LR(0) Parsers

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2022

Chinese University of Hong Kong

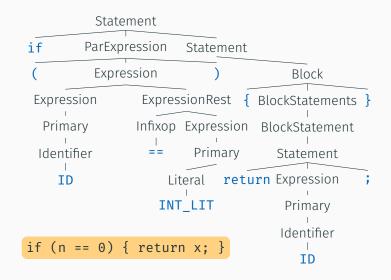
Parsing computer programs

First phase of javac compiler: lexical analysis

The alphabet of Java CFG consists of tokens like

$$\Sigma = \{\texttt{if}, \texttt{return}, (,), \{,\}, \texttt{;}, \texttt{==}, \texttt{ID}, \texttt{INT_LIT}, \dots\}$$

Parse tree of a Java statement



CFG of the java programming language

```
Identifier:
   IdentifierChars but not a Keyword or BooleanLiteral or
   NullLiteral
Literal:
   IntegerLiteral
   FloatingPointLiteral
   BooleanLiteral
   Character Literal
   StringLiteral
   NullLiteral
Expression:
   LambdaExpression
   AssignmentExpression
AssignmentOperator:
   (one of) = *= /= %= += -= <<= >>>= \&= ^= |=
                               from
```

https://docs.oracle.com/javase/specs/jls/se17/html/jls-2.html

Parsing Java programs

```
class Point2d {
   /* The X and Y coordinates of the point--instance variables */
   private double x:
   private double v;
   private boolean debug; // A trick to help with debugging
   public Point2d (double px, double py) { // Constructor
       x = px:
       v = pv:
       debug = false; // turn off debugging
   public Point2d () { // Default constructor
       this (0.0, 0.0);
                                      // Invokes 2 parameter Point2D constructor
   // Note that a this() invocation must be the BEGINNING of
   // statement body of constructor
   x = pt.getX();
      v = pt.getY();
```

Simple Java program: about 1000 tokens

Parsing algorithms

How long would it take to parse this program?

try all parse trees	$\geqslant 10^{80} \ \mathrm{years}$
CYK algorithm	hours

Can we parse faster?

CYK is the fastest known general-purpose parsing algorithm for CFGs

Luckily, some CFGs can be rewritten to allow for a faster parsing algorithm!

Hierarchy of context-free grammars

Java, Python, etc have LR(1) grammars

We will describe LR(0) parsing algorithm

A grammar is LR(0) if LR(0) parser works correctly for it

LR(0) parser: overview

$$S \rightarrow SA \mid A$$
 input: ()()
$$1 \bullet ()()$$

$$2 (\bullet)()$$

$$3 () \bullet ()$$

$$4 \quad A \bullet ()$$

$$5 \quad S \bullet ()$$

$$6 \quad S(\bullet)$$

$$A \quad A$$

$$A$$

$$A \quad A$$

$$A$$

$$A$$

$$A$$

$$A$$

$$A$$

$$A$$

$$A$$

$$A$$

$$A$$

LR(0) parser: overview

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid ()$

input: ()()

Features of LR(0) parser:

- · Greedily reduce the recently completed rule into a variable
- · Unique choice of reduction at any time

LR(0) parsing using a PDA

To speed up parsing, keep track of partially completed rules in a PDA ${\it P}$

In fact, the PDA will be a simple modification of an NFA N

The NFA accepts if a rule $B \to \beta$ has just been completed and the PDA will reduce β to B

$$... \Rightarrow 2 (\bullet)() \Rightarrow 3 () \bullet () \stackrel{\checkmark}{\Rightarrow} 4 \qquad A \bullet () \stackrel{\checkmark}{\Rightarrow} 5 \qquad S \bullet () \Rightarrow ...$$

$$() \qquad \qquad A \qquad \qquad ()$$

 \checkmark : NFA N accepts

NFA acceptance condition

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid ()$

A rule $B \rightarrow \beta$ has just been completed if

Case 1 input/buffer so far is exactly β

Case 2 Or buffer so far is $\alpha\beta$ and there is another rule $C \to \alpha B\gamma$

This case can be chained

Designing NFA for Case 1

$$S \rightarrow SA \mid A$$

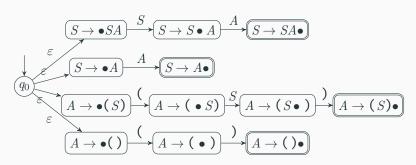
 $A \rightarrow (S) \mid ()$

Design an NFA $N\!\!\!/$ to accept the right hand side of some rule $B\to\beta$

Designing NFA for Case 1

$$S
ightarrow SA \mid A$$
 $A
ightarrow (S) \mid ()$

Design an NFA N' to accept the right hand side of some rule $B \to \beta$



Designing NFA for Cases 1 & 2

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid ()$

Design an NFA N to accept $\alpha\beta$ for some rules $C\to\alpha B\gamma,\quad B\to\beta$ and for longer chains

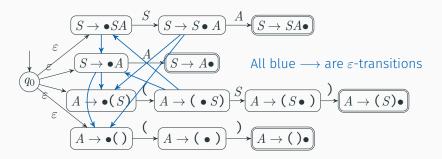
Designing NFA for Cases 1 & 2

$$S
ightarrow SA \mid A$$

 $A
ightarrow (S) \mid ()$

Design an NFA N to accept $\alpha\beta$ for some rules $C\to\alpha B\gamma,\quad B\to\beta$ and for longer chains

For every rule $C \to \alpha B \gamma$, $B \to \beta$, add $C \to \alpha \bullet B \gamma$ $\xrightarrow{\varepsilon} B \to \bullet \beta$



Summary of the NFA

For every rule
$$B \to \beta$$
, add
$$\xrightarrow{\varepsilon} B \to \bullet \beta$$

For every rule $B \to \alpha X\beta$ (X may be terminal or variable), add

$$\underbrace{B \to \alpha \bullet X\beta} \xrightarrow{X} \underbrace{B \to \alpha X \bullet \beta}$$

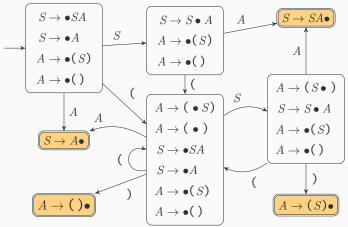
Every completed rule $B \to \beta$ is accepting $B \to \beta \bullet$

For every rule
$$C \to \alpha B \gamma$$
, $B \to \beta$, add
$$C \to \alpha \bullet B \gamma \xrightarrow{\varepsilon} B \to \bullet \beta$$

The NFA N will accept whenever a rule has just been completed

Equivalent DFA D for the NFA N

Dead state (empty set) not shown for clarity



Observation: every accepting state has only one rule: a completed rule, and such rules appear only in accepting states

LR(0) grammars

A grammar G is LR(0) if its corresponding D_G satisfies:

Every accepting state has only one rule: a completed rule of the form $B \to \beta \bullet$ and completed rules appear only in accepting states

Shift state:

no completed rule

$$S \to S \bullet A$$

$$A \to \bullet(S)$$

$$A \to \bullet()$$

Reduce state:

has (unique) completed rule

$$A \rightarrow (S) \bullet$$

Simulating DFA D

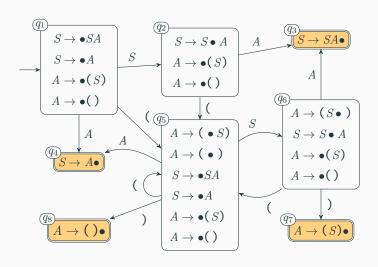
Our parser P simulates state transitions in DFA D

$$(()\bullet) \qquad \Rightarrow \qquad (A\bullet)$$

After reducing () to A, what is the new state?

Solution: keep track of previous states in a stack go back to the correct state by looking at the stack

Let's label *D*'s states



LR(0) parser: a "PDA" P simulating DFA D

P's stack contains labels of D's states to remember progress of partially completed rules

At D's non-accepting state q_i

- 1. P simulates D's transition upon reading terminal or variable X
- 2. P pushes current state label q_i onto its stack

At D's accepting state with completed rule $B o X_1 \dots X_k$

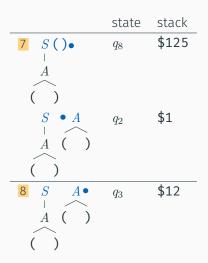
- 1. P pops k labels q_k, \ldots, q_1 from its stack
- 2. constructs part of the parse tree $X_1 \quad X_2 \quad \cdots \quad X_n$
- 3. P goes to state q_1 (last label popped earlier), pretend next input symbol is B

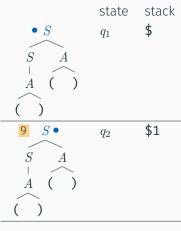
Example

	state	stack
1 •()()	q_1	\$
2 (•)()	q_5	\$1
3 ()•()	q_8	\$15
• A()	q_1	\$
()		
4 A•()	q_4	\$1
()		
• S()	q_1	\$
$\overset{\vdash}{A}$		
<u> </u>		

	state	stack
5 S • () A	q_2	\$1
6 S(•)	q_5	\$12
$ \begin{array}{c} S(\bullet) \\ A \\ \hline \end{array} $	4 5	Ψ12
-		

Example



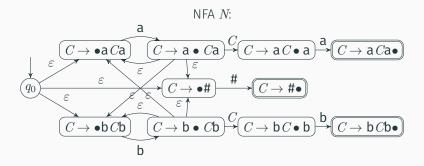


parser's output is the parse tree

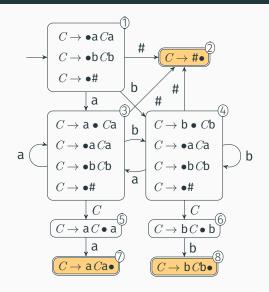
Another LR(0) grammar

$$L = \{ w \# w^R \mid w \in \{\mathsf{a},\mathsf{b}\}^* \}$$

$$C \to \mathsf{a} C \mathsf{a} \mid \mathsf{b} C \mathsf{b} \mid \#$$



Another LR(0) grammar



$C ightarrow a Ca \mid b Cb \mid \#$				
input: ba#ab				
state	action			
1	S			
4	S			
3	S			
2	R			
5	S			
7	R			
6	S			
	state 1 4 3 2 5 7			

\$146

R

Deterministic PDAs

PDA for LR(0) parsing is deterministic

Some CFLs require non-deterministic PDAs, such as

$$L = \{ww^R \mid w \in \{\mathsf{a},\mathsf{b}\}^*\}$$

What goes wrong when we do LR(0) parsing on L?

Example 2

 $L = \{ww^R \mid w \in \{a, b\}^*\}$

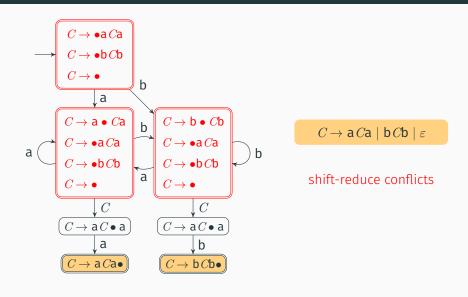
NFA
$$N$$
:

a

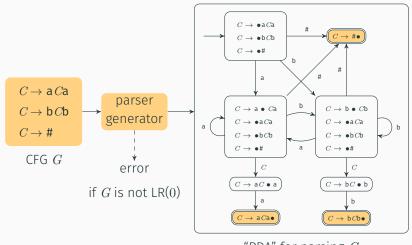
 $C \to \bullet a Ca$
 $C \to a \bullet Ca$
 $C \to a \bullet Ca$
 $C \to a C \bullet a$
 $C \to a C \bullet a C \bullet a$

 $C \rightarrow a Ca \mid b Cb \mid \varepsilon$

Example 2



Parser generator



"PDA" for parsing $\it G$

Motivation: Fast parsing for programming languages

LR(1) Grammar: a few words

LR(0) grammar revisited

LR(0) grammars

LR(0) parser: **L**eft-to-right read, **R**ightmost derivation, **0** lookahead symbol

$$S \rightarrow SA \mid A$$

 $A \rightarrow (S) \mid ()$

Derivation

$$S \Rightarrow SA \Rightarrow S() \Rightarrow A() \Rightarrow ()()$$

Reduction (derivation in reverse)

()()
$$\hookrightarrow$$
 A () \hookrightarrow S () \hookrightarrow SA \hookrightarrow S

LR(0) parser looks for rightmost derivation

Rightmost derivation = Leftmost reduction

Parsing computer programs

```
if (n == 0) { return x; }
```


Parsing computer programs

```
if (n == 0) { return x; }
            else { return x + 1; }
                     Statement
       ParExpression Statement
if
                                    else
                                              Statement
        Expression
     CFGs of most programming languages are not LR(0)
               LR(0) parser cannot tell apart
           if ...then from if ...then ...else
```

LR(1) grammar

LR(1) grammars resolve such conflicts by one symbol lookahead

States in NFA N

$$\begin{array}{c|c} \mathsf{LR}(0) \colon & \mathsf{LR}(1) \colon \\ A \to \alpha \bullet \beta & [A \to \alpha \bullet \beta, a] \end{array}$$

States in DFA ${\cal D}$

	LR(0):	LR(1):
shift-reduce conflicts	forbidden	some allowed
reduce-reduce conflicts	forbidden	some allowed
		if resolvable with
		lookahead symbol $\it a$

We won't cover LR(1) parser in this class; take CSCI 3180 for details