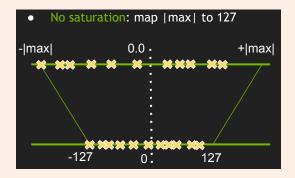
Dynamic-Precision Data Quantization Results

Network				VG	G16			
Data Bits	Single-float	16	16	8		8	8	8
Weight Bits	Single-float	16	8	8		8	8	8 or 4
Data Precision	N/A	2-2	2-2	Impo	ossible	2-5/2-1	Dynamic	Dynamic
Weight Precision	N/A	2-15	2-7	Impossible		2-7	Dynamic	Dynamic
Top-1 Accuracy	68.1%	68.0%	53.0%	Impossible		28.2%	66.6%	67.0%
Top-5 Accuracy	88.0%	87.9%	76.6%	Impossible		49.7%	87.4%	87.6%
Network		CaffeNet			V	GG16-SVD		
Data Bits	Single-float	16	8		Single	-float	16	8
Weight Bits	Single-float	16	8		Single-	float	16	8 or 4

Data Bits	Single-float	16	8	Single-float	16	8
Weight Bits	Single-float	16	8	Single-float	16	8 or 4
Data Precision	N/A	Dynamic	Dynamic	N/A	Dynamic	Dynamic
Weight Precision	N/A	Dynamic	Dynamic	N/A	Dynamic	Dynamic
Top-1 Accuracy	53.9%	53.9%	53.0%	68.0%	64.6%	64.1%
Top-5 Accuracy	77.7%	77.1%	76.6%	88.0%	86.7%	86.3%

Industrial Implementations – Nvidia TensorRT

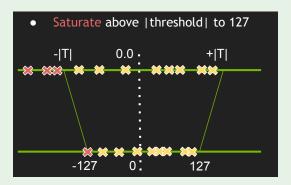
No Saturation Quantization – INT8 Inference



- ▶ Map the maximum value to 127, with unifrom step length.
- Suffer from outliers.

Industrial Implementations – Nvidia TensorRT

Saturation Quantization - INT8 Inference



- Set a threshold as the maximum value.
- Divide the value domain into 2048 groups.
- Traverse all the possible thresholds to find the best one with minimum KL divergence.

Industrial Implementations – Nvidia TensorRT

Relative Entropy of two encodings

- ▶ INT8 model encodes the same information as the original FP32 model.
- Minimize the loss of information.
- Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative entropy or information divergence).
 - P, Q two discrete probability distributions:

$$D_{KL}(P||Q) = \sum_{i=1}^{N} P(x_i) \log \frac{P(x_i)}{Q(x_i)}$$

Intuition: KL divergence measures the amount of information lost when approximating a given encoding.

Overview

Fixed-Point Representation

Non-differentiable Quantization

Differentiable Quantization

Reading Lis

Straight-Through Estimator (STE)²

- A straight-through estimator is a way of estimating gradients for a threshold operation in a neural network.
- ► The threshold could be as simple as the following function:

$$f(x) = \begin{cases} 1, & x \ge 0 \\ 0, & \text{else} \end{cases}$$

The derivate of this threshold function will be 0 and during back-propagation, the network will learn anything since it gets 0 gradients and the weights won't get updated.

²Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). "Estimating or propagating gradients through stochastic neurons for conditional computation". In: arXiv preprint arXiv:1308.3432.

PArameterized Clipping acTivation Function (PACT)³

- A new activation quantization scheme in which the activation function has a parameterized clipping level α .
- ► The clipping level is dynamically adjusted vias stochastic gradient descent (SGD)-based training with the goal of minimizing the quantization error.
- In PACT, the convolutional ReLU activation function in CNN is replaced with:

$$f(x) = 0.5 (|x| - |x - \alpha| + \alpha) = \begin{cases} 0, & x \in (\infty, 0) \\ x, & x \in [0, \alpha) \\ \alpha, & x \in [\alpha, +\infty) \end{cases}$$

where α limits the dynamic range of activation to $[0, \alpha]$.

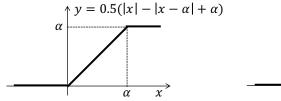
³Jungwook Choi et al. (2019). "Accurate and efficient 2-bit quantized neural networks". In: *Proceedings of Machine Learning and Systems* 1.

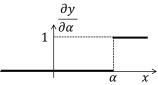
PArameterized Clipping acTivation Function (PACT)

► The truncated activation output is the linearly quantized to *k*-bits for the dot-product computations:

$$y_q = \text{round} \left(y \cdot \frac{2^k - 1}{\alpha} \right) \cdot \frac{\alpha}{2^k - 1}$$

- With this new activation function, α is a variable in the loss function, whose value can be optimized during training.
- For back-propagation, gradient $\frac{\partial y_q}{\partial \alpha}$ can be computed using STE to estimate $\frac{\partial y_q}{\partial \nu}$ as 1.

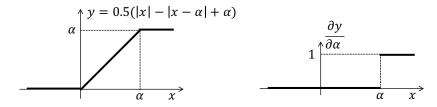




PACT activation function and its gradient.

Better Gradients

Is Straight-Through Estimator (STE) the best?



PACT activation function and its gradient.

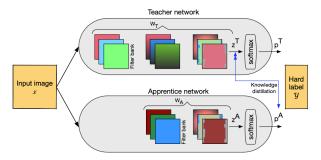
- Gradient mismatch: the gradients of the weights are not generated using the value of weights, but rather its quantized value.
- Poor gradient: STE fails at investigating better gradients for quantization training.

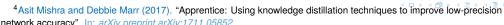
Knowledge Distillation-Based Quantization⁴

- Knowledge distillation trains a student model under the supervision of a well trained teacher model.
- ▶ Regard the pre-trained FP32 model as the teacher model and the quantized models as the student models.

$$\mathcal{L}(x; W_T, W_A) = \alpha \mathcal{H}(y, p^T) + \beta \mathcal{H}(y, p^A) + \gamma \mathcal{H}(z^T, p^A)$$
(1)

where, W_T and W_A are the parameters of the teacher and the student (apprentice) network, respectively, y is the ground truth, $\mathcal{H}(\cdot)$ denotes a loss function and, α , β and γ are weighting factors to prioritize the output of a certain loss function over the other.





Overview

Fixed-Point Representation

Non-differentiable Quantization

Differentiable Quantization

Reading List

Further Reading List

- Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy (2016). "Fixed point quantization of deep convolutional networks". In: Proc. ICML, pp. 2849–2858
- Soroosh Khoram and Jing Li (2018). "Adaptive quantization of neural networks". In: *Proc. ICLR*
- ▶ Jan Achterhold et al. (2018). "Variational network quantization". In: Proc. ICLR
- Antonio Polino, Razvan Pascanu, and Dan Alistarh (2018). "Model compression via distillation and quantization". In: arXiv preprint arXiv:1802.05668
- Yue Yu, Jiaxiang Wu, and Longbo Huang (2019). "Double quantization for communication-efficient distributed optimization". In: Proc. NIPS, pp. 4438–4449
- Markus Nagel et al. (2019). "Data-free quantization through weight equalization and bias correction". In: Proc. ICCV, pp. 1325–1334