
 1

 1. Introduction

As hardware is becoming more and more cheap and powerful, software is becoming
more and more complex and important in computer-based information system. So-
ftware reliability is probably the most important of the characteristics inherent in the
concept "software quality." What is software reliability? We concerns it with how
well the software functions to meet the requirements of the customer. The IEEE
defines it as : software reliability is the probability of failure-free operations of
a computer program for a specified time in a specified environment [1] There
are several relative basic concepts:

Failure: It is the departure of the external results of program operation from require-
 ments.
"Failure" is something dynamic. The program has to be executing for a failure to
occur
Fault: It is the defect in the program that, when executed under particular conditions,
 causes a failure. The cause of the failure or the internal error is said to be a
 fault. It is also referred as a bug.
"Fault" is a property of the program rather than a property of its execution or behavior
A fault is created when a programmer makes an error.
Time: Reliability quantities are defined with respect to time, although it would be po-
 ssible to define them with respect to other variables. We are concerned with
 three kinds of time: the execution time for a software is the CPU time that is
 actually spent by the computer in executing the software; the calendar time
 is the time people normally experience in terms of years, months, weeks, days,
 etc.; and the clock time is the elapsed time from start to end of computer
 execution in running the software.
 There are four general ways of characterizing failure occurrences in time:
 1). time of failure,
 2). time interval between failures,
 3). cumulative failures experienced up to a given time,
 4). failures experienced in a time interval.

Failure functions: When a time basis is determined, failures can be expressed in
 several ways: the cumulative failure function, the failure intensity function,
 the failure rate function. The cumulative failure function (also called the mean
 value function) denotes the average cumulative failures associated with each point
 of time. The failure intensity function represents the rate of change of the cumu-
 lative failure function. The failure rate function is defined as the probability that
 a failure per unit time occurs in the interval [t, t+∆t], given that a failure has not
 occurred before t. In this paper we shall use failure rate functions to simulate the
 software execution and get the cumulative failures of it. Appendix B of [2] pro-
 vides the mathematics of these functions in details.
Failure data collection: Two types of failure data, namely failure-count data and
 time-between-failures data, can be collected for the purpose of software reliabi-
 lity measurement. They are illustrated in Table 1.1 and 1.2.

 2

 TABLE 1.1 Failure-Count Data
__
 Times (days) Failures in the period Cumulative failures

 8 4 4
 16 4 8
 24 3 11
 32 5 16
 40 3 19
 48 2 21
 56 1 22
 64 1 23
 72 1 24

TABLE 1.2 Time-Between-Failures Data

 Failure number Failure interval(days) Failure times(days)

 1 0.5 0.5
 2 1.2 1.7
 3 2.8 4.5
 4 2.7 7.2
 5 2.8 10.0
 6 3.0 13.0
 7 1.8 14.8
 8 0.9 15.7
 9 1.4 17.1
 10 3.5 20.6
 11 3.4 24.0
 12 1.2 25.2
 13 0.9 26.1
 14 1.7 27.8
 15 1.4 29.2
 16 2.7 31.9
 17 3.2 35.1
 18 2.5 37.6
 19 2.0 39.6
 20 4.5 44.1
 21 3.5 47.6
 22 5.2 52.8

In this paper we shall use the first kind of data.

2. Software reliability modeling

 3

2.1. General Information

One particular aspect of SRE(Software Reliability Engineering) that has received
the most attention is software reliability modeling. There are many models have
been proposed by researchers since 1970s. In this section we give a general classi-
fication about software reliability model, and describe three models, they are:
Goel-Okumoto model, S-shaped model and Jelinski-Moranda model. The former
two belong NHPP (Nonhomogeneous Poisson Process) type model, the latter is a
markov kind model. We will give the simulate results and comparison of a practical
switching system software for the three models.
A software reliability model describes software failures as a random process, which
is characterized in either times of failures or the number of failures at fixed times.
We denote by Ti and Ti

' the random variables representing times to the ith failures
and between the (i-1)th and ith failures, respectively. The realizations of Ti and Ti

'
will be denoted by ti and ti

' , respectively. Time can be specified in either calendar
time, the actual chronological period, or execution time, the processor (CPU) time
accumulated. Sometimes clock time is used as an approximation to execution time.
Let N(t) be a random process representing the number of failures experienced by
time t. The realization of this random process will be denoted n(t). Then µ(t), the
mean value function, is defined as µ(t)=E[N(t)], which represents the expected nu-
mber of failures at time t. The function µ(t) will be nondecreasing and is assumed
to be a continuous and differentiable function of time t. The failure intensity function
of the M(t) process is the instantaneous rate of change of the expected number of
 failures with respect to time. It is defined by

2.2. Nonhomogeneous Poisson Process (NHPP) M odels

2.2-1. General assumptions

 As a general class of well-developed stochastic process models in reliability
engineering, NHPP models have been successfully used in studying hardware
reliability problems. NHPP models are especially useful to describe failure pr-
ocessess which possess certain trends such as reliability growth or deterioration.
 Application of NHPP models to software reliability analysis is then easily im-
plemented. The cumulative number of software failures up to time t, N(t), can
be described by a NHPP and many existing software reliability models also
belong to this class.
 For the counting process { N(t),t≥0} modelled by NHPP, N(t) follows a Poisson
 distribution with parameter m(t), that is, the probability that N(t) is a given integer
n is expressed by

 In the above m(t) is called the mean value function. The function m(t) describes
The expected cumulative number of failures in [0,t). Hence, m(t) is a very useful
descriptive measure of the failure behaviour.
 The underlying assumptions of the NHPP are:

dt

td
t

)(
)(

µλ =

,...2,1,0,
!

)]([
})({)(=== − ne

n

tm
ntNP tm

n

 4

(1) N(0)=0,
(2) { N(t),t≥0} has independent increments,
(3) P{ [N(t+h)-N(t)]=1} =λ(t)+o(h),
(4) P{ [N(t+h)-N(t)≥2} =o(h).

 In the above o(h) denotes a quantity which tends to zero for small h. The function
λ(t) which is called the instantaneous failure intensity is defined as:

 Given λ(t), the mean value function µ(t)=E[N(t)] satisfies

Inversely, knowing µ(t) , the failure intensity at time t can be obtained as

 Generally, by using different nondecreasing functions µ(t), we get different NHPP
models. In the most simple case for which λ(t) is constant, the NHPP become a
homogeneous Poisson process which has a mean value function as µ(t)=αt.

Due to the great variability of the mean value functions, NHPP models have been
widely studied in the literature. The most well-known NHPP model is the model
studied in [3] which later on, has been further generalized and modified by many
researchers in order to improve the goodness-of-fit to real software failure data.

 2.2-2. The Goel-Okumoto (GO) model

 The general assumptions of the GO-model are:
(1) The cumulative number of faults detected at time t follows a Poisson distribution.
(2) All faults are independent and have the same chance of being detected.
(3) All detected faults are removed immediately and no new faults are introduced.

 Specially, the GO-model assumes that the failure process is modeled by an NHPP
 model with mean value function µ(t) given by

Where a and b are parameters to be determined by using collected failure data.
 Note that for this model we have
 µ(∞)=a and µ(0)=0.
Since µ(∞) is the expected number of faults which will eventually be detected, the
parameter a is then the final number of faults that can be detected by the testing

.
)}()({

)(
0 t

tNttNP
Limt
t ∆

−∆+=
+→∆

λ

�
=

t

dsst
0

)()(λµ

dt

td
t

)(
)(

µλ =

;0,0),1()(>>−= − baeat btµ

 5

process. The quantity b which is a constant of proportionality, can be interpreted
as the failure occurrence rate per fault.

The intensity function λ(t) defined as the derivative of µ(t) is then

 The expected number of remaining faults at time t, may then be calculated as follows

 Hence, the expected number of remaining faults E[N(t)] is an exponentially
 Decreasing function of t, as Figure 2.1 shown.

0 t

 Figure 2.1. The shape of the intensity function and the mean value function
 Of the GO-model.

2.2-3. S-shaped NHPP model
 The mean value function of the GO-model is exponential-shaped. Based on the
experience, it is observed that the curve of the cumulative number of faults is often
S-shaped relatively to the exponential-shaped mean value function which means
that the curve crosses the exponential curve from below and the crossing occurs
once and only once. A number of generalizations or modifications are thus proposed
by Japanese researchers, see [4] and [5] where some heuristic reasons of the occu-
 rrence of S-shapedness are also provided.
Generally, the S-shapedness can be explained by the fact that faults are neither inde-
pendent nor of the same size. At the beginning of the testing, some faults are
 by other faults "covered" and before these faults are detected and removed, the
covered faults can not be detected. Hence, removing a detected fault at the beginning
does not decrease the failure intensity very much since the same test data will still
lead to a failure caused by other "covered" faults. In a later phase, large faults are
already removed and the remaining faults have small size so that the fault detection

btabe
dt

td
t −==)(
)(

µλ

)} ,()({)}({
_

tNNEtNE −∞=

.)1()()()({
_

btbt aeeaattNE −− =−−=−∞= µµ

µ(t)

λ(t)

 6

rate is of moderate size. Also because there are not many faults left in the software,
the coverage has no significant effect at the end of testing phase. Another reason of
the S-shaped behavior is that: The software reliability testing usually involves a
learning process by which people become familiar with the software and the test
tools. Their skills improve gradually and test effectiveness also increases. Hence,
there is a tendency that the cumulative number of failures have a S-shaped form
which implies that the increase of the reliability at the beginning is only of modest
size due to the low test effectiveness, then the reliability increase quickly and later
the improvement slows down again since most of the faults are already removed.
 Figure 2.2 is the comparison of S-shaped model and GO-model
 µ(t)

 0 t

 Figure 2.2. The S-shaped failure intensity function

 Several different S-shaped NHPP models have been proposed in the existing
literature, especially by Japanese researchers. The most well-known ones are the
delayed S-shaped NHPP model and the inflected S-shaped NHPP model.

The mean value function of the delayed S-shaped NHPP model is
 µ(t)=a[1-(1+bt)e-bt]; b>0.
This is a two parameter S-shaped curve with parameter a denoting the number of
Faults to be detected and b corresponding to a failure detection rate. The correspo-
nding failure rate function of this delayed S-shaped NHPP model is

The expected number of remaining faults E[N(t)] at time t is then
 µ(∞)-µ(t)=a-a[1-(1+bt)e-bt]=a(1+bt)e-bt.

Another general model of this kind is called inflected S-shaped model, it was
proposed in [6] by Schagen in 1987. In this model the expected number of faults
detected by time t is modeled the following mean value function

 In the above, α, λ1 and λ2 are the model parameters. It can be seen that if λ1= λ2,
Then we have the limiting case
 µ(t)=α[1-(1+λ1t)e

-λ
1

t],

.)1(
)(

)(2 btbtbt teababeebtab
dt

td
t −−− =−+== µλ

].
)(

1[)(
12

2
21

1

λλ
λαµ

λλ
λ

−
−

−−=
−

−
tt

t ee
et

The GO-model

S-shaped
model

 7

which is the same as that for the delayed NHPP model with a=α and b=λ1.

The mean value function of the inflected S-shaped NHPP model is

In the above a is again the total number of faults to be detected while b and c are
called the failure detection rate and the inflection factor, respectively. The intensity
function of this inflected S-shaped NHPP model can easily be derived as follows,

 Similarly, as for the delayed S-shaped NHPP model, we may obtain the expected
 number of remaining faults E[N(t)] at time t as follows

Some heuristic arguments for this mean value function are presented in [4]. Using
this mean value function, the parameters can be estimated from maximum likely
method.

2.3 M arkov M odels

2.3-1 General assumptions

Markov processes which are a general class of stochastic processes have been widely
used and studied in reliability analyses. Many software reliability models also belong
to this category. A Markov process is characterized by its state space together with
the transition probabilities between these states.

A stochastic process { X(t),t≥0} is said to be a Markov process if its future
Development depends only on the present state of the process, that is

 P[X(t) ≥x(t)|X(t1) ≥x1,…,X(tn) ≥xn]=P[X(t) ≥x(t)|X(tn) ≥xn], for all t1<t2…<t.

The above property is generally called the Markov property which has the following
simple explanation. Given the present state of the process, its future behavior is
 independent of the past history of the process. This is the most important feature
of a Markov process and although this needs not always be the case, it is a realistic
simplification in many practical situations.
 If the state space is discrete, a Markov process is also called the Markov chain.
Define pij is the transition probability of the process between state i and state j, that
is pij(t+s)=P[X(t+s)=j|X(s)=i], s,t>0.

0,0;
1

)1(
)(>>

+
−= −

−

cb
ce

ea
t

bt

bt

µ

2)1(

)1()1()(
)(

bt

btbtbtbt

ce

eabceceabe

dt

td
t −

−−−−

+
−++== µλ

.
)1(

)1(

)1(22 bt

bt

bt

btbt

ce

ecab

ce

abceabe
−

−

−

−−

+
+=

+
+=

.
1

)1(

1

)1(
)()(

bt

bt

bt

bt

ce

eca

ce

ea
at −

−

−

−

+
+=

+
−−=−∞ µµ

 8

In general pij may depend on t as well as on s. If all pij , i,j>0, are independent of t,
the Markov chain is called time-homogeneous.

The most famous result of a homogeneous continuous-time Markov chain is that it
satisfies the so-called Kolmogorov equations, that is

The theory of Markov processes is well developed. The initial condition of the
process together with the transition probabilities completely determines the sto-
chastic behavior of the Markov process. Knowing the transition probabilities,
the probability that the process is in a certain state can be obtained by solving the
Kolmogorov equations, and other reliability measures can also be calculated.
However, in order to get a mathematically tractable software reliability model,
some further assumptions usually have to be made.

Generally, each sojourn time interval for a Markov process, i.e. the time between
two events, has an exponential distribution with the parameter dependent on the
state being visited. Another property is that times between transitions are
conditionally independent of each other given the successive states being visited.
These properties together with the fact that the successive states visited form a
Markov chain clarify the structure of a Markov process. Other standard results can
be found in many elementary texts on stochastic processes. Also in many books on
reliability Markov process models are discussed.

The process { N(t), t≥0} where N(t) is the number of events in a Markov process,
such as the number of detected faults in a software context, is called a Markov
counting process is the birth-death process for which a so-called birth increases
the size of the process by one and a death decreases the size by one.
 Figure 1.3 illustrates a realization of a Markov counting process

N(t)

7

6

5

4

3

2

1

 0 t1 t2 t3 t4 t5 t6 t7 t

0,).()()(>=+ � tstpspstp
k

kjjkij

 9

 Figure 2.3. Arealization of a Markov counting process { N(t), t≥0} .

Markov models are very useful in studying software fault-removal processes,
especially, they are useful during the software testing phase which is the most
important one of software development. It is in this phase that software faults are
detected and removed. The state of the process at time t is here the number of
remaining faults at that time. The fault-removal process can usually be described
by a so-called pure death process since the number of remaining faults is a decreasing
function of time provided that no new faults due to incorrect debugging, the so-called
birth-death processes can then be used in studying software reliability during the
testing phase.

 2.3-2. The Jelinski-M oranda (JM) model

The best-known software reliabilty model originally developed by Jelinski and
Moranda is also a Markov process model. It is one of the earliest models and has
strongly influenced many later models which are in fact modifications of this simple
model.
 Model assumptions and some properties, the underlying assumptions of the JM-
model are:

(1) the number of initial software faults is an unknown but fixed constant;
(2) a detected fault is removed immediately and no new fault is introduced;
(3) times between failures are independent, exponentially distributed random

quantities;
(4) all remaining software faults contribute the same amount to the software failure

intensity.

Denote by N0 the number of software faults in the software before the testing starts.
By the assumption (3) and (4), the initial failure intensity is then equal to N0φ, where
φ is a constant of proportionality denoting the failure intensity contributed by each
fault. It follows from assumption (2) that, after a new fault is detected and removed,
the number of remaining faults is decreased by one. Hence after kth failure, there are
(N0-k) faults left, and the failure intensity decreases to φ(N0-k).

Denote by TI, i=1,2,…, N0, the time between the (i-1):th and the i:th failures, Ti is
thus the i:th failure-free time interval. By the assumptions, Ti's are then exponentially
distributed random variables with parameter
 λ(i)=φ[N0-(i-1)], i=1,2,…,N0.
The distribution of Ti is given by

 P(Ti<ti)=φ(N0-i+1)exp{ -φ(N0-i+1)ti} , i=1,2,…,N0.

The main property of the JM-model is that the failure intensity is constant between
the detection of two consecutive failures. This is quite reasonable if the software is
unchanged and the testing is random and homogeneous. A plot of the failure intensity
function versus the cumulative time is displayed in Figure 2.4. In Figure 2.5 a plot of
λ(i) versus the number of detected faults i can be also found.

 10

It should be pointed out here that this simple model has an order statistic explanation.
Successive failure times constitute order statistics of N0 independent random variables
From an exponential distribution with parameter φ. General order statistic models
have been studied by many researchers, see e.g. [7],[8],[9]

 r(t)

 Nφ

 .
 .

 4φ

 3φ

 2φ

 φ

 0 t1 t2 t3 t4 t5 t6 t

 Figure 2.4. A realization of failure intensity as a function of time.

 For each removal of a fault, the failure intensity decreases by φ.

λ(i)

 Nφ
 .
 .
 .
φ(N-i+1)

 φ(N-i)
 .
 .
 .

 2φ

 φ

 0 1 2 … i i+1… N N+1 i

 11

 Figure 2.5. The failure intensity versus the number of removed faults

2.4 Estimation of model parameters

There are two practical methods of parameters estimation for software reliability
models. They are maximum-likelihood (ML) and least-squares (LS). The most
important and widely used formal estimation technique is ML, therefor, we give
its details and an example here. About the least-squares approach, there are detailed
description in [10] Page 351-364.
 The foundation of the maximum-likelihood method is the likelihood function.
The function is defined as the joint density of the observed data, L(β; YD). This,
In turn, is considered to be a function of the unknown set of w+1 parameters, β.
Here YD represents a set of observations.
 Figure 2.5 illustrates a typical likelihood function when there is only one unknown
Parameter (denoted βk). In this example a small value of L(βk; YD) for a particular βk
could be interpreted to mean that observing YD is rare event. It is reasonable to prefer
the value of βk which makes L(βk; YD) a maximum. That is, we would choose βk so
that the observed data are more probable than for any other choice. Formalizing the
notion, we have the definition of maximum likelihood estimators. For each data set,
let ββββ be the values of the parameters that make L(βk; YD) as large as possible. These
maximizing values will, of course, be functions of the data. The fuctions take on are
known as the maximum likelihood estimates. Figure 2.5 shows the maximum likeli-
hood estimate of βk as ββββk .

 Figure 2.5 Typical likelihood function with only one unknown parameter.

Likelihood L

 β Parameter βk

 12

 Maximum likelihood estimates can be obtained by solving the simultaneous equa-
 tions (one for each βk)

In practice it is customary and often more convenient to work with ln L(βk; YD) in-
stead of L(βk; YD), the derivatives of both vanishing together. Thus, we will find our
estimates by solving the simultaneous equations (which are called the maximum like-
lihood equations)

Generally the maximum likelihood equations are highly complicated and a numerical
solution will be possible only with a computer. An excellent iterative procedure for
carrying out the solution is given in Appendix D of [10].
 Now we give the JM-model parameter estimation as an example

The parameters of the JM-model may easily be estimated by using the method of
maximum likelihood. Let ti denote the observed i:th failure-free time interval during
the testing phase, that is ti is the observed time between the (i-1):th and the i:th failure
The number of faults detected is denoted here by n which will be called the sample
size. Suppose that the failure data set t={ t1,t2,….,tn; n>0} ' is given, the parameters φ
and N0 in the JM-model can easily be estimated by maximizing the likelihood
function. The likelihood function of the parameters N0 and φ is given by

The natural logarithm of the above likelihood function is

By taking the partial derivatives of this log-likelihood function with respect to N0
and φ, respectively, and equating them to zero, we get the following likelihood

})1(exp{)1(),;,...,,(0
1

0021 i

n

i
n tiNiNNtttL +−−+−= ∏

=

φφφ

} .)1(exp{)}1({
1 1

00∏ �
= =

+−−+−=
n

i

n

i
i

n tiNiN φφ

() () � ���� � 	

��

+−−
� 	

��
+−=
∏

==

n

i
i

n

i

n tiNiNL
1

0
1

0 1exp1lnln φφ

() () i

n

i

n

n

n tiNiN �∏
==

+−−� ��
��

+−+=
1

0
1

0 11lnln φφ

() () .11lnln
1

0
1

0 i

n

i

n

i

tiNiNn ��
==

+−−+−+= φφ

.,...,0,0
);(

wk
YL

k

D ==
∂

∂
β
β

.,...,0,0
);(ln

wk
YL

k

D ==
∂

∂
β
β

 13

equations

Usually numerical procedures have to be used solve these two equations. However,
the equation system can be simplified as follows. By solving φ from the second
equation above we get

and by inserting this into the first equation, we obtain an equation independent of φ,

The estimate of N0 can then be obtained by solving this equation. Inserting the
estimated N0 into the expression of φ, we may then get the maximum likelihood
estimate of φ.

2.5. General model characteristics and limitations

Random Process

A software reliability model, as previously noted, usually has the form of a random
process that describes the behavior of failures with time. This is because both the
human error process that introduces defects into code and run selection process that
determines which code is being executed at any time are dependent on an enormous
number of time-varying variables. The use of a random process model is appropriate
for such a situation. Specification of the model generally includes specification of a
function of time such as the mean value function (expected number of failures) or
failure intensity. The parameters of the function are dependent on repair activity and
program change and properties of the software product and the development process.
Properties of the product include size, complexity, and structure. Properties of the
development process include, among others, software engineering technologies and
tools used and level of experience of personnel. The "time" involved in the character-
ization of the models is a cumulative time. The origin may be arbitrarily set. It is
frequently the start of system test.
 Software reliability models almost always assume that failures are independent of
each other. They may do this through assuming that failure times are independent of
each other or by making the Poisson process assumption of independent increments.

0
1

1ln

11 00

=−
+−

=
∂

∂ ��
==

n

i
i

n

i

t
iNN

L φ

() .01
ln

1
0 =+−−=

∂
∂ �

=
i

n

i

tiN
nL

φφ

() ,1
1

1
0

−

= � �
�

��
+−= � i

n

i

tiNnφ

()
.

11

1
...

1

11

1 0

1

000 � �
=

=

+−
=

+−
++

−
+

n

i i

n

i i

tiN

tn

nNNN

 14

This condition would appear to be met for most situations. Failures are the result of
two processes: the introduction of faults and their activation through selection of the
input states. Since both of these processes are random, the chance of influence on one
failure by another is small. Influence would require two conditions. One fault would
have to affect the introduction of another during development. Further, an input state
that results in failure for the first fault would have to cause the selection of an input
state that results in failure for the second fault. The independence conclusion is su-
pported by a study of correlograms of failure data from 15 projects [11]. No signifi-
cant correlation was found.
 It is possible that the selection of runs could be planned or manipulated during test.
The tester has at least partial control of the environment, and this could make random
selection of input states a poor model. However, a random process is still a reasonable
model of failure behavior. The introduction of faults into code and the relationship be-
tween input state and code executed are usually both sufficiently complex process to
make deterministic prediction of failure impractical. In other words, we can not predi-
ct which input states are more likely to yield failures. Consequently, a deterministic
selection of input states will not have a deterministic effect on reliability. Of course,
if the relative frequencies of selection have changed, then the operational profile has
changed and that will affect the reliability.
 There is one case in which manipulation of the characteristics of the random process
can occur. It requires that:

(1) The relationship of program segments executed with respect to input state is
Disjoint.

 (2) There are clear differences in fault density between different program segments.

"Disjoint" means that each input state maps to a different set of program segments ex-
ecuted and there are no program segments executed in common by different input
states. The clear differences may occur when some segments may be tested code from
previous programs and some may be newly written. In this situation, it is possible to
manipulate reliability figures to somewhat higher or lower figures by biasing the sele-
ction of input states. We select input states that exercise code that has either high or
low fault density. Note that the essential character of failures as a random process is
unchanged. We can not predict when the next failure will occur, even if we can mani-
pulate average behavior. One example of manipulation would be to select input states
deterministically in such a way that no code segments are reexecuted. If fault density
is the same for all segments, the observed failure intensity would tend to be constant.
Fault repair would show no effect on failure intensity. In reality, failure intensity bas-
ed on random selection of input states would be decreasing.

With and without repair

Software reliability models must cover two situations, the situation of programs that
are being repaired when failures occur and the situation of programs that are not.
These situations can occur in either the test or the operational phase, but "no repair"
is usually associated with the latter. Thus, as far as the program is concerned, the
failure intensity is constant for the duration of the release. Hence, the failure process
is conveniently modeled by a homogeneous Poisson process. This implies that the
failure intervals are exponentially distributed and that the number of failures in a gi-
ven time period follows a Poisson distribution. If the failure intensity is λ and the pe-
riod of execution of the program is τ, then the number of failures during this period is

 15

distributed Poisson with parameter λτ.
A principal factor that causes reliability to vary with time is the correction of faults
that have caused failures. In general, the time of correction does not coincide with
the time of original failure. This could lead to substantial complication in character-
izing the failure process. However, it can be handled by assuming instantaneous re-
pair and not counting the reoccurrence of the same failure. It would be recounted,
however, if the recurrence were due to inability to locate and repair the fault. Alth-
ough the result is not precisely equivalent, it is a very good approximation. All the
leading models take this approach.

Particularization

The model specifies the general form of the dependence of the failure process on
the variables mentioned. The specific form can be determined from the general
form, at least in theory, through determination of parameters. For the execution
time component, this can occur in one of two ways [12]:

(1) Prediction--properties of the software product and the development process are

used to particularize the model by determination of its parameters (this can be
done prior to any execution of the program).

(2) Estimation--inference (for example, parameter estimation) procedures are app-
lied to failure data.

A model and an inference procedure are commonly associated. Together, they pro-
vide projection through time. Without a model, we could not make inferences about
reliability outside the time period for which failure data have been taken. In fact, we
could not make inferences at all, because the size of the failure sample would be one.
The model provides the structure that relates behavior at different points in time. It
Thus, in effect, provides for a sample of reasonable size to be taken.
 Note that the inference procedure that has historically been associated with a model
is not necessarily the "best". We may wish to consider alternatives. Inference also ge-
nerally includes the determination of the range of uncertainty. We either establish co-
nfidence intervals for the parameters or determine posterior probability distributions
for significant quantities in the case of Bayesian inference. The determination of ran-
ges of uncertainty is generally extended to quantities that are derived from the models
as well.
 Failure data are most commonly available in the form of times of failures or number
of failures in a given time interval. Time can be specified in either calendar time, the
actual chronological period that has passed, or execution time, the processor (CPU)
time accumulated.

M odel limitations

In fitting any model to a given data set, we are cautioned about some limitations for
this type of analysis. First, we must be aware of a given model's assumptions. For
example, if a selected model makes the assumption that the time intervals over which
the software is observed or tested are all of the same magnitude, don't attempt to use
this model if this is not the case for the data. There are other assumptions that may not
hold, but the model may be fairly robust with respect to violations. One such assump-

 16

tion is the distributional one about the number of failures per unit time or the time be-
tween failures. One can still do a credible job in fitting the data for a selected model
even if its distributional assumption is violated. The only way to tell is to ask just how
well the model is doing in tracking and predicting the data.
 A second model limitation concerns future predictions. If the environment in which
the software is being tested or observed changes considerably from the one in which
the data have been collected, we can't expect to do well in predicting future behavior.
If the software is being operated in a different manner (i.e., new capabilities are being
Exercised that were not used before, or a different testing methodology is used), the
failure history of the past will not reflect these changes, and poor predictions may be
result. Too many times model users tend to extrapolate either too far into the future or
make reliability predictions for an environment in which little if any data have been
gathered. For both violations of assumptions and considerations for predictions, one
option that may be available to the practitioner is to use the most recent data if suffi-
cient current data are available. Recent data may be more representative of the envir-
onment in which the software is employed than data collected in the distant past. This
same reasoning applies to violations of assumptions. Current data may be more stable
and reflective of the assumptions than past data.

 3. Software reliability simulation techniques

3.1. Introduction

The software reliability models attempt to assess expected reliability or future opera-
bility by using observed failure data and statistical inference techniques. Most of these
treat only the exposure and handling of failures during testing or operations. They are
restricted in their life-cycle scope and adaptability to general use for a number of rea-
sons, including their foundation on oversimplified assumptions and their main focus
on testing and operations phases. Some modelers may have relaxed an assumption
here or there in attempts to provide more generality, but as models become more and
more realistic, the likelihood of obtaining simple analytic solutions plunges to impo-
ssibility. And reliability modeling ultimately requires good data. But software projects
do not always collect data sets that are comprehensive, complete, or consistent enough
for effective model application or research. Additionally, industrial organizations are
reluctant to release their reliability data for use by outside parties.
 Simulation presents a particularly attractive computational alternative for investiga-
ting software reliability because it averts the need for overly restrictive assumptions
and because it can model a wider range of reliability phenomena than mathematical
analyses can cope with. Also, it can provide an "virtual" environment to predict or
study software reliability for some software projects. Here, simulation is refers to the
technique of imitating the character of an object or process in a way that permit us to
make quantified inferences about the real object or process. In the area of software re-
liability, simulation can mimic key characteristics of the processes that create, valida-
te, and revise documents and code. It can mimic faulty observation of a failure when
one has, in fact, occurred, and additionally, can mimic system outages due to failures.
Furthermore, simulation can distinguish faults that have been removed from those that
have not, and thus can readily reproduce multiple failures due to the same asyet unre-
paired fault. Some reliability subprocesses may be sensitive to the passage of execute

 17

time (e.g., operational failures), while others may depend on wall-clock, or calendar,
time (e.g., project phases); still others may depend on the amount of human effort ex-
pended (e.g., fault repair) or on number of test cases applied. A simulator can relate
model-pertinent resource dependencies to a common base via resource schedules,
such as workforce loading and computer utilization profiles.

 There are two main types of software reliability simulation ways, one is rate-based
simulation, the other is artifact-based simulation. For the artifact-based simulation: we
consider many aspects of program construction and testing to investigate the effect of
static features on dynamic behavior, the inputs may include those which characterize
code structure, coding errors, test input data, test conduct, failure characteristics, de-
bugging effectiveness, and computing environment. In this paper, we used rate-based
simulation way to get some results for a switching system software.

3.2. Rate-based simulation

It is a rate-controlled event process simulation way, the fundamental basis of this si-
mulation method is the representation of a stochastic phenomenon of interest by a
time series x(t) whose behavior depends only on a rate function, call it β(t), where
β(t)dt acts as the conditional probability that a specified event occurs in the infinitesi-
mal interval (t,t+dt). We can treat the event as a fault/failure in a software.

3.2-1. Event process statistics

If S0 and S1 denote the states of an event ε, S0 in effect before the event and S1 after its
Occurrence, then a particular member of the stochastic time series defined by { β0(t),
 S0 , S1} beginning at time t=0 is a sample function, or realization, of the general rate-
based discrete-event stochastic process. The zero subscript on β0(t) signifies the S0 ,
or zero occurrences, starting state.
 The statistical behavior of this process is well known: the probability that event ε
will not have occurred prior to a given time t is given by the expression

 where

The form of β0(t) is unrestricted, but generally must satisfy
 β0(t)≥0 and λ0(∞,0)=∞ Eq. (3.3)
The first of these prevents the event from occurring at a negative rate, and the second
stipulates that the event must eventually occur. If the second condition is violated,
there will be a finite probability that the event will never occur.
 Where the events of interest are failures, β0(t) is often referred to as the process ha-
zard function and λ0(t,0) is the total hazard. The cumulative distribution function and
probability density function for the time of an occurrence are then
 F1(t)=1-P0(t)

The mean time of occurrence is

())0,(
0

0 tetP λ−=

�
=

t

t

dtt
0

)(),(000 ττβλ

)0,(
01

0)()(tettf λβ −=

dtetttE t
�∞

−=
0

)0,(
0

0)()(λβ

 18

 If λ0(t,0) is known in closed form, we may sometimes be able to write down and
analyze the event probability and mean time of occurrence functions directly. In all
but the simplest cases, however, we will require the assistance of a computer. When
we can not express the integrals in closed form, we can still evaluate them using str-
aightforward numerical analysis.

3.2-2. Rate function of simulation models

We use the following rate functions in our implemented simulator. Except these may
differ significantly in their assumptions about underlying failure mechanism, they
differ mathematically only in the forms of their rate functions.

(1) The Goel-Okumoto (GO) model treats an overall reliability growth process with
 β(t)=n0φe-φt , where n0 and φ are input parameters, n0φ is the initial failure rate,
 and φ is the failure rate decay factor. Strictly speaking, this rate function violates
 the conditions on λ(t,0) imposed in Eq.(3.3), because λ0(∞,0)=n0 and P0=e-n0 . In
 practicality, n0 is usually fairly large, so the consequences may be negligible.
(2) The Jelinski-Moranda (JM) model describes statistics of failure time intervals
 under the presumption that βn(t)=β0(1-n/n0), where n0 is the estimated (unknown)
 number of initial software faults and β0 is initial failure rate.
(3) The Duane model deals with another overall reliability growth model with failure

rate function as, β(t)=kbtb-1, where k and b are input parameters. Eq.(3.3) requires
that 0<β<1.

(4) The Littlewood-Verrall inverse linear model is an overall reliability growth model
 with β(t)=β0/(1+θt)1/2 where β0 is the initial failure rate and θ is a rate decay factor.
(5) The Musa-Okumoto model [13], in which β(t)= β0/(1+θt), where β0 is the initial

 failure rate and θ is a rate decay factor. Both β0 and θ are input parameters.
(6) The Yamada S-shaped model, its failure rate function is β(t)=ab2te-bt, where a is

the number of failures to be expect occur and b corresponding to a failure detect
rate.

(7) The Musa's basic execution time model, its failure rate function is β(t)= β0 β1e
-β1t.

Where β0 is the total number of faults that would be detected, β1 is the factor of
fault reduction.

In [14] and Chapter 3 of [2], there are detailed description about software reliability
models.

3.3 Simulator implementation

We have implemented a simulator which has black-box and white-box simulation
functions for software reliability. It is a failure rate-based simulator, the above seven
failure rate functions are used as simulation model respectively. The simulator can be
used for data fitting, model validation and failure evaluating for software reliability
engineering.

 19

3.3-1 General simulation assumptions

For the simulator we have the following assumptions, they can be seen as the most
common assumptions for software reliability models.

(1) The faults of program are introduced randomly, the occurrence of failure is a ran-

dom process.
(2) The software is tested remains essentially unchanged throughout testing, except

for the removal of faults as they are found.
(3) Removing a fault does not affect the chance that a different fault will be found.
(4) "Time" is measured in such a way that testing effort is constant.
(5) At any time the future evolution of the testing process depends only on the present

state (the current time, the number of faults found and remaining, and the overall
parameters of the model), and not on details of the past history of the testing pro-
cess.

(6) All faults are of equal importance (contribute equally to the failure rate).
(7) At the start of testing, there is some finite total number of faults, which may be fi-

xed (known or unknown) or random; if random, their distribution may be known
or of known form with unknown parameters. Alternatively, the "number of faults"
is not assumed finite, so that if testing continues indefinitely, an ever-increasing
number of faults will be found.

(8) Between failures, the failure rate follows a known functional form.

3.3-2 Simulation approaches

 1). Black-box simulation

We have two methods for implementing the simulator, one is black-box simulation,
another is white-box simulation. For the black-box simulation, we treat software as a
whole only its interactions with the outside world are modeled, the internal structure
and component combinations are not concerned. It is relatively a simple simulation
approach, the basic algorithm for black-box simulation is as follows

 Initialization(e.g. set maxtime_step, dt, simulation run times…)

 While(maxtime_step>1){

 Produce a random number: 0<occurs<1

 If (vr*dt<occurs)

 Failure_num=Failure_number+1 and t=t+1 }

Where, vr is the value of the failure rate function at that time, Failure_number is the
number of cumulative failures at that time.
 The input of black-box simulation is a failure behavior file, this file includes the
parameters of failure rate functions. The parameters can be obtained by using CASRE

 20

(Computer Aided Software Reliability Estimation) which is a tool for software relia-
bility measurement. There are detailed description about CASRE in [2] Appendix A.
The output or results of black-box simulation are the number of cumulative failures
and the failure intensity of the software. In the later of this paper we give some black-
box simulation results discussion.

2). White-box simulation

 In the black-based simulation approach for software reliability we treat the software
system as a whole, without looking into its internal structure, and using one model to
simulate the whole software. However, in practical, a lot of software packages are co-
nsist of components (component-based). With the advancement and widespread use
of object oriented systems design and internet-based development, the use of compo-
nent-based development is on the rise. The software components can be commercially
available off the shelf (COTS), developed in house, or developed contractually. Thus,
the whole software is developed in a heterogeneous (multiple teams in different envi-
ronments) fashion, and hence it may be inappropriate to simulate the overall failure
process of such a software using the black-box approach. Thus, taking into account
some information about the internal structure of the software for analyzing its reliabi-
lity is absolutely essential [15].
 In the white-box simulation approach we assume that the software comprising of m
components begins execution with component 1, and terminates upon the execution
of component m. The architecture of the software is specified by the intercomponent
transition probabilities, denoted by wij. wij represents the probability that component
j is executed upon the completion of component i. We can apply different software re-
liability model for different component, of course we also can use the identical model
for the whole software. The basic algorithm of white-box simulation as follows
 Initialization(set max-time, dt; curr_comp=1…)

 While (time<max-time){

 Check_point=0; produce a random number 0<a<1

 if (vr*dt<a)

 Failure_num_comp+1 and Failure_num_T+1; time+dt

 for (i=1; i<=m;i++){
 Check_point=check_poin+transition_p[curr_comp][i]
 if (a<=check_point)
 break; }
 curr_comp=i; }

 In the above, vr is equal to the value of failure rate function at that time; curr_comp
 represents the current executing component number; the Failure_num_comp is the
 cumulative failure number of current component, and the Failure_num_T is the
 cumulative failure number of the whole software. dt is time interval for simulation.
 The transition_p is an array which contains the transition probabilities between
 components of the software. The "for loop" is actually used for determining which
 component will execute at next time.

 21

 The input of white-box simulation are failure behavior of all components and tran-
sition probabilities file. A five-component software failure behavior file is as follows:

In which, each row corresponds one component (first row is for component 1, second
row is for component 2,etc.). First column indicate which model will be used for the
component (e.g. "go" represent the Goul-Okumoto model, "ys" indicate the Yamada
S-shaped model is being used for component 4). The other real numbers of each row
are the parameters of the used software reliability model. These parameters can be
estimated by using CASRE.
 The following is a five-component software transition probability file

 5

0.00 0.80 0.20 0.00 0.00
0.30 0.00 0.70 0.00 0.00
0.00 0.00 0.00 0.70 0.30
0.00 0.00 0.20 0.00 0.80
0.60 0.20 0.00 0.20 0.00

In which, the first row has an integer number, it indicates the number of components
belong to the software. Each real number in other rows is in [0.00, 1.00], it represents
the transition probability from component i to component j.

The output or results of white-box simulation are number of cumulative failures for
each component and the whole software. We can also get the failure intensity of each
component and the whole software. Figure 3.1 give the simulation results of a five-
component software. The failure behavior and transition probability of this software
are the same as above.

 Figure 3.1 simulate results for a five-component software

go 130.6 0.0048
go 108.7 0.0053
jm 63.78 0.3288
ys 88.5 0.00988
go 78.66 0.0056

0

100

200

300

400

500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
time

cu
m

ul
at

iv
e

fa
ilu

re
s system

component 1

component 2

component 3

component 4

component 5

 22

From the Figure 3.1 we can know that the cumulative of whole software system has
identical convergence trend with all components, and the total number of failures in
the system is approximately equal to the sum of all components. In most situations,
this is the case.

4. Project applications

We have applied the simulation approaches into a project software for analyzing its
reliability features. This section introduce the application results and some compari-
sons.

4.1 General description of the software (About the project see [16])

This is the system software of three successive generations of the Brazilian switching
system, TROPICO-R. It is developed jointly by the R&D center for Brazilian Teleco-
mmunications and some Brazilian manufacturers. To dates, three successive products
have been developed, and referred to as PRA,PRB and PRC. The software can be de-
composed into two main parts; the applicative software and the executive software.
Two categories of components can be distinguished in the TROPICO-R software: i)
Elementary Implementation Blocks (EIB), which fulfil elementary functions and ii)
groups of elementary implementation blocks according to the main four functions of
the system. These groups are:
• Telephony (TEL): local call processing, charge-metering, etc.
• Defense (DEF): on-line testing, traffic measurement, error detection, etc.
• Interface (INT): communication with local devices (memories, terminals),…
• Management (MAN): communication with external devices (trunk),…
The software were coded in Assemble language. In order to analyze the evolution of
TROPICO-R software and to compare the successive products, we have defined the
following types of EIBs:
• new: developed specifically for a given product;
• modified: developed for a given product and then modified to meet the requirements
 of the new product;
• unchanged: EIBs of a previous product included in a new product without functional
 modification.
Table 4.1 lists the number of EIBs and the size of the software for the three products.
It can be seen that the software size progressively increased. A 10 percent increase of
the PRB size can be noticed relative to PRA and 20 percent in PRC code compared to
PRB. Only one EIB from PRA was not included in PRB, while all others were reused
with or without modifications for PRB. Additionally, four new EIBs were developed.
With respect to PRC, only six EIBs from PRB were functionally modified, the remain
PRB EIBs were unchanged. Also, two new EIBs were developed specifically for PRC

 #EIB Size (kbytes)

 PRA 29 320

 PRB 32 351
 PRC 34 421

 Table 4.1 Number of EIBs and size of PRA, PRB and PRC

 23

 Figure 4.1 shows the amount of modification introduced on PRB with respect to PRA
and on PRC with respect to PRB, according to the number of EIBs and to the software
size. 67% of PRB code results from the modification of the PRA code. About 75% of
the modified EIBs belong to the applicative software and 84% of unchanged EIBs to
the executive. Thus, the increase of the TROPICO-R capacity mainly led to major
modifications of the applicative software with only minor modifications to the execu-
tive. With respect to PRC, since the processing capacity of the system was the same
as that of PRB, only 34% of PRB code was modified. Most modifications were intro-
duced on the applicative software. When considering the four software functions, it
appears that, for both PRB and PRC , most modifications concerned telephony and
defense functions.

a) according to the number of EIBs

b) according to the size of EIBs

 Figure 4.1 Distr ibution of unchanged, modified and new EIBs in PRB and PRC

4.2 Test Environment and Collected Data

4.2-1 Test Program

The software test program drawn up for TROPICO-R include four series of tests:
unit test, integrated test, validation test, and field test. The first three correspond to
the test phases usually defined for a software life cycle. Field test consists of testing
a prototype in a real environment, similar to the operational environment. It uses a
system configuration (hardware and software) that has reached an acceptable level
of quality after completing the laboratory tests.
 The test program completed during validation and field testing is made up of four
types of test (functional, quality, performance and overload). The whole quality con-

! !! !! !! !! !

PRB
50%

13%

37% "" "" "" "" "" "

#
PRC

76%

18%

6% $ $ $ $
unchanged% % % %
modified

new

& & & & & & & & & & & & & & & & & & && & & & & & & & & & & & & & & & & & && & & & & & & & & & & & & & & & & & && & & & & & & & & & & & & & & & & & &
' '' '' '' '' '' '' '

PRB

21%

67%

12% (((((((((((((

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
PRC

64%

34%

2% * * * ** * * *
unchanged+ + + +
modified

new

 24

trol program established for TROPICO-R is described in [17]. PRA and PRB valida-
tion was carried out according to this program. Also, testers followed a similar test
program for the test and validation of PRC. In addition to software testing based on
software execution, they used code inspections for static analysis. These inspections
were performed during the development of PRC and continued during the operational
phase.

4.2-2 Data collection

The failures and troubles impacting the software were reported in appropriate failure
or trouble report sheets. A failure report, denoted FR, is filled in whenever a discrepa-
ncy is found between the expected and the observed system behavior during software
execution. A trouble report, denoted TR, records each fault uncovered during static
analysis.
The failure or trouble reports contain the following:
• date of failure or date of detection of faults by static analysis;
• description of system configuration in which the failure was observed and of the
 conditions of failure occurrence for FRs;
• type of FR or TR: hardware, software, documentation with an indication of EIBs
 concerned;
• analysis: identification and classification of the fault(s) which led to an abnormal
 software behavior (coding, specification, interface,…);
• solutions: the proposed solutions and those retained;
• modification control: control of the corrected EIBs;
• regression testing: results of the tests applied to the corrected EIBs.
Only one FR (resp. TR) is kept per observed failure (resp. per detected trouble): redi-
scoveries are not recorded. In other words, if several FRs (resp.TRs) cover the same
failure (resp. the same trouble), only one (the first) is enter into the database. In fact,
an FR (TR) is both a failure report (trouble report) and a correction report since it also
contains information about the fault(s) that resulted in an abnormal behavior of the
software.
For each product and each phase, table 4.2 gives the data collection period. No field
test were performed for PRB. This is because many PRA components were reused for
the development of PRB, which was then installed in operational sites while PRA had
already been operating for several months. For PRC , data collection started at the be-
ginning of the of the operational phase of the system. The data provided by ELEBRA*

only refer to this phase and the failures or troubles encountered during validation and
field test were not reported.

 validation Field test operation

 PRA 10 months 4 months 13 months
 PRB 8 months 0 24 months
 PRC 0 0 47 months

 Table 4.2. Validation, field test and operation length for the per iod of data collection

* Brazilian Telecommunications

 25

4.2-3 Statistics on failures and corrected faults

Table 4.3 gives the number of failures (#FR) and troubles (#TR) reported, as well as
the number of corrected faults (#CF) for each product. Note that for PRC, the number
of failures and the number of troubles are indicated in order to distinguish between
the failures observed during software execution and the troubles identified by static
analysis. Clearly, the number of reported trouble is important. This result shows that
code inspections are effective and allow a high proportion of software faults to be
detected. Experimental studies reported for example in [18] and [19] have shown that
thorough static analyses can lead to the detection of 75% to 95% of faults before
software execution. The results obtained for PRC show that static analyses could also
be helpful in operation.
Table 4.3 shows that less failures occurred in PRB and PRC even though:i) the period
of data collection is longer for these products than that of PRA (see Table 4.2) and ii)
more PRB and PRC systems have been in use during the operation phase.
Because some failures led to the modification of more than one EIB, the number of
corrected faults indicated in Table 4.3 exceeds the number of failures. Table 4.4 give
the statistics concerning the number of EIBs that have been corrected because of a
software failure* . Clearly, the results are similar for the three products. More than
70% of the failures led to the correction of only one EIB. This shows that there is a
slight failure interdependence among EIBs.
The analyses of the data corresponding to failures which is involving more than one
component allowed us to identify two pairs of EIBs that are strongly dependent in
terms of failure occurrence. For these two pairs, it was found that the probability of
simultaneous modification of both EIBs exceeds 0.5 whenever a failure was due to a
fault located in one of them. This result was obtained for the three products. More
generally, this type of analysis can have great help for software maintenance. It allows
software debuggers to identify the stochastically dependent components with regards
to failure occurrence and to take them into account when looking for the origin of
failures.

 #FR / #TR #CF
 PRA 465/- 637
 PRB 210/- 282
 PRC 212 / 105 394

 Table 4.3 Number of failures and corrected faults in PRA, PRB, PRC

 # corrected EIBs # FR in PRA # FR in PRB (#FR+#TR) in PRC
 1 362 (77.8%) 165 (78.6%) 228 (71.9%)

 2 72 (15.5%) 33 (15.7%) 69 (21.8%)

 ≥3 31 (6.7%) 12 (5.7%) 20 (6.3%)

 Table 4.4 Statistics on the number of EIBs affected by one failure

 * For the sake of simplicity, in the following, we will define a failure as a discrepancy between the
 expected and the observed software behavior irrespective of whether it is observed during software
 execution or detected by static analysis. The distinction between failures and troubles will only be
 made if required.

 26

4.2-4 Collected failure data of each function for TROPICO-R

Table 4.5 gives the number of failures (#FR) or troubles (#TR), and the number of
corrected faults (#CF) attributed to the four functions: TEL, DEF, INT and MAN (as
defined in section 4.1). The sum of failure reports attributed to the functions is higher
than the total number of failures reports indicated in table 4.4, this is because when a
failure impacts different functions, an FR is attributed to each one. The real failure
database include "cumulative failure number vs. time" and "failure intensity" are in
Appendix B.

 PRA PRB PRC

 size #FR #CF size #FR #CF size #FR/#TR #CF

TEL 72 146 190 75 74 102 111 65 / 52 155

DEF 93 138 164 117 67 71 130 63 / 21 87

INT 113 170 191 115 61 68 129 72 / 27 112

MAN 42 78 92 44 31 41 51 25 / 10 40

Sum 320 532 637 351 233 282 421 225 / 110 394

 Table 4.5 Size (in Kbytes) and number of failures and corrected faults per function

4.3 Simulate results for TROPICO-R and comparisons

We have applied our simulator to simulate the software reliability of three successive
generations products (TROPICO-R, PRA, PRB and PRC). First , we simulated each
function of each product, then we made simulations for each product. There are three
models are used in these simulation processes, they are: GO (Goel-Okumoto) model,
JM (Jelinski-Moranda) model and Yamada S-shaped model. The parameters in these
failure rate functions were got by using a software reliability estimation tool CASRE
(see [2] Appendix A). The results of simulations are cumulative number of failures
 and failure intensity of each function component and whole product. Here, we just
give the simulation results of "TEL" component and system for each product. The all
simulation data are in appendix B.

 Figure 4.2 PRA_TEL simulate results (with real data)

PRA_TEL GO model data

0

20

40

60

80

100

120

140

0 20 40 60

cu
m

u
la

ti
ve

 f
ai

lu
re

s

PRA_TEL JM model data

0

20

40

60

80

100

120

140

0 20 40 60
PRA_TEL S-shaped model data

0

20

40

60

80

100

120

140

0 20 40 60
month

PRAT data

simulate data

 27

 Figure 4.3 PRB_TEL simulate results (with real data)

 Figure 4.4 PRC_TEL simulate results (with real data)

Figure 4.2 to 4.4 show the comparisons between simulate data with real data for TEL
function of each product. The time unit is month, there are 27 months observed failure
data for PRA. There are 32 months,47 months observed failure data for PAB and PRC
respectively. In order to get prediction, we made 50 months simulation results. From
these figures we can see that in case of large number of failures the three models have
better fitting and prediction. When there are small total failures number (TEL function
of PRC), JM model has better fitting and prediction (see Figure 4.4), GO model has
 worst prediction. This result indicates that GO model has more dependency with the
Eq. 3.3 . From the simulation results, we can also know that in some cases theYamada
S-shaped model is closer to the real data at early phase and it has similar prediction
with GO model. The simulation results for other functions (DEF, INT, MAN) of the
three products (see Appendix B) have similar features with above.

PRB_TEL GO model data

0
10
20
30
40
50
60
70

0 20 40 60

c
u

m
u

la
ti

v
e

 f
a

il
u

re
s

PRB_TEL S-shaped model data

0
10

20
30
40
50
60
70

0 20 40 60

month

PRB_TEL JM model data

0
10
20
30
40
50
60
70

0 20 40 60

PRC_TEL GO model data

0

5

10

15

20

0 20 40 60

cu
m

u
la

ti
ve

 f
ai

lu
re

s

PRC_TEL JM model data

0

5

10

15

20

0 20 40 60

cu
m

u
la

ti
ve

 f
ai

lu
re

s

PRC_TEL S-shaped model data

0

5

10

15

20

0 20 40 60
month

PRCT real
data

simulate data

 28

 Figure 4.5 PRA system simulation results Figure 4.6 PRB system simulation results

 Figure 4.7 PRC system simulation results

 Figure 4.5-4.7 give the simulation results of PRA, PRB and PRC. PRA has the
largest number of failures . The simulation results of PRA have good fitting and
prediction. And for PRA, GO model and JM model have better fitting than S-shaped
model during early phase. This may be explained as: PRA is the first generation
product, there was no inherited experience for software developer and tester. Thus,
the faults have more homogeneous exposure rate during testing phase. For PRB and
PRC the S-shaped model has better fitting during early phase, it can be thought that
in successive generations software, latent faults are more difficult (take more time)
to be found.

PRA system simulation results

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50

month

cu
m

u
la

ti
ve

 f
ai

lu
re

s

PRA system
data

GO model
data

JM modeal
data

S-shaped
model data

PRB system simulation results

0

20

40

60

80

100

120

140

160

0 20 40 60

month

cu
m

u
la

ti
ve

 f
ai

lu
re

s

PRB system
data

 GO model data

JM model data

S-shaped model
data

PRC system simulation results

0

10

20

30

40

50

60

0 20 40 60

month

cu
m

u
la

ti
ve

 f
ai

lu
re

s

PRC_SYSTEM data

PRC_SYSTEM GO
model data

PRC SYSTEM JM
model data

PRC SYSTEM S-
shaped model data

 29

4.4 The simulation results deviation

In order to evaluate the accuracy of simulation we define simulation deviation as:
the observed failure data value minus the simulation value at that time.
Here, we give the deviations of system simulation results for PRA, PRB and PRC.

 Figure 4.8 PRA system simulation deviations

From figure 4.8 we can see that GO model and JM model simulation deviation are
similar. At some time points there are exist large simulation deviations in the three
models. In general, it seems that the JM model results has smaller deviations. With
comparing Figure 4.5, we can find that the simulation results are very close to the
practical data curve, however, with taking account into the time, it is difficult to have
accurate failure evaluation or prediction with exact time point. In other words, for a
random failure process, simulation can give a trend or general prediction, and it can
not give the accurate number with exact occurrence time.
The deviations of PAB and PRC system simulation results are showed in Figure 4.9
and Figure 4.10. As the total failure number is smaller in PRC, the deviation range in
Figure 4.10 is smaller.
We noted that near the time of 10 months in the three figures the deviation value
have a transition trend, comparing with Figure 4.7, this indicate that at the time point
of 10 month the failure occurrence rate begin change.

PRA simulation deviations (GO model)
-40

-30

-20

-10

0

10

20

30

40

0 10 20 30
monthd

ev
ia

ti
o

n

PRA simulation deviation(JM model)

-60

-40

-20

0

20

40

0 10 20 30 monthd
ev

ia
ti

o
n

PRA simulation deviation(S-shaped model)

-10

0

10

20

30

40

50

60

0 10 20 30

month

d
ev

ia
ti

o
n

 30

 Figure 4.9 PRB system simulation results deviation

PRB system simulation deviations(GO model)

-40

-30

-20

-10

0

10

20

30

0 10 20 30 40

month

d
ev

ia
ti

o
n

s

PRB simulation deviations(JM model)

-60

-50

-40

-30

-20

-10

0

10

20

0 10 20 30 40
monthd

ev
ia

ti
o

n

PRB simulation deviations(S-shaped model)

-20

-10

0

10

20

0 10 20 30 40

month

d
ev

ia
ti

o
n

 31

 Figure 4.10 PRC system simulation results deviation

PRC simulation deviation (GO model)

-10

-5

0

5

10

0 10 20 30 40 50

month

d
ev

ia
ti

o
n

PRC simulatione deviation(JM model)

-15

-10

-5

0

5

10

0 10 20 30 40 50

month

d
ev

ia
ti

o
n

PRC simulation deviation(S-shaped model)

-5

0

5

10

15

0 10 20 30 40 50

month

d
ev

ia
ti

o
n

 32

5 Conclusion and future work

Many papers deal with software reliability growth modeling and evaluation. However,
papers following a global method are seldom found.
In our work, we combined analytical models into simulation approaches to give a
effective and practical simulate method for software reliability measures. The main
contributions of our work is: implemented a rate-based software reliability measure
simulator. Its advantages are: no computation intensive, enable models combination
application, taking account into internal structure or dependency of software. The
project application demonstrate it can be used for analysis, prediction and evaluation
in software reliability literature.

 33

References

[1] Institute of Electrical and Electronics Engineering , ANSI/IEEE Standard
 Glossary of Software Engineering Terminology, IEEE Std. (1991) pp. 729-1991
[2] Michael R.Lyu, Handbook of Software Reliability Engineering, McGraw-Hill,
 New York, (1996)
[3] Goel, A.L. and Okumoto, K., "Time-dependent Error-detection Rate Model for
 Software Reliability and Other Performance Measures," IEEE Trans. Reliability,
 R-28, (1979) , pp. 206-211
[4] Ohba, M.et al., "S-shaped Software Reliability Growth Curve: How Good Is It?,"
 COMPSAC'82, (1982), pp. 38-44
[5] Yamada, S.et al., "S-shaped Software Reliability Growth Models and Their
 Applications," IEEE Trans. Reliability, R-33, (1984), pp. 289-292
[6] Schagen, I.P., "A New Model for Software Failure," Reliability Engineering,
 (1987), pp. 205-221
[7] Langberg, N. and Singpurwalla, N.D., "A Unification of Some Software Re-
 liability Models," SIAM J. Scientific and Statistical Computation, 6. (1985),
 pp. 781-790
[8] Miller, D.R., "Exponential Order Statistical Models of Software Reliability
 Growth," IEEE Trans. Software Engineering, SE-12, (1986), pp. 12-24
[9] Mellor, P., "Experiments in Software Reliability Estimation," Reliability En-
 gineering, 18, (1987), pp. 117-129
[10] Musa, J.D., Iannino, A., and Okumoto, K., Software Reliability-Measurement,
 Prediction, Application, McGraw-Hill, New York, (1987)
[11] Musa, J.D., "Validity of Execution Time Theory of Software Reliability," IEEE
 Trans. Reliability, R-28(3), (1979), pp. 181-191
[12] Hecht, H., "Measurement, Estimation, and Prediction of Software Reliability,"
 Software Engineering Technology-Volume 2, Infotech International, Maiden-
 head, Berkshire, England, (1979), pp. 209-224
[13] Musa, J.D., and Okumoto, K., "A Logarithmic Poisson Execution Time Model
 for Software Reliability Measurement," Proceedings seventh International Con-
 ference on Software Engineering, Orlando, Florida, (1984), pp. 230-238
[14] M. Xie, Software Reliability Modelling World Scientific Publishing Co. Pte. Ltd.
 , (1991)
[15] Swapna S. Gokhale, Michael R. Lyu, Kishor S. Trivedi, "Reliability Simulation
 of Component-Based Software Systems," IEEE Proceedings, (1998)
[16] Karama Kanoun, Marta Rettelbusch de Martini, and Jorge Moreira de Souza
 "A Method for Software Reliability Analysis and Prediction Application to the
 TROPICO-R Switching System," IEEE Trans. Software Engineering, vol.17,
[17] Vianna, B.,"R&D at TELEBRAS-CPqD:The TROPICO System," in Proceedings
 International Conference Communications (ICC88), philadelphia, PA, USA, June
 1988
[18] Fagan, M.E., "Advances in Software Inspection," IEEE Trans. Software Eng., 12
 (7), (1986), pp. 744-751
[19] Shen, V.Y., et al., "Indentifying Error-Prone Software--An Empirical Study,"
 IEEE Trans. Software Eng., SE-11(4), (1985), pp. 317-324

