CCIT4076: Engineering and Information Science

Solution to Demo Midterm Exam

Instructor: Wai-Yiu Keung

Solution 1.

- (a) $R_{eq} = ((6||2) + 8)||3 = 9.5||3 = 2.28\Omega$
- (b) The respective KVL/KCL equations are:

$$10 = 8(i_A - i_B) + 6(i_A - i_C)$$

$$6(i_A - i_C) = 2(i_C - i_B) + 4$$

$$3i_B = 8(i_A - i_B) + 2(i_C - i_B)$$

The linear system can be re-written as:

$$10 = 14i_A - 8i_B - 6i_C$$

$$4 = 6i_A + 2i_B - 8i_C$$

$$0 = 8i_A - 13i_B + 2i_C$$

which can be solvable once we cast it into matrix-vector form:

$$\begin{bmatrix} 10\\4\\0 \end{bmatrix} = \begin{bmatrix} 14 & -8 & -6\\6 & 2 & -8\\8 & -13 & 2 \end{bmatrix} \begin{bmatrix} i_A\\i_B\\i_C \end{bmatrix}$$

Solving the above equations reveals $(i_A, i_B, i_C) = (2.7368, 2.0000, 2.0526)$ ampere.

(c) This can be done by the following lines of codes:

and the values will be stored in the array x.

(d) In (a), p = 0; and in (b), $p = (-i_C)(4) = -8.2105$ watts.

Solution 2.

- (a) Everyone has their own g(t). We will stick with the above example g(t) in subsequent discussions.
- (b) The sketch is straightforward:

Fall 2022

(c) For g(t) to be fully audible, we need all its spectral content to be contained within [20, 20k] hertz. Equivalently, we need

 $f_0 \ge 20$; and $7f_0 \le 20k$ \iff $20 \le f_0 \le 2.8571k$.

(d) This can be done by the following lines of codes:

1 f0 = 100; T = 1/f0; 2 t = linspace(0, 2*T, 1e6); 3 g = (4/3)*sin(2*pi*f0*t) + (3/2)*sin(2*pi*4*f0*t) + ... (1/2)*sin(2*pi*7*f0*t); 4 plot(t, g);

Solution 3.

(a) We can write $g(t) = 2\sin(2\pi 300t) + 2\sin(2\pi 500t)$ and the frequency domain representation is:

(b) From the filter's response, it is obvious that

$$H(f) = \begin{cases} f/W & f < W\\ 1, & f \ge W \end{cases}$$

and thus when W = 1000 we are able to find

$$H(300) = 300/1000 = 0.3;$$
 $H(500) = 500/1000 = 0.5.$

(c) We can write

$$y(t) = H(300) \cdot 2\sin(2\pi 300t) + H(500) \cdot 2\sin(2\pi 500t) = 0.6\sin(2\pi 300t) + \sin(2\pi 500t)$$

and the frequency domain representation is:

(d) The effect can be compensated by the following filter/equalizer:

- THE END -