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 1.  Introduction 
 
As hardware is becoming more and more cheap and powerful, software is becoming 
more and more complex and important  in computer-based  information system. So-  
ftware reliability is probably the most important of the characteristics inherent in the 
concept "software quality." What is software reliability?  We concerns it  with how 
well the software functions to meet the  requirements of  the customer.   The IEEE 
defines it as : software reliability is the probability of failure-free operations of 
a computer program for a specified time in a specified environment [1]    There  
are several relative basic concepts: 
    
Failure: It is the departure of the external results of program operation from require- 
              ments. 
"Failure" is something dynamic. The program has to be executing for a failure to 
occur 
Fault: It is the defect in the program that, when executed under particular conditions, 
           causes a failure. The cause of the failure or the internal error is said to be a   
           fault. It is also referred as a bug. 
"Fault" is a property of the program rather than a property of its execution or behavior 
A fault is created when a programmer makes an error. 
Time: Reliability quantities are defined with respect to time, although it would be po- 
           ssible to define them with respect to other variables. We are concerned with 
           three kinds of time: the execution time for a software is the CPU time that is 
           actually spent by the computer in executing the software; the calendar time 
           is the time people normally experience in terms of years, months, weeks, days, 
           etc.; and the clock time  is the elapsed time from start  to end  of  computer 
           execution in running the software. 
   There are four general ways of characterizing failure occurrences in time: 
            1). time of failure, 
            2). time interval between failures, 
            3). cumulative failures experienced up to a given time, 
            4). failures experienced in a time interval. 
 
Failure functions: When a time basis is determined, failures can be expressed in 
     several ways: the cumulative failure function,  the failure intensity function, 
     the failure rate function. The cumulative failure function (also called the mean 
     value function) denotes the average cumulative failures associated with each point 
     of time. The failure intensity function represents the rate of change of the cumu- 
     lative failure function. The failure rate function is defined as the probability that 
     a failure per unit time occurs in the interval  [t,  t+∆t],  given that a failure has not 
     occurred before t. In this paper we shall use failure rate functions to simulate the 
     software execution and get the cumulative failures of it.  Appendix B of  [2] pro- 
     vides the mathematics of these functions in details. 
Failure data collection: Two types of failure data, namely failure-count data and 
     time-between-failures data, can be collected for the purpose of software reliabi- 
     lity measurement. They are illustrated in Table 1.1 and 1.2. 
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  TABLE 1.1 Failure-Count Data 
__________________________________________________________ 
    Times (days)             Failures in the period         Cumulative failures 
___________________________________________________________ 
         8                                          4                                        4 
        16                                         4      8 
        24                                        3                                        11 
        32                                        5                                        16 
        40                                        3                                        19 
        48                                        2                                        21 
        56                                        1                                        22 
        64                                        1                                        23 
        72                                        1                                        24 
_________________________________________________________ 
 
 
TABLE 1.2 Time-Between-Failures Data 
_______________________________________________________ 
  Failure number         Failure interval(days)       Failure times(days) 
_______________________________________________________ 
        1                                 0.5                                    0.5 
        2                                 1.2                                    1.7 
        3                                 2.8                                    4.5 
        4                                 2.7                                    7.2 
        5                                 2.8                                    10.0 
        6                                 3.0   13.0 
        7          1.8              14.8  
        8                     0.9                                    15.7 
        9                                 1.4   17.1 
       10                                3.5   20.6 
       11          3.4   24.0 
       12          1.2                                    25.2 
       13                                0.9                                    26.1 
       14                                1.7                                    27.8 
       15                                1.4                                    29.2 
       16                                2.7                                    31.9 
       17                                3.2                                    35.1 
       18                                2.5   37.6 
       19                                2.0                                    39.6 
       20                                4.5                                    44.1 
       21                                3.5       47.6 
       22                                5.2                                    52.8 
_______________________________________________________ 
 
In this paper we shall use the first kind of data. 
 
2. Software reliability modeling 
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2.1. General Information 
 
One particular aspect of  SRE(Software Reliability Engineering) that has received 
the most attention is software reliability modeling. There are many models have  
been proposed by researchers since 1970s. In this section we give a general classi- 
fication about software reliability model, and describe three models, they are: 
Goel-Okumoto model, S-shaped model and Jelinski-Moranda model. The former 
two belong NHPP (Nonhomogeneous Poisson Process) type model, the latter is a 
markov kind model. We will give the simulate results and comparison of a practical  
switching system software for the three models. 
A software reliability model describes software failures as a random process, which 
is characterized in either times of failures or the number of failures at fixed times. 
We denote by Ti and Ti

' the random variables representing times to the ith failures 
and between the (i-1)th and ith failures, respectively. The realizations of Ti and Ti

' 
will be denoted by ti and ti

' , respectively. Time can be specified in either calendar 
time, the actual chronological period, or execution time, the processor (CPU) time 
accumulated. Sometimes clock time is used as an approximation to execution time. 
Let N(t) be a random process representing the number of failures experienced by 
time t. The realization of this random process will be denoted n(t). Then µ(t),  the 
mean value function, is defined as µ(t)=E[N(t)], which represents the expected nu- 
mber of failures at time t. The function µ(t) will be nondecreasing and is assumed 
to be a continuous and differentiable function of time t. The failure intensity function 
of the M(t) process is the instantaneous rate of change of the expected number of  
 failures with respect to time. It is defined by 

       
2.2. Nonhomogeneous Poisson Process (NHPP) M odels 
 
2.2-1. General assumptions 
  
   As a general class of well-developed stochastic process models in reliability 
engineering, NHPP models have been successfully used in studying hardware 
reliability problems. NHPP models are especially useful to describe failure pr- 
ocessess which possess certain trends such as reliability growth or deterioration. 
   Application of NHPP models to software reliability analysis is then easily im- 
plemented. The cumulative number of software failures up to time t, N(t), can 
be described by a NHPP and many existing software reliability models also 
belong to this class. 
  For the counting process { N(t),t≥0}  modelled by NHPP, N(t) follows a Poisson 
 distribution with parameter m(t), that is, the probability that N(t) is a given integer 
n is expressed by 

   In the above m(t) is called the mean value function.  The function m(t) describes 
The expected cumulative number of failures in [0,t). Hence, m(t) is a very useful 
descriptive measure of the failure behaviour. 
    The underlying assumptions of the NHPP are: 
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(1) N(0)=0, 
(2) { N(t),t≥0}  has independent increments, 
(3) P{ [N(t+h)-N(t)]=1} =λ(t)+o(h), 
(4) P{ [N(t+h)-N(t)≥2} =o(h). 
 
 

      In the above o(h) denotes a quantity which tends to zero for small h. The function 
λ(t) which is called the instantaneous failure intensity is defined as: 
                   

    
  Given λ(t), the mean value function µ(t)=E[N(t)] satisfies 

  
Inversely, knowing µ(t) , the failure intensity at time t can be obtained as 

 
 Generally, by using different nondecreasing functions µ(t), we get different NHPP 
models. In the most simple case for which λ(t) is constant, the NHPP become a 
homogeneous Poisson process which has a mean value function as µ(t)=αt. 
      
Due to the great variability of the mean value functions, NHPP models have been 
widely studied in the literature. The most well-known NHPP model is the model 
studied in [3] which later on, has been further generalized and modified by many 
researchers in order to improve the goodness-of-fit to real software failure data. 
 
 2.2-2. The Goel-Okumoto (GO) model 
  
 The general assumptions of the GO-model are: 
(1) The cumulative number of faults detected at time t follows a Poisson distribution. 
(2) All faults are independent and have the same chance of being detected. 
(3) All detected faults are removed immediately and no new faults are introduced. 
 
 Specially, the GO-model assumes that the failure process is modeled by an NHPP 
 model with mean value function µ(t) given by 

                                          
Where a and b are parameters to be determined by using collected failure data.  
 Note that for this model we have 
                                       µ(∞)=a and µ(0)=0. 
Since µ(∞) is the expected number of faults which will eventually be detected, the 
parameter a is then the final number of faults that can be detected by the testing  
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process. The quantity b which is a constant of proportionality, can be interpreted  
as the failure occurrence rate per fault. 
 
The intensity function λ(t) defined as the derivative of µ(t) is then 
 

       
 The expected number of remaining faults at time t, may then be calculated as follows 
                                        

  
     Hence, the expected number of remaining faults E[N(t)] is an exponentially 
  Decreasing function of t, as Figure 2.1 shown. 
 
                                             

0 t 
 
            Figure 2.1. The shape of the intensity function and the mean value function 
                               Of the GO-model. 
 
 
2.2-3. S-shaped NHPP model 
 The mean value function of the GO-model is exponential-shaped. Based on the 
experience, it is observed that the curve of the cumulative number of faults is often 
S-shaped relatively to the exponential-shaped mean value function which means 
that the curve crosses the exponential curve from below and the crossing occurs   
once and only once. A number of generalizations or modifications are thus proposed   
by Japanese researchers, see [4] and [5] where some heuristic reasons of the occu-  
 rrence of  S-shapedness are also provided. 
Generally, the S-shapedness can be explained by the fact that faults are neither inde- 
pendent nor of the same size. At the beginning of the testing, some faults are  
 by other faults "covered" and before these faults are detected and removed, the 
covered faults can not be detected. Hence, removing a detected fault at the beginning 
does not decrease the failure intensity very much since the same test data will still 
lead to a failure caused by other "covered" faults. In a later phase, large faults are 
already removed and the remaining faults have small size so that the fault detection 

btabe
dt

td
t −== )(
)(

µλ

)} ,()({)}({
_

tNNEtNE −∞=

.)1()()()({
_

btbt aeeaattNE −− =−−=−∞= µµ

 

µ(t) 

λ(t) 



 6

rate is of moderate size. Also because there are not many faults left in the software, 
the coverage has no significant effect at the end of testing phase. Another reason of 
the S-shaped behavior is that: The software reliability testing usually involves a 
learning process by which people become familiar with the software and the test 
tools. Their skills improve gradually and test effectiveness also increases. Hence, 
there is a tendency that the cumulative number of failures have a S-shaped form  
which implies that the increase of the reliability at the beginning is only of modest 
size due to the low test effectiveness, then the reliability increase quickly and later 
the improvement slows down again since most of the faults are already removed. 
 Figure 2.2 is the comparison of S-shaped model and GO-model 
             µ(t)  

            0                                           t 
            
          Figure 2.2. The S-shaped failure intensity function 
 
     Several different S-shaped NHPP models have been proposed in the existing 
literature, especially by Japanese researchers. The most well-known ones are the 
delayed S-shaped NHPP model and the inflected S-shaped NHPP model. 
 
The mean value function of the delayed S-shaped NHPP model is 
                µ(t)=a[1-(1+bt)e-bt];   b>0. 
This is a two parameter S-shaped curve with parameter a denoting the number of 
Faults to be detected and b corresponding to a failure detection rate. The correspo- 
nding  failure rate function of this delayed S-shaped NHPP model is 

 
The expected number of remaining faults E[N(t)] at time t is then 
                 µ(∞)-µ(t)=a-a[1-(1+bt)e-bt]=a(1+bt)e-bt. 
 
Another general model of this kind is called inflected S-shaped model, it was  
proposed in [6] by Schagen in 1987. In this model the expected number of faults  
detected by time t is modeled the following mean value function 

 
 
 In the above, α, λ1 and λ2 are the model parameters. It can be seen that if λ1= λ2, 
Then we have the limiting case 
             µ(t)=α[1-(1+λ1t)e
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which is the same as that for the delayed NHPP model with a=α and b=λ1. 
 
The mean value function of the inflected S-shaped NHPP model is 

 
In the above a is again the total number of faults to be detected while b and c are  
called the failure detection rate and the inflection factor, respectively. The intensity 
function of this inflected S-shaped NHPP model can easily be derived as follows, 

 
 Similarly, as for the delayed S-shaped NHPP model, we may obtain the expected 
 number of  remaining faults E[N(t)] at time t as follows 

Some heuristic arguments for this mean value function are presented in [4]. Using 
this mean value function, the parameters can be estimated from maximum likely 
method. 
     
 
2.3 M arkov M odels 
 
2.3-1 General assumptions 
 
Markov processes which are a general class of stochastic processes have been widely 
used and studied in reliability analyses. Many software reliability models also belong 
to this category. A Markov process is characterized by its state space together with 
the transition probabilities between these states. 
 
A stochastic process { X(t),t≥0}  is said to be a Markov process if its future  
Development depends only on the present state of the process, that is 
 
 P[X(t) ≥x(t)|X(t1) ≥x1,…,X(tn) ≥xn]=P[X(t) ≥x(t)|X(tn) ≥xn],  for all t1<t2…<t. 
 
The above property is generally called the Markov property which has the following 
simple explanation. Given the present state of the process, its future behavior is 
 independent of the past history of the process. This is the most important feature 
of a Markov process and although this needs not always be the case, it is a realistic  
simplification in many practical situations. 
  If the state space is discrete, a Markov process is also called the Markov chain. 
Define pij is the transition probability of the process between state i and state j, that 
is    pij(t+s)=P[X(t+s)=j|X(s)=i], s,t>0. 
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In general pij may depend on t as well as on s. If all pij , i,j>0, are independent of t, 
the Markov chain is called time-homogeneous. 
 
The most famous result of a homogeneous continuous-time Markov chain is that it 
satisfies the so-called Kolmogorov equations, that is 

The theory of Markov processes is well developed. The initial condition of the  
process together with the transition probabilities completely determines the sto- 
chastic behavior of the Markov process. Knowing the transition probabilities, 
the probability that the process is in a certain state can be obtained by solving the 
Kolmogorov equations, and other reliability measures can also be calculated. 
However, in order to get a mathematically tractable software reliability model, 
some further assumptions usually have to be made. 
 
Generally, each sojourn time interval for a Markov process, i.e. the time between 
two events, has an exponential distribution with the parameter dependent on the 
state being visited. Another property is that times between transitions are  
conditionally independent of each other given the successive states being visited.  
These properties together with the fact that the successive states visited form a 
Markov chain clarify the structure of a Markov process. Other standard results can 
be found in many elementary texts on stochastic processes. Also in many books on  
reliability Markov process models are discussed. 
 
The process { N(t), t≥0}  where N(t) is the number of events in a Markov process, 
such as the number of detected faults in a software context, is called a Markov 
counting process is the birth-death process for which a so-called birth increases 
the size of the process by one and a death decreases the size by one. 
   Figure 1.3 illustrates a realization of a Markov counting process 
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       Figure 2.3. Arealization of a Markov counting process { N(t), t≥0} . 
 
 
Markov models are very useful in studying software fault-removal processes, 
especially, they are useful during the software testing phase which is the most 
important one of software development. It is in this phase that software faults are 
detected and removed. The state of the process at time t is here the number of 
remaining faults at that time. The fault-removal process can usually be described 
by a so-called pure death process since the number of remaining faults is a decreasing 
function of time provided that no new faults due to incorrect debugging, the so-called 
birth-death processes can then be used in studying software reliability during the  
testing phase. 
  
 2.3-2. The Jelinski-M oranda (JM ) model 
 
The best-known software reliabilty model originally developed by Jelinski and 
Moranda is also a Markov process model. It is one of the earliest models and has 
strongly influenced many later models which are in fact modifications of this simple 
model.  
   Model assumptions and some properties, the underlying assumptions of the JM- 
model are: 
 
(1) the number of initial software faults is an unknown but fixed constant; 
(2) a detected fault is removed immediately and no new fault is introduced; 
(3) times between failures are independent, exponentially distributed random 

quantities; 
(4) all remaining software faults contribute the same amount to the software failure 

intensity. 
 
Denote by N0 the number of software faults in the software before the testing starts. 
By the assumption (3) and (4), the initial failure intensity is then equal to N0φ, where 
φ is a constant of proportionality denoting the failure intensity contributed by each  
fault. It follows from assumption (2) that, after a new fault is detected and removed,  
the number of remaining faults is decreased by one. Hence after kth failure, there are 
(N0-k) faults left, and the failure intensity decreases to φ(N0-k). 
 
Denote by TI, i=1,2,…, N0, the time between the (i-1):th and the i:th failures, Ti is 
thus the i:th failure-free time interval. By the assumptions, Ti's are then exponentially 
distributed random variables with parameter 
            λ(i)=φ[N0-(i-1)], i=1,2,…,N0. 
The distribution of Ti is given by 
 
         P(Ti<ti)=φ(N0-i+1)exp{ -φ(N0-i+1)ti} , i=1,2,…,N0. 

 

The main property of the JM-model is that the failure intensity is constant between 
the detection of two consecutive failures. This is quite reasonable if the software is 
unchanged and the testing is random and homogeneous. A plot of the failure intensity 
function versus the cumulative time is displayed in Figure 2.4. In Figure 2.5 a plot of 
λ(i) versus the number of detected faults i can be also found. 
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It should be pointed out here that this simple model has an order statistic explanation. 
Successive failure times constitute order statistics of N0 independent random variables 
From an exponential distribution with parameter φ. General order statistic models  
have been studied by many researchers, see e.g. [7],[8],[9] 
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     Figure 2.4. A realization of failure intensity as a function of time. 
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                   Figure 2.5. The failure intensity versus the number of removed faults 
 
2.4 Estimation of model parameters 
 
There are two practical methods of parameters estimation for software reliability  
models. They are maximum-likelihood (ML) and least-squares (LS). The most 
important and widely used formal estimation technique is ML, therefor, we give 
its details and an example here. About the least-squares approach, there are detailed 
description in [10] Page 351-364. 
   The foundation of the maximum-likelihood method is the likelihood function. 
The function is defined as the joint density of the observed data, L(β; YD). This, 
In turn, is considered to be a function of the unknown set of w+1 parameters, β. 
Here YD represents a set of observations. 
    Figure 2.5 illustrates a typical likelihood function when there is only one unknown 
Parameter (denoted βk). In this example a small value of L(βk; YD) for a particular βk 
could be interpreted to mean that observing YD is rare event. It is reasonable to prefer 
the value of βk which makes L(βk; YD) a maximum. That is, we would choose βk so 
that the observed data are more probable than for any other choice. Formalizing the  
notion, we have the definition of maximum likelihood estimators. For each data set, 
let ββββ be the values of the parameters that make L(βk; YD) as large as possible. These 
maximizing values will, of course, be functions of the data. The fuctions take on are  
known as the maximum likelihood estimates. Figure 2.5 shows the maximum likeli- 
hood estimate of βk as ββββk . 
 

  
        Figure 2.5 Typical likelihood function with only one unknown parameter. 
 

 
Likelihood L 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                          β            Parameter βk 
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  Maximum likelihood estimates can be obtained by solving the simultaneous equa- 
 tions (one for each βk) 

 
In practice it is customary and often more convenient to work with ln L(βk; YD) in- 
stead of L(βk; YD), the derivatives of both vanishing together. Thus, we will find our 
estimates by solving the simultaneous equations (which are called the maximum like- 
lihood equations) 

 
Generally the maximum likelihood equations are highly complicated and a numerical 
solution will be possible only with a computer. An excellent iterative procedure for 
carrying out the solution is given in  Appendix D of [10]. 
   Now we give the JM-model parameter estimation as an example 
 
The parameters of the JM-model may easily be estimated by using the method of 
maximum likelihood. Let ti denote the observed i:th failure-free time interval during 
the testing phase, that is ti is the observed time between the (i-1):th and the i:th failure 
The number of faults detected is denoted here by n which will be called the sample 
size. Suppose that the failure data set t={ t1,t2,….,tn;  n>0} ' is given, the parameters φ 
and N0 in the JM-model can easily be estimated by maximizing the likelihood  
function. The likelihood function of the parameters N0 and φ is given by 

 

 
The natural logarithm of the above likelihood function is 

 
By taking the partial derivatives of this log-likelihood function with respect to N0 
and φ, respectively, and equating them to zero, we get the following likelihood 

})1(exp{)1(),;,...,,( 0
1

0021 i

n

i
n tiNiNNtttL +−−+−= ∏

=

φφφ

} .)1(exp{)}1({
1 1

00∏ �
= =

+−−+−=
n

i

n

i
i

n tiNiN φφ

( ) ( ) � ���� � 	

��

+−−
� 	


��
+−= 
∏

==

n

i
i

n

i

n tiNiNL
1

0
1

0 1exp1lnln φφ

( ) ( ) i

n

i

n

n

n tiNiN �∏
==

+−−� ��
��

+−+=
1

0
1

0 11lnln φφ

( ) ( ) .11lnln
1

0
1

0 i

n

i

n

i

tiNiNn ��
==

+−−+−+= φφ

.,...,0,0
);(

wk
YL

k

D ==
∂

∂
β
β

.,...,0,0
);(ln

wk
YL

k

D ==
∂

∂
β
β



 13

equations 

 

 
 
Usually numerical procedures have to be used solve these two equations. However, 
the equation system can be simplified as follows. By solving φ from the second 
equation above we get 
 

 
and by inserting this into the first equation, we obtain an equation independent of φ, 
 

 
The estimate of N0 can then be obtained by solving this equation. Inserting the 
estimated N0 into the expression of φ, we may then get the maximum likelihood 
estimate of φ. 
 
2.5. General model characteristics and limitations 
 
Random Process 
 
A software reliability model, as previously noted, usually has the form of a random 
process that describes the behavior of failures with time. This is because both the 
human error process that introduces defects into code and run selection process that 
determines which code is being executed at any time are dependent on an enormous 
number of time-varying variables. The use of a random process model is appropriate 
for such a situation. Specification of the model generally includes specification of a 
function of time such as the mean value function (expected number of failures) or 
failure intensity. The parameters of the function are dependent on repair activity and 
program change and properties of the software product and the development process. 
Properties of the product include size, complexity, and structure. Properties of the 
development process include, among others, software engineering technologies and 
tools used and level of experience of personnel. The "time" involved in the character- 
ization of the models is a cumulative time. The origin may be arbitrarily set. It is 
frequently the start of system test. 
   Software reliability models almost always assume that failures are independent of 
each other. They may do this through assuming that failure times are independent of 
each other or by making the Poisson process assumption of independent increments. 
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This condition would appear to be met for most situations. Failures are the result of  
two processes: the introduction of faults and their activation through selection of the 
input states. Since both of these processes are random, the chance of influence on one 
failure by another is small. Influence would require two conditions. One fault would 
have to affect the introduction of another during development. Further, an input state 
that results in failure for the first fault would have to cause the selection of an input 
state that results in failure for the second fault. The independence conclusion is su- 
pported by a study of correlograms of failure data from 15 projects [11]. No signifi- 
cant correlation was found. 
   It is possible that the selection of runs could be planned or manipulated during test. 
The tester has at least partial control of the environment, and this could make random 
selection of input states a poor model. However, a random process is still a reasonable 
model of failure behavior. The introduction of faults into code and the relationship be- 
tween input state and code executed are usually both sufficiently complex process to 
make deterministic prediction of failure impractical. In other words, we can not predi- 
ct which input states are more likely to yield failures. Consequently, a deterministic 
selection of input states will not have a deterministic effect on reliability. Of course, 
if the relative frequencies of selection have changed, then the operational profile has 
changed and that will affect the reliability. 
   There is one case in which manipulation of the characteristics of the random process 
can occur. It requires that: 

(1) The relationship of program segments executed with respect to input state is 
Disjoint. 

  (2)  There are clear differences in fault density between different program segments. 
 

"Disjoint" means that each input state maps to a different set of program segments ex- 
ecuted and there are no program segments executed in common by different input  
states. The clear differences may occur when some segments may be tested code from 
previous programs and some may be newly written. In this situation, it is possible to 
manipulate reliability figures to somewhat higher or lower figures by biasing the sele- 
ction of  input states. We select input states that exercise code that has either high or 
low fault density. Note that the essential character of failures as a random process is 
unchanged. We can not predict when the next failure will occur, even if we can mani- 
pulate average behavior. One example of manipulation would be to select input states 
deterministically in such a way that no code segments are reexecuted. If fault density  
is the same for all segments, the observed failure intensity would tend to be constant. 
Fault repair would show no effect on failure intensity. In reality, failure intensity bas- 
ed on random selection of input states would be decreasing. 
 
With and without repair 
 
Software reliability models must cover two situations, the situation of programs that 
are being repaired when failures occur and the situation of programs that are not.  
These situations can occur in either the test or the operational phase, but "no repair" 
is usually associated with the latter.  Thus, as far as the program is concerned, the 
failure intensity is constant for the duration of the release. Hence, the failure process 
is conveniently modeled by a homogeneous Poisson process. This implies that the 
failure intervals are exponentially distributed and that the number of failures in a gi- 
ven time period follows a Poisson distribution. If the failure intensity is λ and the pe- 
riod of execution of the program is τ, then the number of failures during this period is 
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distributed Poisson with parameter λτ. 
A principal factor that causes reliability to vary with time is the correction of faults 
that have caused failures. In general, the time of correction does not coincide with  
the time of original failure. This could lead to substantial complication in character- 
izing the failure process. However, it can be handled by assuming instantaneous re- 
pair and not counting the reoccurrence of the same failure. It would be recounted, 
however, if the recurrence were due to inability to locate and repair the fault. Alth- 
ough the result is not precisely equivalent, it is a very good approximation. All the 
leading models take this approach. 
 
Particularization 
 
The model specifies the general form of the dependence of the failure process on 
the variables mentioned. The specific form can be determined from the general  
form, at least in theory, through determination of parameters. For the execution  
time component, this can occur in one of two ways [12]: 
 
(1) Prediction--properties of the software product and the development process are 

used to particularize the model by determination of its parameters (this can be 
done prior to any execution of the program). 

(2) Estimation--inference (for example, parameter estimation) procedures are app- 
lied to failure data. 

 
A model and an inference procedure are commonly associated. Together, they pro- 
vide projection through time. Without a model, we could not make inferences about 
reliability outside the time period for which failure data have been taken. In fact, we 
could not make inferences at all, because the size of the failure sample would be one. 
The model provides the structure that relates behavior at different points in time. It 
Thus, in effect, provides for a sample of reasonable size to be taken. 
  Note that the inference procedure that has historically been associated with a model 
is not necessarily the "best". We may wish to consider alternatives. Inference also ge- 
nerally includes the determination of the range of uncertainty. We either establish co- 
nfidence intervals for the parameters or determine posterior probability distributions 
for significant quantities in the case of Bayesian inference. The determination of ran- 
ges of uncertainty is generally extended to quantities that are derived from the models 
as well. 
   Failure data are most commonly available in the form of times of failures or number 
of failures in a given time interval. Time can be specified in either calendar time, the 
actual chronological period that has passed, or execution time, the processor (CPU) 
time accumulated. 
 
 
M odel limitations 
 
In fitting any model to a given data set, we are cautioned about some limitations for 
this type of analysis. First, we must be aware of a given model's assumptions. For  
example, if a selected model makes the assumption that the time intervals over which  
the software is observed or tested are all of the same magnitude, don't attempt to use 
this model if this is not the case for the data. There are other assumptions that may not  
hold, but the model may be fairly robust with respect to violations. One such assump- 
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tion is the distributional one about the number of failures per unit time or the time be- 
tween failures. One can still do a credible job in fitting the data for a selected model 
even if its distributional assumption is violated. The only way to tell is to ask just how 
well the model is doing in tracking and predicting the data.  
    A second model limitation concerns future predictions. If the environment in which 
the software is being tested or observed changes considerably from the one in which 
the data have been collected, we can't expect to do well in predicting future behavior. 
If the software is being operated in a different manner (i.e., new capabilities are being 
Exercised that were not used before, or a different testing methodology is used), the 
failure history of the past will not reflect these changes, and poor predictions may be 
result. Too many times model users tend to extrapolate either too far into the future or 
make reliability predictions for an environment in which little if any data have been  
gathered.  For both violations of assumptions and considerations for predictions, one 
option that may be available to the practitioner is to use the most recent data if suffi- 
cient current data are available. Recent data may be more representative of the envir- 
onment in which the software is employed than data collected in the distant past. This 
same reasoning applies to violations of assumptions. Current data may be more stable 
and reflective of the assumptions than past data. 
 
 
                 
  3. Software reliability simulation techniques 
 
3.1. Introduction 
 
The software reliability models attempt to assess expected reliability or future opera- 
bility by using observed failure data and statistical inference techniques. Most of these 
treat only the exposure and handling of failures during testing or operations. They are 
restricted in their life-cycle scope and adaptability to general use for a number of rea- 
sons, including their foundation on oversimplified assumptions and their main focus 
on testing and operations phases. Some modelers may have relaxed an assumption  
here or there in attempts to provide more generality, but as models become more and 
more  realistic, the likelihood of obtaining simple analytic solutions plunges to impo- 
ssibility. And reliability modeling ultimately requires good data. But software projects 
do not always collect data sets that are comprehensive, complete, or consistent enough 
for effective model application or research. Additionally, industrial organizations are  
reluctant to release their reliability data for use by outside parties. 
   Simulation presents a particularly attractive computational alternative for investiga- 
ting software reliability because it averts the need for overly restrictive assumptions  
and because it can model a wider range of reliability phenomena than mathematical 
analyses can cope with. Also, it can provide an "virtual" environment to predict or  
study software reliability for some software projects. Here, simulation is refers to the 
technique of imitating the character of an object or process in a way that permit us to 
make quantified inferences about the real object or process. In the area of software re- 
liability, simulation can mimic key characteristics of the processes that create, valida- 
te, and revise documents and code. It can mimic faulty observation of a failure when 
one has, in fact, occurred, and additionally, can mimic system outages due to failures. 
Furthermore, simulation can distinguish faults that have been removed from those that 
have not, and thus can readily reproduce multiple failures due to the same asyet unre- 
paired fault. Some reliability subprocesses may be sensitive to the passage of execute 
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time (e.g., operational failures), while others may depend on wall-clock, or calendar, 
time (e.g., project phases); still others may depend on the amount of human effort ex- 
pended (e.g., fault repair) or on number of test cases applied. A simulator can relate 
model-pertinent resource dependencies to a common base via resource schedules,  
such as workforce loading and computer utilization profiles. 
 
   There are two main types of software reliability simulation ways,  one is rate-based 
simulation, the other is artifact-based simulation. For the artifact-based simulation: we 
consider many aspects of program construction and testing to investigate the effect of 
static features on dynamic behavior, the inputs may include those which characterize 
code structure, coding errors, test input data, test conduct, failure characteristics, de- 
bugging effectiveness, and computing environment. In this paper, we used rate-based 
simulation way to get some results for a switching system software. 
 
3.2. Rate-based simulation 
 
It is a rate-controlled event process simulation way, the fundamental basis of this si- 
mulation method is the representation of a stochastic phenomenon of interest by a  
time series x(t) whose behavior depends only on a rate function, call it β(t), where 
β(t)dt acts as the conditional probability that a specified event occurs in the infinitesi- 
mal interval (t,t+dt). We can treat the event as a fault/failure in a software. 
 
3.2-1. Event process statistics 
 
If S0 and S1 denote the states of an event ε, S0 in effect before the event and S1 after its 
Occurrence, then a particular member of the stochastic time series defined by { β0(t), 
 S0 , S1} beginning at time t=0 is a sample function, or realization, of the general rate- 
based discrete-event stochastic process. The zero subscript on β0(t) signifies the S0 , 
or zero occurrences, starting state. 
   The statistical behavior of this process is well known: the probability that event ε  
will not have occurred prior to a given time t is given by the expression 

          where 

The form of  β0(t) is unrestricted, but generally must satisfy 
            β0(t)≥0   and   λ0(∞,0)=∞                Eq. (3.3) 
The first of these prevents the event from occurring at a negative rate, and the second 
stipulates that the event must eventually occur.  If the second condition is violated, 
there will be a finite probability that the event will never occur. 
  Where the events of interest are failures, β0(t) is often referred to as the process ha- 
zard function and λ0(t,0) is the total hazard. The cumulative distribution function and  
probability density function for the time of an  occurrence are then 
                                                        F1(t)=1-P0(t) 
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   If λ0(t,0) is known in closed form, we may sometimes be able to write down and 
analyze the event probability and mean time of occurrence functions directly. In all 
but the simplest cases, however, we will require the assistance of a computer. When 
we can not express the integrals in closed form, we can still evaluate them using str- 
aightforward numerical analysis. 
 
 
3.2-2. Rate function of simulation models 
 
We use the following rate functions in our implemented simulator. Except these may 
differ significantly in their assumptions about underlying failure mechanism, they 
differ mathematically only in the forms of their rate functions. 
 
(1) The Goel-Okumoto (GO) model treats an overall reliability growth process with 
      β(t)=n0φe-φt , where n0 and  φ are input parameters, n0φ is the initial failure rate, 
      and φ is the failure rate decay factor. Strictly speaking, this rate function violates  
      the conditions on λ(t,0) imposed in Eq.(3.3), because λ0(∞,0)=n0 and P0=e-n0 . In 
      practicality, n0 is usually fairly large, so the consequences may be negligible. 
(2) The Jelinski-Moranda (JM) model describes statistics of failure time  intervals  
      under the presumption that βn(t)=β0(1-n/n0), where n0 is the estimated (unknown) 
      number of initial software faults and β0 is initial failure rate. 
(3) The Duane model deals with another overall reliability growth model with failure 

rate function as, β(t)=kbtb-1, where k and b are input parameters. Eq.(3.3) requires 
that 0<β<1. 

(4) The Littlewood-Verrall inverse linear model is an overall reliability growth model 
     with β(t)=β0/(1+θt)1/2 where β0 is the initial failure rate and θ is a rate decay factor. 
(5) The Musa-Okumoto model [13],  in which β(t)= β0/(1+θt),  where β0 is the initial 

 failure rate and θ is a rate decay factor. Both β0 and θ are input parameters. 
(6) The Yamada S-shaped model, its failure rate function is β(t)=ab2te-bt, where a is 

the number of failures to be expect occur and b corresponding to a failure detect 
rate. 

(7) The Musa's basic execution time model, its failure rate function is β(t)= β0 β1e
-β1t. 

Where β0 is the total number of faults that would be detected,  β1 is the factor of 
fault reduction. 

  
In [14] and Chapter 3 of  [2],  there are detailed description about software reliability 
models. 
 
 
3.3 Simulator implementation 
 
We have implemented a simulator which has black-box and white-box simulation 
functions for software reliability. It is a failure rate-based simulator, the above seven 
failure rate functions are used as simulation model respectively. The simulator can be 
used for data fitting, model validation and failure evaluating for software reliability  
engineering. 
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3.3-1 General simulation assumptions 
 
For the simulator we have the following assumptions, they can be seen as the most 
common assumptions for software reliability models. 
 
(1) The faults of program are introduced randomly, the occurrence of failure is a ran- 

dom process. 
(2) The software is tested remains essentially unchanged throughout testing, except 

for the removal of faults as they are found. 
(3) Removing a fault does not affect the chance that a different fault will be found. 
(4) "Time" is measured in such a way that testing effort is constant. 
(5) At any time the future evolution of the testing process depends only on the present 

state (the current time, the number of faults found and remaining, and the overall 
parameters of the model), and not on details of the past history of the testing pro- 
cess. 

(6) All faults are of equal importance (contribute equally to the failure rate). 
(7) At the start of testing, there is some finite total number of faults, which may be fi- 

xed (known or unknown) or random; if random, their distribution may be known 
or of known form with unknown parameters. Alternatively, the "number of faults" 
is not assumed finite, so that if testing continues indefinitely, an ever-increasing 
number of faults will be found. 

(8) Between failures, the failure rate follows a known functional form. 
 
  
3.3-2 Simulation approaches 
 
 1). Black-box simulation 
 
We have two methods for implementing the simulator, one is black-box simulation, 
another is white-box simulation. For the black-box simulation, we treat software as a 
whole only its interactions with the outside world are modeled, the internal structure 
and component combinations are not concerned. It is relatively a simple simulation 
approach, the basic algorithm for black-box simulation is as follows 
                                          
                               Initialization(e.g. set maxtime_step, dt, simulation run times…) 

                               While(maxtime_step>1){  

                               Produce a random number: 0<occurs<1 

                                   If  (vr*dt<occurs) 

                               Failure_num=Failure_number+1 and  t=t+1  }       
 
Where, vr is the value of the failure rate function at that time, Failure_number is the  
number of cumulative failures at that time. 
   The input of black-box simulation is a failure behavior file,  this file includes the 
parameters of failure rate functions. The parameters can be obtained by using CASRE 
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(Computer Aided Software Reliability Estimation) which is a tool for software relia- 
bility measurement. There are detailed description about CASRE in [2] Appendix A. 
The output or results of black-box simulation are the number of cumulative failures 
and the failure intensity of the software. In the later of this paper we give some black- 
box simulation results discussion. 
 
2). White-box simulation 
  
  In the black-based simulation approach for software reliability we treat the software 
system as a whole, without looking into its internal structure, and using one model to 
simulate the whole software. However, in practical, a lot of software packages are co- 
nsist of components (component-based). With the advancement and widespread use  
of object oriented systems design and internet-based development, the use of  compo- 
nent-based development is on the rise. The software components can be commercially  
available off the shelf (COTS), developed in house, or developed contractually. Thus, 
the whole software is developed in a heterogeneous (multiple teams in different envi- 
ronments) fashion, and hence it may be inappropriate to simulate the overall failure  
process of such a software using the black-box approach. Thus, taking into account 
some information about the internal structure of the software for analyzing its reliabi- 
lity is absolutely essential [15]. 
  In the white-box simulation approach we assume that the software comprising of m 
components begins execution with component 1, and terminates upon the execution 
of component m. The architecture of the software is specified by the intercomponent 
transition probabilities, denoted by wij. wij represents the probability that component 
j is executed upon the completion of component i. We can apply different software re- 
liability model for different component, of course we also can use the identical model 
for the whole software. The basic algorithm of white-box simulation as follows 
           Initialization(set max-time, dt; curr_comp=1…) 

          While (time<max-time){  

         Check_point=0; produce a random number 0<a<1 

         if (vr*dt<a) 

        Failure_num_comp+1 and Failure_num_T+1; time+dt 

        for (i=1; i<=m;i++){  
          Check_point=check_poin+transition_p[curr_comp][i]  
          if (a<=check_point) 
           break; }  
         curr_comp=i; }  
           
 In the above, vr is equal to the value of failure rate function at that time; curr_comp   
 represents the current executing component number;  the Failure_num_comp is the  
 cumulative failure number of current component, and the Failure_num_T is the  
 cumulative failure number of the whole software. dt is time interval for simulation.   
 The transition_p is an array which contains the transition probabilities between  
 components of the software. The "for loop" is actually used for determining which  
 component will execute at next time. 
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   The input of white-box simulation are failure behavior of all components and tran- 
sition probabilities file. A five-component software failure behavior file is as follows: 
 

In which, each row corresponds one component (first row is for component 1, second 
row is for component 2,etc.). First column indicate which model will be used for the 
component (e.g. "go" represent the Goul-Okumoto model, "ys" indicate the Yamada 
S-shaped model is being used for component 4). The other real numbers of each row 
are the  parameters of the used software reliability model. These parameters can be  
estimated by using CASRE. 
   The following is a five-component software transition probability file 
 
            5 

0.00 0.80 0.20 0.00 0.00 
0.30 0.00 0.70 0.00 0.00 
0.00 0.00 0.00 0.70 0.30 
0.00 0.00 0.20 0.00 0.80  
0.60 0.20 0.00 0.20 0.00 

In which, the first row has an integer number, it indicates the number of components 
belong to the software. Each real number in other rows is in [0.00, 1.00], it represents 
the transition probability from component i to component j. 
 
The output or results of white-box simulation are number of cumulative failures for  
each component and the whole software. We can also get the failure intensity of each 
component and the whole software. Figure 3.1 give the simulation results of a five- 
component software. The failure behavior and transition probability of this software 
are the same as above. 
  

                    Figure 3.1 simulate results for  a five-component software 
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From the Figure 3.1 we can know that the cumulative of whole software system has 
identical convergence trend with all components, and the total number of failures in 
the system is approximately equal to the sum of all components. In most situations, 
this is the case. 
 
4. Project applications  
 
We have applied the simulation approaches into a project software for analyzing its  
reliability features. This section introduce the application  results and some compari- 
sons.  
 
4.1 General description of the software  (About the project see [16]) 
 
This is the system software of three successive generations of the Brazilian switching  
system, TROPICO-R. It is developed jointly by the R&D center for Brazilian Teleco- 
mmunications and some Brazilian manufacturers. To dates, three successive products 
have been developed, and referred to as PRA,PRB and PRC. The software can be de- 
composed into two main parts; the applicative software and the executive software. 
Two categories of components can be distinguished in the TROPICO-R software: i) 
Elementary Implementation Blocks (EIB), which fulfil elementary functions and ii) 
groups of  elementary implementation blocks according to the main four functions of 
the system. These groups are: 
• Telephony (TEL): local call processing, charge-metering, etc. 
• Defense (DEF): on-line testing, traffic measurement, error detection, etc. 
• Interface (INT): communication with local devices (memories, terminals),… 
• Management (MAN): communication with external devices (trunk),… 
The software were coded in Assemble language. In order to analyze the evolution of 
TROPICO-R software and to compare the successive products, we have defined the 
following types of EIBs: 
• new: developed specifically for a given product; 
• modified: developed for a given product and then modified to meet the requirements 
   of the new product; 
• unchanged: EIBs of a previous product included in a new product without functional 
   modification. 
Table 4.1 lists the number of EIBs and the size of the software for the three products. 
It can be seen that the software size progressively increased. A 10 percent increase of 
the PRB size can be noticed relative to PRA and 20 percent in PRC code compared to 
PRB. Only one EIB from PRA was not included in PRB, while all others were reused 
with or without modifications for PRB. Additionally, four new EIBs were developed. 
With respect to PRC, only six EIBs from PRB were functionally modified, the remain 
PRB EIBs were unchanged. Also, two new EIBs were developed specifically for PRC 
 

      #EIB         Size (kbytes) 

     PRA        29            320 

     PRB       32             351 
     PRC       34            421 

                  
                    Table 4.1 Number of EIBs and size of PRA, PRB and PRC 
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 Figure 4.1 shows the amount of modification introduced on PRB with respect to PRA 
and on PRC with respect to PRB, according to the number of EIBs and to the software 
size. 67% of PRB code results from the modification of the PRA code. About 75% of 
the modified EIBs belong to the applicative software and 84% of unchanged EIBs to 
the executive. Thus, the increase of the TROPICO-R capacity mainly led to major  
modifications of the applicative software with only minor modifications to the execu- 
tive. With respect to PRC, since the processing capacity of the system was the same  
as that of PRB, only 34% of PRB code was modified. Most modifications were intro- 
duced on the applicative software. When considering the four software functions, it 
appears that, for both PRB and PRC , most modifications concerned telephony and 
defense functions. 

a) according to the number of EIBs 
 

b) according to the size of EIBs 
 
      Figure 4.1 Distr ibution of unchanged, modified and new EIBs in PRB and PRC 
 
 
4.2 Test Environment and Collected Data 
 
4.2-1 Test Program 
 
The software test program drawn up for TROPICO-R include four series of tests: 
unit test, integrated test, validation test, and field test. The first three correspond to 
the test phases usually defined for a software life cycle. Field test consists of testing 
a prototype in a real environment, similar to the operational environment. It uses a 
system configuration (hardware and software) that has reached an acceptable level 
of quality after completing the laboratory tests. 
  The test program completed during validation and field testing is made up of four  
types of test (functional, quality, performance and overload). The whole quality con- 
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trol program established for TROPICO-R is described in [17]. PRA and PRB valida- 
tion was carried out according to this program. Also, testers followed a similar test  
program for the test and validation of PRC. In addition to software testing based on 
software execution, they used code inspections for static analysis. These inspections  
were performed during the development of PRC and continued during the operational 
phase. 
 
4.2-2 Data collection 
 
The failures and troubles impacting the software were reported in appropriate failure 
or trouble report sheets. A failure report, denoted FR, is filled in whenever a discrepa- 
ncy is found  between the expected and the observed system behavior during software 
execution. A trouble report, denoted TR, records each  fault uncovered during static 
analysis. 
The failure or trouble reports contain the following: 
• date of failure or date of detection of faults by static analysis; 
• description of system configuration in which the failure was observed and of the 
   conditions of failure occurrence for FRs; 
• type of FR or TR: hardware, software, documentation with an indication of EIBs 
   concerned; 
• analysis: identification and classification of the fault(s) which led to an abnormal 
   software behavior  (coding, specification, interface,…); 
• solutions: the proposed solutions and those retained; 
• modification control: control of the corrected EIBs; 
• regression testing: results of the tests applied to the corrected EIBs. 
Only one FR (resp. TR) is kept per observed failure (resp. per detected trouble): redi- 
scoveries are not recorded. In other words, if several FRs (resp.TRs) cover the same  
failure (resp. the same trouble), only one (the first) is enter into the database. In fact, 
an FR (TR) is both a failure report (trouble report) and a correction report since it also 
contains information about the fault(s) that resulted in an abnormal behavior of the  
software. 
For each product and each phase, table 4.2 gives the data collection period. No field 
test were performed for PRB. This is because many PRA components were reused for 
the development of PRB, which was then installed in operational sites while PRA had 
already been operating for several months. For PRC , data collection started at the be- 
ginning of the of the operational phase of the system. The data provided by ELEBRA* 

only refer to this phase and the failures or troubles encountered during validation and  
field test were not reported. 
 
 

 validation Field test operation 

  PRA 10 months  4 months 13 months 
  PRB  8  months        0 24 months 
  PRC        0        0 47 months 

 
 Table 4.2. Validation, field test and operation length for  the per iod of data collection 
 
*   Brazilian Telecommunications 
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4.2-3 Statistics on failures and corrected faults 
 
Table 4.3 gives the number of failures (#FR) and troubles (#TR) reported, as well as 
the number of corrected faults (#CF) for each product. Note that for PRC, the number 
of failures and the number of  troubles are indicated in order  to distinguish  between 
the failures observed during software execution and the troubles  identified  by static 
analysis. Clearly, the number of reported trouble is important. This result shows that 
code inspections are effective and allow a  high  proportion of  software faults to be 
detected. Experimental studies reported for example in [18] and [19] have shown that 
thorough static analyses can lead  to the detection of  75%  to  95% of  faults before 
software execution. The results obtained for PRC show that static analyses could also 
be helpful in operation. 
Table 4.3 shows that less failures occurred in PRB and PRC even though:i) the period 
of data collection is longer for these products than that of PRA (see Table 4.2) and ii) 
more PRB and PRC systems have been in use during the operation phase. 
Because some failures led to the modification of  more than one EIB,  the number of 
corrected faults indicated in Table 4.3 exceeds the number of failures. Table 4.4 give 
the statistics concerning the number of  EIBs  that  have been corrected because of a 
software failure* .  Clearly,  the results are similar for the three products.  More than 
70%  of  the failures led to the correction of only one EIB. This shows that there is a 
slight failure interdependence among EIBs. 
The analyses of  the data corresponding to failures which is involving more than one  
component  allowed us to identify two pairs of  EIBs that are strongly dependent in  
terms of failure occurrence. For these two pairs, it was found that the probability of 
simultaneous modification of both EIBs exceeds 0.5 whenever a failure was due to a 
fault located in one of them. This  result  was obtained for the three products.  More 
generally, this type of analysis can have great help for software maintenance. It allows 
software debuggers to identify the stochastically dependent components with regards 
to failure occurrence and  to take them into account when looking for  the origin  of  
failures. 
 

     #FR / #TR     #CF 
  PRA        465/-      637 
  PRB        210/-      282 
  PRC        212 / 105      394 

               
        Table 4.3 Number of failures and corrected faults in PRA, PRB, PRC 
 
 # corrected EIBs  # FR in PRA  # FR in PRB (#FR+#TR) in PRC 
               1      362 (77.8%)   165 (78.6%)      228  (71.9%) 

               2        72 (15.5%)     33 (15.7%)        69  (21.8%) 

             ≥3        31 (6.7%)     12 (5.7%)        20  (6.3%) 

  
             Table 4.4 Statistics on the number of EIBs affected by one failure 
 
  *  For the sake of simplicity, in the following, we will define a failure as a discrepancy between the 
   expected and the observed software behavior irrespective of whether it is observed during software 
   execution or detected by static analysis. The distinction between failures and troubles will only be 
   made if required. 
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4.2-4 Collected failure data of each function for TROPICO-R 
 
Table  4.5 gives the number of failures (#FR) or troubles (#TR), and the number of 
corrected faults (#CF) attributed to the four functions: TEL, DEF, INT and MAN (as 
defined in section 4.1). The sum of failure reports attributed to the functions is higher 
than the total number of failures reports indicated in table 4.4, this is because when a 
failure impacts different functions,  an  FR is attributed to each one.  The real failure  
database include "cumulative failure number vs. time" and "failure intensity" are in 
Appendix B. 
 

             PRA              PRB             PRC  

  size  #FR  #CF  size  #FR  #CF size #FR/#TR #CF 

TEL   72  146  190   75   74  102  111  65 / 52  155 

DEF   93  138  164   117   67  71  130  63 / 21  87 

INT  113  170   191   115   61  68  129  72 / 27  112 

MAN   42   78   92    44   31  41   51  25 / 10   40 

Sum  320  532  637   351   233  282   421 225 / 110  394 

 
  Table 4.5 Size (in Kbytes) and number of failures and corrected faults per  function 
 
 
4.3 Simulate results for TROPICO-R  and comparisons 
 
We have applied our simulator to simulate the software reliability of three successive  
generations products (TROPICO-R, PRA, PRB and PRC).  First , we simulated each 
function of each product, then we made simulations for each product. There are three 
models are used in these simulation processes, they are: GO (Goel-Okumoto) model, 
JM (Jelinski-Moranda) model and Yamada S-shaped model. The parameters in these 
failure rate functions were got by using a software reliability estimation tool CASRE 
(see [2] Appendix A).  The results of  simulations are cumulative number of  failures 
 and failure intensity of each function component and whole product.  Here,  we just 
give the simulation results of "TEL" component and system for each product. The all 
simulation data are in appendix B. 

                        Figure 4.2 PRA_TEL simulate results (with real data) 
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             Figure 4.3 PRB_TEL simulate results (with real data) 
 
 
 

 
               Figure 4.4  PRC_TEL simulate results (with real data) 
 
 
Figure 4.2 to 4.4 show the comparisons between simulate data with real data for TEL 
function of each product. The time unit is month, there are 27 months observed failure 
data for PRA. There are 32 months,47 months observed failure data for PAB and PRC  
respectively. In order to get prediction, we made 50 months simulation results.  From 
these figures we can see that in case of large number of failures the three models have 
better fitting and prediction. When there are small total failures number (TEL function 
of PRC),  JM model has better fitting and prediction (see Figure 4.4), GO  model  has  
 worst prediction. This result indicates that GO model has more dependency with the 
Eq. 3.3 . From the simulation results, we can also know that in some cases theYamada 
S-shaped model is closer to the real data at early phase and it has  similar  prediction 
with GO model. The simulation results for other functions (DEF, INT, MAN) of the 
three products (see Appendix B) have similar features with above. 
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  Figure 4.5 PRA system simulation results       Figure 4.6 PRB system simulation results 
 
 

 
                            Figure 4.7 PRC system simulation results 
 
 
  Figure 4.5-4.7 give the simulation results of PRA, PRB and PRC.  PRA  has the 
largest number of failures . The simulation results of  PRA  have  good fitting and  
prediction. And for PRA, GO model and JM model have better fitting than S-shaped  
model during early phase. This may be explained as:  PRA is the  first generation  
product, there was no inherited experience for software developer and tester. Thus,  
the faults have more homogeneous exposure rate during testing phase. For PRB and 
PRC the S-shaped model has better fitting during early phase, it can be thought that 
in successive generations software, latent faults are more difficult  (take more time)   
to be found.  
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4.4 The simulation results deviation 
 
In order to evaluate the accuracy of simulation we define simulation deviation as: 
the observed failure data value minus the simulation value at that time.  
Here, we give the deviations of system simulation results for PRA, PRB and PRC. 

                                   Figure 4.8 PRA system simulation deviations 
 
From  figure 4.8  we can see that GO model and  JM model simulation deviation are 
similar.  At some time points there are exist large simulation deviations in the three 
models. In general, it seems that the JM model results has smaller deviations. With   
comparing  Figure 4.5, we can find that the simulation results are very close  to  the  
practical data curve, however, with taking account into the time, it is difficult to have  
accurate failure evaluation or prediction with exact time point. In other words, for a 
random failure process, simulation can give a trend or general prediction, and it can 
not give the accurate number with exact occurrence time. 
The deviations of  PAB and PRC system simulation results are showed in Figure 4.9 
and Figure 4.10. As the total failure number is smaller in PRC, the deviation range in 
Figure 4.10 is smaller.  
We noted that near the time of 10 months in  the three figures the  deviation value  
have a transition trend, comparing with Figure 4.7, this indicate that at the time point 
of 10 month the failure occurrence rate begin change. 
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                                 Figure 4.9 PRB system simulation results deviation   
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                                 Figure 4.10 PRC  system simulation results deviation 
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5 Conclusion and future work 
 
Many papers deal with software reliability growth modeling and evaluation. However, 
papers following a global method are seldom found. 
In our work, we combined analytical models into simulation approaches to give a 
effective and practical simulate method for software reliability measures. The main 
contributions of our work is:  implemented a rate-based software reliability measure 
simulator. Its advantages are: no computation intensive, enable models combination 
application, taking account into internal structure or dependency of software.  The 
project application demonstrate it can be used for analysis, prediction and evaluation  
in software reliability literature. 
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