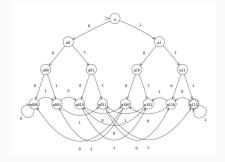
DFA Minimization, Pumping Lemma

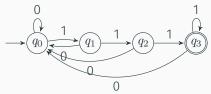
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2022

Chinese University of Hong Kong

L = strings ending in 111





Can we do it in 3 states?

Even smaller DFA?

L = strings ending in 111

Intuitively, needs to remember number of ones recently read

We will show

arepsilon, 1, 11, 111 are pairwise distinguishable by L

In other words

 $(\varepsilon,1),(\varepsilon,11),(\varepsilon,111),(1,11),(1,111),(11,111)$

are all distinguishable by L

Then use this result from last lecture:

If strings x_1, \ldots, x_n are pairwise distinguishable by L, any DFA accepting L must have at least n states

What do we mean by "1 and 11 are distinguishable"?

(x, y) are distinguishable by L if there is string z such that $xz \in L$ and $yz \notin L$ (or the other way round)

We saw from last lecture

If x and y are distinguishable by L, any DFA accepting L must reach different states upon reading x and y

Distinguishable strings

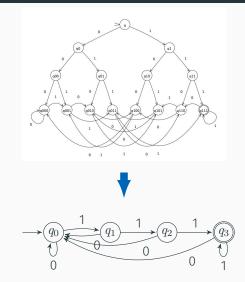
Why are 1 and 11 distinguishable by L? L = strings ending in 111 Take z = 1 $11 \notin L$ $111 \in L$

More generally, why are $\mathbf{1}^i$ and $\mathbf{1}^j$ distinguishable by L? $(0 \leqslant i < j \leqslant 3)$

Take $z = 1^{3-j}$ $1^{i}1^{3-j} \notin L$ $1^{j}1^{3-j} \in L$

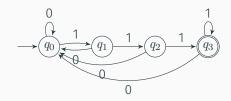
arepsilon, 1, 11, 111 are pairwise distinguishable by LThus our 4-state DFA is minimal

DFA minimization



We now show how to turn any DFA for L into the minimal DFA for L

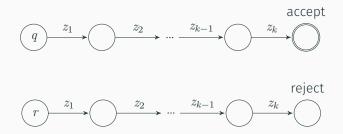
Minimal DFA and distinguishability



Distinguishable strings must be in different states Indistinguishable strings may end up in the same state

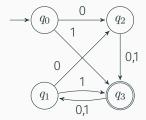
DFA minimial \Leftrightarrow Every pair of distinct states is distinguishable

Two states q and r are distinguishable if



on the same continuation string $z = z_1 \dots z_k$, one accepts, but the other rejects

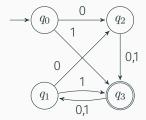
Examples of distinguishable states



Which of the following pairs are distinguishable? by which string?

 (q_0, q_3) (q_1, q_3) (q_2, q_3) (q_1, q_2) (q_0, q_2) (q_0, q_1)

Examples of distinguishable states



Which of the following pairs are distinguishable? by which string?

 (q_0, q_3) distinguishable by ε (q_1, q_3) distinguishable by ε (q_2, q_3) distinguishable by ε (q_1, q_2) distinguishable by 0 (q_0, q_2) distinguishable by 0 (q_0, q_1) indistinguishable

Examples of distinguishable states



Which of the following pairs are distinguishable? by which string?

 (q_0, q_3) distinguishable by ε (q_1, q_3) distinguishable by ε (q_2, q_3) distinguishable by ε (q_1, q_2) distinguishable by 0 (q_0, q_2) distinguishable by 0 (q_0, q_1) indistinguishable

indistinguishable pairs can be merged

Phase 1:

$$(q)\cdots \mathbf{X}\cdots (q')$$

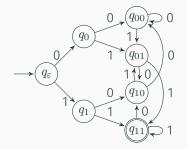
For each accepting q and rejecting q'Mark (q, q') as distinguishable (X)

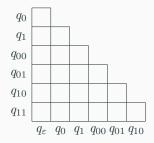
Phase 2:

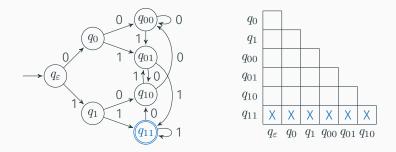
If
$$(q, q')$$
 are marked and
 $r \stackrel{a}{\rightarrow} q \quad r' \stackrel{a}{\rightarrow} q'$
Mark (r, r') as distinguishable (X

Phase 3:

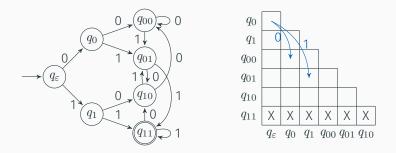
Unmarked pairs are indistinguishable Merge them into groups



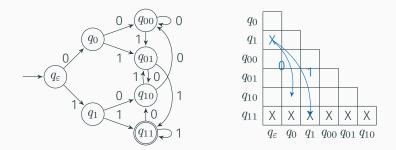




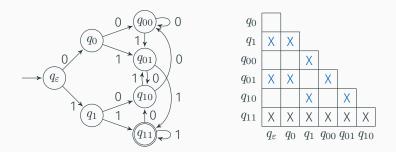
(Phase 1) q_{11} is distinguishable from all other states



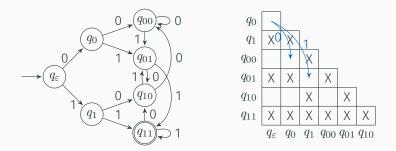
(Phase 2) Looking at $(r, r') = (q_{\varepsilon}, q_0)$ Neither (q_0, q_{00}) nor (q_1, q_{01}) are distinguishable



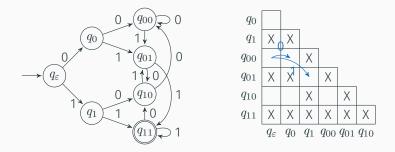
(Phase 2) Looking at $(r, r') = (q_{\varepsilon}, q_1)$ (q_1, q_{11}) is distinguishable



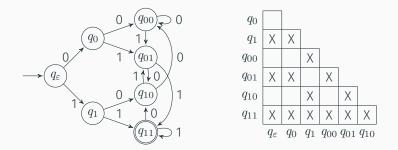
(Phase 2) After going through the whole table once Now we make another pass



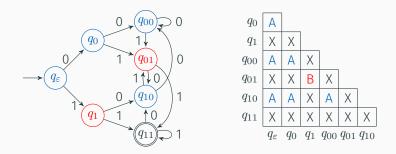
(Phase 2) Looking at $(r, r') = (q_{\varepsilon}, q_0)$ Neither (q_0, q_{00}) nor (q_1, q_{01}) are distinguishable



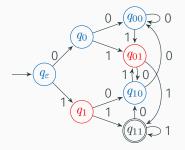
(Phase 2) Looking at $(r, r') = (q_{\varepsilon}, q_{00})$ Neither (q_0, q_{00}) nor (q_1, q_{01}) are distinguishable



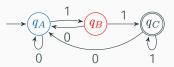
 (Phase 2) Nothing changes in the second pass Ready to go to Phase 3
 Now every unmarked pair is indistinguishable



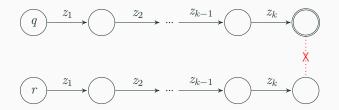
(Phase 3) Merge indistinguishable states into groups (also known as equivalence classes)



q_0	Α					
q_1	Х	Х				
q_{00}	Α	А	Х			
q_{01}	Х	Х	В	Х		
q_{10}	Α	А	Х	Α	Х	
q_{11}	Х	Х	Х	Х	Х	Х
	q_{ε}	q_0	q_1	q_{00}	q_{01}	q_{10}

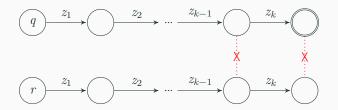


Why have we found all distinguishable pairs?



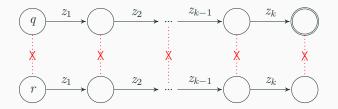
Because we work backwards

Why have we found all distinguishable pairs?



Because we work backwards

Why have we found all distinguishable pairs?



Because we work backwards

Pumping Lemma

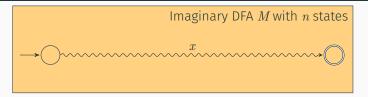
Another way to show some language is irregular

Example

 $L = \{0^n 1^n \mid n \ge 0\}$ is irregular

We reason by contradiction: Suppose we have a DFA *M* for *L* Something must be wrong with this DFA *M* must accept some strings outside *L*

Towards a contradiction

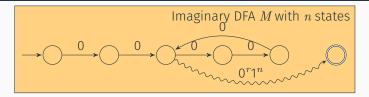


What happens when M gets input $s = 0^{n}1^{n}$?

 $M \text{ accepts } s \text{ because } s \in L$ $M \text{ has } n \text{ states, it must revisit one of its states while reading } 0^n$

(i.e. first *n* symbols of *x*)

Towards a contradiction



What happens when M gets input $s = 0^{n}1^{n}$?

M accepts s because $s \in L$

M has n states, it must revisit one of its states while reading 0^n (i.e. first n symbols of x)

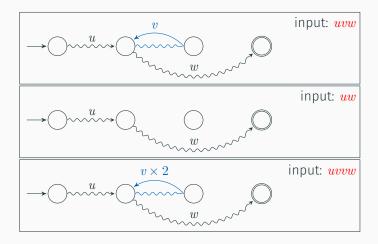
The DFA must contain a cycle consisting of 0's

M will also accept strings that go around the cycle multiple times But such strings have more 0s than 1s and cannot be in *L*

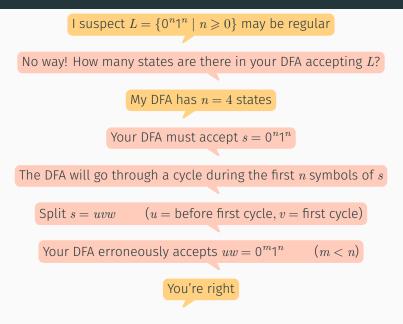
Copy & pasting the cycle yields accepting paths

Split s into uvw

u = before the first cycle v = first cycle w = the rest



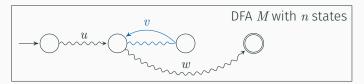
Proof structure



Pumping lemma for regular languages

For every regular language L, there exists a number n such that for every string $s \in L$ longer than n symbols, we can write s = uvw where

- 1. $|uv| \leq n$
- 2. $|v| \ge 1$
- 3. For every $i \ge 0$, the string $uv^i w$ is in L



n = number of states in imaginary DFA M for L

i = number of times to go around the first cycle

For every regular language L, there exists a number n such that for every string $s \in L$ longer than n symbols, we can write s = uvw where

- 1. $|uv| \leq n$
- 2. $|v| \ge 1$
- 3. For every $i \ge 0$, the string $uv^i w$ is in L

To show that a language L is irregular we need to find arbitrarily long s in Lso that no matter how the lemma splits s into u, v, w (subject to $|uv| \le n$ and $|v| \ge 1$) we can find $i \ge 0$ such that $uv^iw \notin L$

$L_2 = \{ 0^m 1^n \mid m > n \ge 0 \}$

- 1. For any n (number of states of an imaginary DFA accepting L_2)
- 2. There is a string $s = 0^{n+1}1^n$ in L_2
- 3. Pumping lemma splits s into uvw $(|uv| \leq n \text{ and } |v| \geq 1)$
- 4. Choose i = 0 so that $uv^i w \notin L_2$

Example: 00000011111