CCIT4076 ENGINEERING AND INFORMATION SCIENCE

LABORATORY 3: AUDIO SIGNAL PROCESSING
HKU SPACE Community College, Fall 2022

1 Audible Range
In this laboratory we are going to perform audio signal processing on Octave. Recall that audio
signals admit frequencies ranging from 20Hz to 20kHz. Any monotonic sinusoid

x(t) = Asin(2 r fy t)

with 20 < f; < 20000 can be heard in principle. This is merely an oversimplification. We will
demonstrate your audible range in this section. Let us synthesize a T second 300 Hz sinusoid with

the following command lines:

>> fs = 2*44100; T = 3;
>> t = 0:1/£s:T;

> A = 0.1;

>> f£f0 = 300;

>> x = A*sin (2*pi*f0*t);

One may visualize the signal by using plot (t, x). As a sound is meant to be heard, let us ask

Octave to generate the sound by the command line:

>> sound(x, fs);

This shall produce a monotonic audio track buzzing from your speaker. Your task here is to
complete the following table by listening to different frequencies given different amplitudes. Put a

tick on the cell only if you can hear the tone clearly.

A\f 5Hz 10Hz 50Hz 100Hz 1kHz 10kHz | 15kHz | 20kHz | 25kHz
0.01
0.1
1
10

Sketch the graph of f; versus smallest A to visualize your audible range.

2 Music Synthesis

Next, we will create a bank of music notes of the C4 major and hence synthesize classical music
from scratch. In coherence to lecture notes 4, below captures the frequencies corresponding to the

music notes in the C4 major:

COPYRIGHT @ BY W.-Y. KEUNG 2022 1

Note C4 D4 E4 F4 G4 A4 B4
Frequency | 261.6256 293.6648 329.6276 349.2282 391.9954 440.0000 493.8833

Make use of the techniques learnt in Section 1 to create a 1/2 second long note for cach of these
notes. In other words, you need to create a total of seven 1/2 second long signals. You may name

them as x 1, x2, ..., x respectively. Fina]ly, create a huge array

X=[x1, x2, x3, x4, x5, x 6, x 7],

to serve as your bank of music notes. Next, you may save the array X as a .wav file on your computer

by the command line:

>> audiowrite (‘music notes.wav’, X, fs);

You may now se¢ a new file appearing in your Working directory. If you open that file by using any

music player, that’s exactly what you heard by typing sound (x, £s) in the command window!

We take one step further to create our own music frame. Let us take a classic Ode to Joy as written

by Beethoven as an example. The note sequence
E4-E4-F4-G4-G4-F4-E4-D4-C4-C4-Dg-E4-E4-Dg-Dy

can store this into another array Joy = [x 3, x 3, x 4, x5, ...].Youshould be able to hear
the classic upon completion of the array. Using this technique, you are now able to create any music

frame you want.

We have learnt this powerful tool for music synthesis. However, we have left another essential
component of music untouched: beat. Do you have any idea on how to create music notes with

different beats?
3 Filtering

In the lectures we have discussed the filtering processes. In particular, we mentioned that there are

three types of common filtering:

1. Low-pass filtering allows low frequencies to be kept at the output, and stops high frequency
components to pass through the filcer.

2. High-pass filtering is the exact contradiction of low-pass filtering, it erases low-pass (or
baseband) components and only keeps high frequencies.

3. Band-pass filtering involves a specific type of filter that allows only a designated frequency

range to pass through.

Roughly speaking, an ideal filter can be described by the equation

COPYRIGHT @ BY W.-Y. KEUNG 2022 2

H(f) = {1 i fo < S < S

0 otherwise.
where the frequency range [f,, fu] is the pass-band. This description deems to be describing
band—pass filters (BPF) at the first giance, but one may set fi=0 for 10W—pass filcers (LPF); or
similarly f; = oo for high-pass filters (HPF).

In this section we are going to perform realistic filtering on Octave to give you some feelings on
what filtering offers. Rigorously speaking, the training of the filtering process involves some more
sophisticated mathematics and programming skills. Considcring the course nature of CCIT 4076 as
a freshman course, we have built an Octave function EIS Filter.m — in which we have done all
the dirty work behind while providing you with the necessary degree of freedom to play with
ﬁltering.

The usage of the function is straightforward. Suppose the target signal is stored in the array x and

the sampling frequency is £s, then the command:

>> y = EIS Filter(x, fs, f1l, fh);

where the variable fl stores the frequency fl and th stores th, shall recurn an array y as the filcered
signal. The function will also plot the spectrum of the input signal, filter and output signal
respectively. As a toy demo, suppose I have stored the classic Ode to Joy as built in Section 2 in the

array Jo Y, ti’lCl’l thC Command sequence:

>> f1 = 0; fh = 340;
>> y = EIS Filter(x, fs, fl, fh);

will result in a low-pass filtered version of the audio. Ideally speaking, all signals higher than 340Hz
will then be erased, ic. all “Fa” notes and “Sol” notes are blocked. However, since the filtering
process here is a practical one, we observe that there are some “Fa” notes remaining in the filcered
output, despite the fact that they are attenuated. This is shown in the subsequent figure. If you
listen to the filtered output y, you will notice that some weak “Fa” notes but all the “Sol” notes are

eliminated. This agrees with our observation on the output spectrum.

COPYRIGHT @ BY W.-Y. KEUNG 2022 3

100

Input Signal Spectrum

50 [-
i) | | | |
] 100 200 300 400 500 600
fiHz
1.5 T
[15]
w
5 1+ s e -
j= R
w
[+5]
[l
05 =
=
o | | 1 | | |
0 100 200 300 400 500 600
fiHz
£ T
=
5
2 100 g
[42]
@
|
[=)]
n S0 |
5
L
o |
o I I I | I
0 100 200 300 400 500 600
fiHz

Figure: Function Output of running EIS_Filter on Joy.

Top: Input spectrum. Middle: Designcd Filter. Bottom: Filtered Output.

COPYRIGHT @ BY W.-Y. KEUNG 2022

