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Abstract—With the growing number of competing Web services that provide similar functionality, Quality-of-Service (QoS) prediction
is becoming increasingly important for various QoS-aware approaches of Web services. Collaborative filtering (CF), which is among
the most successful personalized prediction techniques for recommender systems, has been widely applied to Web service QoS
prediction. In addition to using conventional CF techniques, a number of studies extend the CF approach by incorporating additional
information about services and users, such as location, time, and other contextual information from the service invocations. There are
also some studies that address other challenges in QoS prediction, such as adaptability, credibility, privacy preservation, and so on. In
this survey, we summarize and analyze the state-of-the-art CF QoS prediction approaches of Web services and discuss their features
and differences. We also present several Web service QoS datasets that have been used as benchmarks for evaluating the predition

accuracy and outline some possible future research directions.

Index Terms—Web service, QoS, prediction, collaborative filtering

1 INTRODUCTION

EB services are self-contained reusable Web compo-
Wnents designed to support machine-to-machine inter-
actions by programmatic method calls [1]. Programmableweb.
com reports that there are 20,525 public Web services avail-
able on the Web. In addition, the development of cloud
computing and mobile computing further accelerates the
availability of Web services [2]. Unsurprisingly, many of
this huge number of Web services offer similar functionality
to users. Among those Web services of similar functionality,
Quality-of-Service (QoS), which describes the services” non-
functional characteristics, is recognized as an important cri-
terion to differentiate between them.

A number of QoS-aware approaches of Web services have
been proposed, such as service recommendation [3], service
selection [4], service composition [5], service discovery [6],
and so on. Fig. 1 is an example illustrating QoS-aware service
selection. The service composition process S_com is com-
posed of several abstract services (S; to S5). Each abstract ser-
vice can be implemented via a set of functionally equivalent
concrete services {s;;, s;,.--, 5;y, }- The aim of QoS-aware ser-
vice selection is to select appropriate services from each of
these sets to optimize the composite service. Most previous
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QoS-aware service selection approaches assume that the
QoS values of all concrete service candidates are user-inde-
pendent and identical for different users. However, some
QoS properties, such as response time, throughput, failure
probability, and reliability, are user dependent. The response
time is the time interval between a service user sending a
request to a service and receiving the last byte of the corre-
sponding response from the service, while throughput is
defined as the number of successful messages passing
through a communication channel per second. Failure prob-
ability is defined as the probability that a service user’s invo-
cation of a Web service will fail, while reliability refers to the
probability that a service will run without failure in a specific
environment for a specific time. These properties are closely
related to the unpredictability of Internet connections and
the heterogeneity of user environments. They may vary sig-
nificantly from user to user because of dynamic network con-
ditions. In such an environment, Web service evaluation on
the client side is likely to obtain more accurate and personal-
ized QoS values for the demanded Web services than a
server-side evaluation.

However, it may be too time-consuming or even impracti-
cal to acquire QoS values by evaluating all service candidates
on the client side because of time or cost constraints. In addi-
tion, because QoS performance is quite susceptible to unpre-
dictable Internet connections and heterogeneous user
environments, the QoS values of a Web service are unlikely
to remain stable continuously. Based on these facts, accurate
and personalized Web service QoS prediction becomes a
necessity for QoS-aware approaches of Web services.

Collaborative filtering (CF), which is one of the most suc-
cessful prediction techniques for recommender systems,
has been widely applied to Web service QoS prediction. CF-
based QoS prediction approaches can make personalized
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(a) User-Service Invocation Graph

S; S, S3 S S5 Sg Sy S, S3 S5 S5 Sg
u; [0.98]0.23 0.22 u; [0.980.23|0.24 | 0.22 | 0.22 (0.53
u, [ 0.13 0.27 0.25 u, [0.130.26 | 0.27 | 0.25 | 0.25 [ 0.43
uz 0.37 0.36 u; [0.85(0.37|0.38|0.36 |0.36 | 0.12
u, | 0.69 0.22 1 0.22 0.34 u, [ 0.690.2310.22|0.22|0.22 (0.34

| S11 | | S21 | | S31 | | Sa1 | | S51 |
QAbstract
| S12 | | 522 | | S32 | Sa2 | | Sso | Service
| >13 | | 523 | | S33 | | Sa3 | | Ss3 | Concrete
: : : : : Service
| Sint | | Son: | S3ns | | SaNs | Ssns

Fig. 1. QoS-aware service selection.

QoS values prediction for service users, because of their
great success in modeling the characteristics of users and
services. CF approaches can be roughly divided into mem-
ory-based, model-based, and hybrid approaches. The core
assumption of memory-based CF is that users who have
observed similar QoS values in the past are likely to observe
common QoS values in the future, whereas model-based CF
approaches are based on prediction models that have been
trained using previous QoS values. Hybrid CF approaches
are a combination of memory-based and model-based CF
approaches. There are additional information beyond the
QoS values that can be employed to improve the perfor-
mance further. In this survey, we summarize the state-of-
the-art CF-based QoS prediction approaches of Web serv-
ices, as shown in Fig. 2, and discuss their features and dif-
ferences. We also present several Web service QoS datasets
that have been used for QoS prediction evaluation and out-
line some possible future research directions.

The remainder of this paper is organized as follows:
Section 2 defines the Web service QoS prediction problem.
Section 3 introduces the background to CF. Section 4 sur-
veys memory-based CF QoS prediction approaches, includ-
ing conventional and extended memory-based approaches,
which incorporate context information to improve the QoS
prediction. Section 5 surveys conventional and extended
model-based CF QoS prediction approaches. Section 6 sur-
veys hybrid CF QoS prediction approaches. Section 7 ana-
lyzes adaptive, credible, and privacy-preserving CF QoS
prediction. Section 8 introduces some Web service QoS
datasets. Section 9 discusses some future research direc-
tions. Finally, we conclude the survey in Section 10.

— Conventional Memory-based CF |

—{ Memory-based CF Incorporating Location Information \

Memory-based
CF

—{ Memory-based CF Incorporating Time Information \

—{ Memory-based CF Incorporating Additional Context Information |

— Conventional Model-based CF
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|

|

|
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Memory-based Models Exploring Latent Features \

Neighborhood-Integrated Matrix Factorization Model \

Fig. 2. Overview of CF-based QoS prediction approaches of Web
services.

(b) User-Service Matrix (c) Predicted User-Service Matrix

Fi

g. 3. A motivating example of QoS prediction.

2 THE WEB SERVICE QOS PREDICTION PROBLEM

First, we consider the motivating example shown in Fig. 3a.
Let U = {uy,us,...,u,; be the set of Web service users,
S ={sy, S9,..., 5S¢} be the set of Web services, and E (solid
lines) be the set of invocations between U and S. The edge
ejj between u; € U and s; € S indicates that user w; has
invoked Web service s; previously. The weight w;; on edge
e;; refers to the QoS value (e.g., response time) of that invo-
cation. The user-service invocations can be represented by a
matrix P, as shown in Fig. 3b. Each entry p;; in P represents
the QoS value of a Web service s; observed by a service user
u;. The missing QoS values in P indicate that there are no
invocations between the corresponding users and Web serv-
ices. Under this setting, the Web service QoS prediction
problem can be defined thus: given a user-service matrix P
that represents known QoS values of Web services, predict
the missing QoS values in P.

CF approaches have been widely applied to rating-based
recommender systems for predicting missing ratings, and
the basic assumption is that users who have expressed simi-
lar interests in the past will share common interests in the
future [7]. The same phenomenon can be observed for Web
service QoS prediction. If the QoS values observed by two
users in the past are similar, it means that the network con-
ditions of the two users may be similar, so the QoS values
observed by the two users in the future will probably again
be similar. Therefore, CF is also a popular approach for
Web service QoS prediction. CF-based QoS prediction
approaches of Web services have made great progress in
the past few years, providing ever more automated solu-
tions for cloud computing [8], multimedia services [9], e-
commerce [10], and other application domains. Web service
QoS prediction is not a trivial task and there are some signif-
icant challenges, as follows:

Sparsity: In practice, each user typically invokes only a
few services at a time, leading to a limited number of service
invocations. With limited training data, it is difficult to
make accurate QoS predictions.

Scalability: The proliferation of available Web services
and service users makes QoS prediction subject to serious
scalability problems.

Obijectivity: Web service QoS prediction should be dis-
tinguished from ratings prediction. QoS values are objective
values perceived by users, whereas ratings are typically
subjective values offered by users. QoS values are highly

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 23,2022 at 04:04:19 UTC from IEEE Xplore. Restrictions apply.



ZHENG ETAL.: WEB SERVICE QOS PREDICTION VIA COLLABORATIVE FILTERING: A SURVEY

dependent on the performance of the underlying network,
which leads to differences in QoS scales for different users
and different environments. In addition, ratings have only
one-dimensional data, while QoS values are multidimen-
sional, since Web services have several QoS properties and
there are dependencies among these QoS data.

Considering these features of QoS, dozens of research
works have attempted to revamp CF to obtain accurate Web
service QoS predictions. This paper aims to provide a sur-
vey of these works.

3 BACKGROUND TO COLLABORATIVE FILTERING

This section provide a brief introduction of CF, including
memory-based, model-based, and context-aware CF
approaches that incorporating additional information.

A typical memory-based CF approach can be described as
a three-phase process: similarity computation, neighbor
selection, and missing value prediction. The Pearson correla-
tion coefficient (PCC) algorithm [11] and the vector-space
similarity (VSS) algorithm [12] are often used for similarity
computation. Those users or items with high similarity will
be selected as similar neighbors of each other. Having identi-
fied the set of neighbors, the next step is to employ the infor-
mation from similar neighbors to predict the unknown
ratings in the user-item matrix. According to the similarity
calculated for users or items, memory-based CF approaches
can be divided into three categories: item-based approaches,
user-based approaches, and their fusion in hybrid
approaches. User-based approaches, such as GroupLens [13]
and Bellcore video [14], predict the rating of an active user
for an item by leveraging the ratings for this item by other
users who have similar rating patterns. Ratings for similar
users (neighbors) are those that are most correlated to the
active user’s ratings. Item-based approaches [15], [16], how-
ever, predict the rating of an active user for an item based on
the ratings of items similar to those chosen by the active user.
For such approaches, two items are similar if several users of
the system have rated these items in a similar fashion.
Because user-based approaches and item-based approaches
address different aspects of the data, they may each ignore
potentially valuable information. Hybrid approaches [17],
[18] combine the prediction results of both approaches, aim-
ing to fully utilize information from similar users and from
similar Web services to improve accuracy.

In contrast to memory-based approaches, which use the
stored ratings directly, model-based CF approaches usually
employ these ratings to construct a predefined model with
appropriate parameters. The model will have a certain abil-
ity to predict unknown ratings after the learning process
and produces good estimations of an overall structure that
relates simultaneously to all users and items. Model-based
approaches are very popular and include Bayesian models
[19], Latent Semantic Analysis [20], and clustering models
[21]. Recently, matrix factorization (MF) techniques [22], [23]
have attracted considerable attention because of their advan-
tages with respect to scalability and accuracy, as witnessed
by the algorithms developed within the Netflix contest[24].
MF models refer to a group of algorithms for which a user-
item matrix is factorized into a product of the two latent
factor matrices for users and items [25].
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Many existing CF approaches deal only with two types of
entities, namely users and items, and do not consider any
contextual information such as time, location, and so on.
However, it is likely to be insufficient to consider only users
and items. During the past 10-15 years, many context-aware
approaches have been developed. Melville et al. [26] pro-
posed predicting the missing ratings in the user-item matrix
by using the contextual information of items (e.g., categories
such as title, genre, and so on). Moshfeghi et al. [27] improved
item recommendation by incorporating additional contex-
tual information, and Gunawardana et al. [28] incorporated
item content features into a unified recommendation model.
Rong et al. [29] leveraged the invocation frequencies of serv-
ices and Zhang et al. [30] utilized the query histories of users
to improve the performance of service recommendation.

4 QoS PREDICTION VIA MEMORY-BASED CF

4.1 Conventional Memory-Based CF QoS Prediction
A number of approaches employ conventional memory-
based CF to make QoS predictions. They use only the user-
service QoS matrix and attempt to improve the prediction
performance from the four aspects described below: (1)
data preprocessing, (2) similarity computation, (3) similar
neighbor selection, and (4) QoS-value prediction.

4.1.1  Data Preprocessing

Data preprocessing is an important step in improving the
data quality, with a resultant improved performance for
Web service QoS prediction.

Considering the Sparsity of QoS Data. A common solution
to sparse QoS data is to fill the missing QoS values with
default values [12], [15], such as the middle value of the
QoS value range or the average user’s or service’s QoS
value. To further improve the data quality, Wu et al. [31]
clustered all users via the K-means algorithm and employed
data-smoothing techniques to fill the missing QoS values. In
an alternative approach, Zheng et al. [32] and Ma et al. [33]
claimed that no prediction is better than a bad prediction
and restricted the filling of missing QoS values to those hav-
ing similar users or similar services.

Considering the Normalization of QoS. Ratings are usually
integer numbers ranging from 0 to 5, but the various QoS
properties can be of different types and may therefore vary
across different ranges. For example, reliability is expressed
as a ratio, with a range of 0 to 100 percent, whereas the
response time is a real number with values likely to vary in
the range [0, 20 seconds]. Considering that the normalization
of QoS would benefit CF accuracy, Zhang et al. [34] adopted
the Gaussian normalization approach and 3-sigma rules to
convert the QoS values of various types to the range [0, 1].

4.1.2 Similarity Computation

In memory-based CF approaches, similarity plays a double
role: filtering dissimilar neighbors (and obtaining similar
neighbors for the target users or services) and weighting the
importance of similar neighbors for collaborative predic-
tion. Therefore, the similarity computation is one of the
most important design decisions in CF, with a good metric
often leading to good performance.
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Considering the Differences in QoS Scale. Because of its
objectivity, the QoS scale for different users is likely to be
different. For example, perhaps caused by security needs or
a gateway, a user may observe a response time longer than
3000 ms for all services, while another user with a faster net-
work may observe a response time shorter than 200 ms for
all services. Therefore, the QoS values of Web services are
distributed discretely in different ranges. In such situations,
the similarity between two services is impacted by other
irrelevant issues instead of by the service itself. Considering
this, Chen et al. [35] used A-cosine [36] to compute the
cosine similarity between services and eliminated the
impact of different QoS scales by subtracting the vector of
average QoS values for the service. Chen et al. [37] designed
a similarity model called JacMinMax, which introduces a
ratio (MinMax) that represents the overall experiential dif-
ference between two Web services invoked by the same
user. In this way, JacMinMax avoids the problem of inaccu-
rately describing the similarity between services when they
are actually similar but have very different QoS values.

Considering the Overall Experience Difference. Jiang et al. [38]
found that the more popular services or those services hav-
ing a more stable QoS from one user to another should con-
tribute less to the user similarity measurement. Conversely,
a service that provides a very different QoS for different
users but a similar QoS for a user’s v and a contributes signif-
icantly to the similarity between the user’s v and a. The
authors therefore proposed an improved PCC similarity
measure by introducing the personalized influence of serv-
ices. In addition, Ma et al. [39] found that if two users have a
high similarity, then their similarity will fluctuate very little
with their growing invocations of Web services. Conversely,
if two users have only a low similarity, then their similarity
would fluctuate notably with their growing invocations of
Web services. Based on these characteristics, they proposed
a highly accurate prediction algorithm (HAPA).

Considering the Significance of Weights. Considering spar-
sity, Zheng et al. [40] employed similarity weights to reduce
the influence of a small number of similar yet co-invoked
services or users. However, the similarity weight may
reduce the popular services” similarity, because the number
of users invoking the popular services is usually large. Like-
wise, the similarity among the users who invoke a large
number of Web services will be reduced. To address this
issue, Zheng et al. [41] developed a logistic function. When
the number of co-invoked services or users is large, the
logistic function is approximately 1 and therefore has little
impact on similarity estimation. Tang et al. [42] introduced
two preset thresholds for adjusting the similarity, mainly
determined by the sparsity of the user-service matrix.

Other Considerations. The PCC does not properly handle the
QoS style differences between vectors in different vector
spaces, and cosine similarity only measures the angle between
two vectors and neglects length differences between vectors.
To overcome these shortcomings, Sun et al. [43] proposed a
new similarity measure named normal recovery (NR), which
unifies the similarities between scaled user vectors (or service
vectors) in different multidimensional vector spaces. Fletcher
et al. [44] incorporated the satisfaction with users’ personal-
ized preferences for nonfunctional attributes in the similarity
computation. The aim of these QoS prediction approaches is
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to predict QoS values as accurately as possible. Zheng ef al.
[45] proposed a QoS-ranking prediction framework to predict
the QoS rankings directly. This framework uses the Kendall
rank correlation coefficient to evaluate user similarity by con-
sidering the number of inversions of service pairs that would
be needed to transform one rank order into the other.

4.1.3 Similar Neighbor Selection

Before predicting the missing values, the neighborhoods
that include sets of similar users or services need to be iden-
tified. Similar neighbor selection is an important step in
accurate missing value prediction, because many dissimilar
neighbors will decrease the prediction accuracy.

Top-N Filtering. In general, the Top-N users or services,
which have larger similarity values than the remainder, will
be selected as similar neighbors [46].

Negative Filtering. Traditional Top-N algorithms ignore
those cases when the number of similar neighbors may be
less than N. Zheng et al. [47] enhanced the Top-N algorithm
by excluding those neighbors with negative PCC similarities.

Threshold Filtering. Ma ef al. [33] used a preset threshold
to allow only those users or services whose similarity
exceeds the threshold to be considered. This threshold-based
approach retains only the most significant neighbors and is
more flexible than the Top-N algorithm, but an appropriate
value for the threshold may be difficult to determine.

Other Filtering. Wu et al. [31] proposed a two-phase
neighbor-selection strategy to accelerate neighbor selection.
This strategy obtains the most similar user or service cluster
and takes the users or services in the cluster as candidates for
neighbor selection. By employing a process of neighbor pre-
selection, the efficiency of neighbor selection is improved, as
only users/services in similar clusters are considered as
neighbor candidates. Considering unbalance in the data dis-
tribution, Fletcher et al. [48] proposed an unbalanced data
distribution approach, whereby neighbor identification is
achieved via sampling importance resampling. They divided
the similar neighbors set equally into N splits and then ran-
domly selected one of these splits to form a new set of
neighbors.

4.1.4 QoS Value Prediction

After a set of neighbors has been computed for each user or
service, the prediction of QoS values is normally made via
these neighbors. User-based approaches employ the QoS val-
ues of similar users, and item-based approaches employ the
QoS values of similar Web services to predict the QoS values.
In combining the user-based and item-based approaches in a
hybrid approach, Jiang et al. [38] focused on a parameter that
determines the ratio of user-based prediction to item-based
prediction. However, if the parameter is generated artifi-
cially without any prior knowledge, mistakes may occur.
Zheng et al. [32] proposed a combination of confidence
weights and this parameter to balance user-based prediction
and item-based prediction automatically.

4.2 Memory-Based CF QoS Prediction Approaches
Incorporating Location Information

QoS is highly dependent on the performance of the underly-

ing network. If a user and an invoked service are located in
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different networks that are distant from each other on the
Internet, network performance is likely to be poor, caused
by both data transfer delay and the limited bandwidth of
links between different networks. In contrast, when the user
and the Web service are located in the same network, high
network performance is more likely. Therefore, the loca-
tions of users and services are crucial factors affecting QoS.
By also considering the locations of the user, the problem of
choosing inappropriate neighbors (who happen to have
similar QoS experiences on a few Web services for the target
user) can be avoided, thereby improving the accuracy of
QoS prediction.

According to the method of representation used for the
location, we can divide the memory-based CF QoS predic-
tion approaches that incorporate location information into
three categories: longitude and latitude coordinates, IP
address, and autonomous system.

Longitude and Latitude Coordinates. Tang et al. [49] incorpo-
rated the geographic location information of users into a
data-smoothing procedure. They computed the neighbors
of users based on their longitude and latitude coordinates.
In contrast to cluster-based data-smoothing techniques [31],
[35], which need to be recalculated whenever QoS data in
the user-service matrix changes, the location-based data-
smoothing technique is more efficient. Besides, Wang et al.
[50] proposed a distance-based enhanced Top-K selection
strategy using the coordinates of latitude and longitude to
select similar edge service server set in mobile edge comput-
ing. However, even if two users or services are nearby in
terms of physical distance, if their computers are located in
different networks, they may be very distant in terms of net-
work distance. That is, physical-location neighbors do not
necessarily belong to the same network.

IP Address. Chen et al. [51] proposed RegionKNN, which
groups users into a set of regions according to their IP
addresses. The QoS values of users in the same region can
then be employed for QoS value prediction even if no simi-
lar users are found using historical Web service QoS experi-
ence. In this way, the data sparsity problem can be greatly
relieved. In addition, instead of searching the entire set for
similar users, the approach only needs to search those
regions to which the target user belongs, thereby improving
the time efficiency of the QoS prediction. However, measur-
ing the distance between two users simply by comparing
their IP addresses may not be accurate. IP prefixes (i.e., IP
address blocks assigned to networks) are constantly divided
into finer granularities because of the IPv4 address shortage
and multihoming [52]. For example, addresses 4.67.68.0 to
4.68.247.255 belong to Canada, while 4.67.64.0 to 4.67.67.255
belong to Japan. Therefore, two IP addresses with similar
values do not necessarily belong to the same network.

Autonomous System. An autonomous system (AS) is
either a single network or a group of networks within the
Internet that is controlled by a common network adminis-
trator on behalf of a single administrative entity (such as a
university or a business enterprise). Each AS has a globally
unique ID, called its autonomous system number (ASN)
[53]. Tang et al. [53] represented the user’s location and the
Web service’s location as triples (IP,, ASN,,, CountrylD,,)
and (IP,;, ASN,, CountrylD,), respectively. This method
can obtain the network distance between users or services,
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because the ASN represents the network region. Mappings
of IP to ASN and IP to country can be accomplished by
using the dataset publicly available from Internet topology
measurement projects such as the Skitter project ! and the
RouteViews project.” Data from both Skitter and Route-
Views are free to access and are frequently updated, which
ensures that the /P to ASN and IP to country mappings
remain up-to-date.

4.3 Memory-Based CF QoS Prediction Approaches
Incorporating Time Information

The QoS performance of Web services is highly correlated
with service invocation time, because the service status
(e.g., workload or number of clients) and the network envi-
ronment (e.g., congestion) change over time. WS-DREAMS3,?
which was published by Zhang [54], includes real-world
QoS evaluation results from 142 users and 4,532 Web serv-
ices in 64 different time slots. For the response time dataset
#31, when user #140 invokes service #4497 at time interval
#41, the response time was 7.037. But when the same user
invokes the same service at the different time interval #25,
the response time became 0.307. That is, the first response
time is almost 23 times greater than the second. In general, a
longer timespan indicates a higher probability that the QoS
value will have deviated from its original value. The time
factor is therefore a very important factor in predicting QoS.

Time Intervals Set Model. The critical step in these
approaches is computing the similarity between services or
users. However, because users only invoke one service at a
time, the QoS data is very sparse. To increase density, Yu
et al. [55] used a tunable parameter d to partition the time
intervals into several time-interval sets tp, making the simi-
larity between services at a particular time interval equal to
the average similarity between the two services at tp. Yu et al.
[56] further increased the density of the user-service-time ten-
sor by clustering all users and services into different groups,
thereby converting the user-service matrix M, s(t,, d) into the
userCluster-service matrix M,(t,,d) and the user-service-
Cluster matrix M, 4(t,,d). However, there are trade-offs
between scalability and prediction performance in this clus-
ter algorithm. To address this problem, they also proposed a
location-aware cluster method, in which the user set and the
service set are divided into many clusters according to their
location information [57].

Temporal Decay Model. For the time intervals set models, it
is difficult to determine a suitable time interval because the
prediction accuracy fluctuates with the changing time inter-
vals, whereas temporal decay models can adaptively reduce
the similarity with an increased timespan. Hu et al. [58] pro-
posed two intuitive principles. First, temporally closer QoS
experiences from two users on the same Web service contrib-
ute more to the user similarity value. Second, the more recent
QoS experiences from two users on the same Web service
contribute more to the user similarity value. Based on these
two principles, they integrated time information into the
PCC similarity measurement by adopting an exponential
decay function. In addition, they proposed using transitive

1. http:/ /www.caida.org
2. http:/ /www.routeviews.org
3. http://inpluslab.com/wsdream/
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similarity to alleviate the data sparsity problem. However,
Hu et al. [58] simply considered each QoS value equally and
neglected the weighted-rating effect from different QoS
values. Fan et al. [59] proposed the context-aware services
recommendation method based on temporal-spatial effec-
tiveness (CASR-TSE), which models the effect of the correla-
tions between a user’s spatial context and a service’s spatial
context on user-preference expansion. They then presented
an enhanced temporal decay model by introducing the
weighted rating effect into the traditional temporal decay
model.

Time Series Models. The methods described above do not
consider the impact of a time series. In practice, the QoS val-
ues of a user in a particular time interval will not only be
affected by similar users’ QoS values, but also by the QoS val-
ues in previous time intervals. Hu ef al. [60] proposed consid-
ering the QoS as composed of two parts: the local QoS
performance of each Web service and the personalized part
of each user. They argued that the local QoS performance of
Web services is highly volatile over time in the dynamic
Internet environment. To capture the temporal dynamics of
QoS, they utilized time series forecasting based on autore-
gressive integrated moving average (ARIMA) models to
forecast future QoS values. Ding et al. [61] proposed a time-
aware service recommendation (taSR) approach that integra-
tes the time-aware similarity-enhanced CF and the ARIMA
model. The taSR approach involves user-invocation similar-
ity, which can identify not only the same invocation but also
the same un-invocation. For example, two users are regarded
as similar if they either invoke or do not invoke a service at a
given time. ARIMA is then applied to predict the QoS values
at a future point in time under QoS instantaneity.

4.4 Memory-Based CF QOS Prediction Approaches
Incorporating Other Context Information

The algorithms outlined in Sections 4.2 and 4.3 exploit the

spatial and temporal information associated with users or

services to enable QoS prediction. In practice, the perfor-

mance of the CF algorithm will be improved if more contex-

tual information is incorporated.

Indeed, Web services hosted by the same provider exhibit
similar characteristics and are more likely to be similar
neighbors. Cao et al. [62] proposed a three-dimensional cube
that can explicitly describe the relationship among pro-
viders, consumers, and Web services. Based on the cube data
model, they presented standard-deviation-based hybrid col-
laborative filtering (SD-HCF), which considers the impact of
service providers when selecting nearest neighbors for a
Web service. Silic et al. [63] proposed LUCS, based on service
load, user location, service class, and service location.
According to each of these four LUCS parameters, four dif-
ferent availability predictions are obtained. LUCS then uses
a linear combination of these four factors to calculate the final
prediction of the expected service availability for a particular
user-service pair. Chen et al. [64] considered the physical
environment of Web services, and partitioned Web services
into service clusters involving the same physical environ-
ment. As services in the same cluster have a very similar
physical environment, they can be substituted for each
other without impacting the overall QoS performance and
can even be treated as a single service. This enables the
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TABLE 1
Context Information Used by Memory-Based
QoS Prediction Approaches

Spatial

User Service

Methods Temporal Others

RegionKNN [51]
COFILL[49]
LACF [53]
YUTACEF [55]
CIuCF [56]
TLACEF [57]
TAWSRec + HRW [58]
CASR-TSE [59]
ARIMA [60]
taSR [61]
SD-HCEF [62]
LUCS [63]
SCQP [64]

X UX X X SUX SUX X U0
USUX X X SUX SUX X SUUX
XX X SUSUSU S X X X
LUUX X X X X X X X X X

calculation of similarity between users to be based on these
service clusters instead of on individual services.

In Table 1, we summarize the context information used
by the various memory-based CF algorithms described in
Sections 4.2, 4.3, and 4.4.

5 QoS PREDICTION VIA MODEL-BASED
COLLABORATIVE FILTERING

Memory-based CF algorithms are easy to implement and
are highly effective, but they are greatly affected by sparsity
of data and have other issues such as a cold start and poor
scalability. The key step in memory-based CF approaches is
to identify similar neighbors for each user or service by
leveraging users’ historic QoS values and context informa-
tion. These approaches make good use of local information
but can lose sight of the global structure. Because model-
based CF algorithms employ all QoS values in the user-ser-
vice matrix (global information) to construct a global model
for making QoS value prediction, they produce good esti-
mations of the overall structure that relates simultaneously
to all users or services. In this section, we summarize the
model-based QoS prediction approaches of Web services.

5.1 Conventional Model-Based CF QoS Prediction
A variety of conventional model-based CF approaches have
been proposed for QoS prediction. For example, Luo ef al. [65]
proposed the kernel least-mean-square algorithm (KLMS),
which analyzes the hidden relationships between all known
QoS data and the corresponding QoS data with the highest
similarities. It then applies the derived coefficients to the pre-
diction of missing Web service QoS values. Wu et al. [66] pro-
posed an embedding-based factorization machine approach,
which embeds the user id and service id to vectors and
employs a factorization machine to predict the QoS for users.

Latent factor models are used as the most popular
model-based CF approaches to predict missing QoS values.
The MF model, which can learn the latent factors of users
and services, is by far the most powerful tool for undertak-
ing the task of predicting missing QoS values.

By considering an m X n user-service matrix P, an MF
model attempts to find two matrices: W (a users’ latent
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factor matrix of m rows and ! columns) and H (a services’
latent factor matrix of [ rows and n columns) such that
P ~ W x H, where [ is the number of factors. The matrices
W and H are unknown and need to be estimated by using
the available ratings in the user-item matrix P and identify-
ing the optimal ratings by minimizing the distance between
W x H and P. After obtaining the matrices W and H, the
product of these two matrices can be employed to predict
the missing QoS values in P.

Zheng et al. [41] constructed an objective function for MF-
based QoS prediction:

] P — . . 2
min L(W, H) = W;H;)

i=1 j=1 1)
V
+5lIw HF+_||HHF’

where /. f; indicates that if Web service j has been invoked by
user ¢ previously, W, represents the user-specific coefficients
of user ¢, and H; represents the factor vector of Web service
j. The parameter y controls the extent of regularization for
penalizing large values of W and H to avoid the overfitting
problem, and |[e||3 denotes the Frobenius norm. The QoS
prediction problem is modeled as an optimization problem
that minimizes the sum-squared-errors objective function
with quadratic regularization terms.

Considering that the given QoS data in QoS prediction
are all positive values, Luo et al. [67] proposed the nonnega-
tive latent factor (NLF) model by training the relevant fea-
tures subject to nonnegativity constraints. Most MF-based
models adopt either the gradient descent (GD) or the sto-
chastic GD (SGD) method to find a local minimum of the
objective function. To accelerate the model convergence,
Luo et al. [68] introduced the principle of the alternating
direction method (ADM) into an alternating-least-squares-
based training process.

5.2 Model-Based CF QoS Prediction Approaches
Incorporating Location Information

Most of the conventional model-based CF QoS prediction
approaches can be extended to consider location informa-
tion. For example, Hu et al. [69] combined Bayesian infer-
ence with user location and Chen et al. [70] extended
Wu et al’s approach [66] to embed the user id, service id,
service location, and user location information in vectors.
Tang et al. [71] revamped the classic factorization machine
model by incorporating the locations of service users. Yang
et al. [72] proposed a location-based factorization machine
(LBEM) model that leverages the location information of
users and services to predict the unknown QoS values.
Zhou et al. [73] proposed a multilayered neural network
model that represented all spatial features of users and serv-
ices as input vectors and established a spatial features inter-
action layer for capturing the second-order spatial features.
However, MF has drawn the most attention from research-
ers. To incorporate loction information, the MF model must
complete two tasks. First, similarities are refined to incorpo-
rate location information, after which similar neighbors can
be selected. Second, the QoS values of similar neighbors are
integrated into the MF model.
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5.2.1 Location-Aware Similar Neighbor Selection

To select neighbors, Lo et al. [74] computed the distance
between each pair of users based on their longitude and lati-
tude coordinates. Yin ef al. [75] proposed using two-level
neighborhood selection, which first employs the traditional
PCC method to calculate the user similarity and then selects
high-quality neighbors based on the set of local users gener-
ated at the first level, as proposed by Lo et al. [74]. These
methods incorporate users’ location information in a simple
way, whereas He et al. [76] used K-means to cluster both
user nodes and service nodes into different groups based on
their longitude and latitude information to build robust
neighborhoods. To alleviate the sparsity problem, Lee et al.
[77] first grouped the users and services based on their loca-
tion information, then adopted preference propagation,
which models a bipartite graph between users and items,
and constructed a random walk on this graph to infer more
data for the similarity computation.

5.2.2 Revamped Objective Function

After obtaining the neighborhood information of users or
services, MF-based QoS prediction approaches incorporat-
ing location information integrate information about the
neighbors of users or services into the traditional MF model.
The revamped MF models have extended objective func-
tions of two types: location-based error functions and loca-
tion-based regularization terms.

Location-Based Error Functions. A location-based error
function integrates similar neighbors” information with the
error function to revamp the objective function. Lo et al. [78]
proposed LoNMEF, a local neighborhood matrix factoriza-
tion (NMF) QoS prediction application , which modifies the
objective function as follows:

m n

ZZ(] . — oW H;

i=1 j=

~(1-0) Y W) @

kEN(i)

mln[, W, H)

14 2, Y
= |W ~||H
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where N (u) is the set of similar neighbors of the user v, « is
a balance parameter to control the impact of the users’
neighbors. The relative weight coefficient w;; specifies the
individual importance of the neighbor user u; of user w;.
This error function is constructed to minimize the global dif-
ference within different neighborhoods. LoONMF only incor-
porates users’ location information, whereas He et al. [76]
proposed a hierarchical matrix factorization model (HMF)
to make use of the location of both users and services. HMF
first clusters several local user-service matrices and per-
forms MF on these local matrices separately. The QoS values
obtained by the local MF are then incorporated into the
error function to modify the objective function.

Location-Based Regularization Terms. Location-based regu-
larization terms integrate similar neighbors’ information
with the regularization terms to revamp the objective func-
tion. After generating a list of user-similarity neighbor-
hoods, Yin et al. [75] constructed the diverse location-based
regularization term:
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min Y Lo Sim(i, k)|Wi — Wil[3, (3)
keN (i)

where Lo_Sim(i, k) presents the local similarity between u;
and u; as a monotonic decrease. If two users live close to
each other, then Lo_Sim(i, k) would be greater and the influ-
ence would be more important. The regularization term is
then added to revamp the MF model as follows:

mlnE(W H)
4
+§||W||F+*||H||

o o 2
+§Z Z Lo_Sim(i, k) ||W; — Wil %,

=1 keN (i)
4)

where « > 0 is a factor controlling the involvement of the
diverse location-based regularization. The constraint is con-
structed to penalize those neighbors with large differences.
These methods incorporate users’ location information in a
simple way, whereas Lee et al. [77] converted similar group
information into separate user-side and service-side regu-
larization terms and built a unified framework by fusing the
two regularization terms.

5.3 Model-Based CF QoS Prediction Approaches
Incorporating Time Information

As discussed in Section 4.3, time is a very important factor

in predicting QoS values. In this subsection, we will sum-

marize state-of-the-art model-based CF QoS prediction

approaches that incorporate time information.

Latent Factorization of Tensors. Zhang et al. [54] proposed
WSPred, which extends the MF model to three dimensions
through the use of an m x n x ¢ QoS tensor involving m
users, n services, and ¢ time intervals. By performing tensor
factorization, user-specific, service-specific, and time-specific
latent features can be extracted from the user-service-time-
based three-dimensional matrix. In the real world, the Web
service QoS values are always nonnegative, enabling Zhang
et al. [79] to extend their work by presenting the temporal
QoS value tensor as a nonnegative three-way tensor. They
utilized the CANDECOMP/PARAFAC (CP) model [80] to
represent the triadic relations among users, services, and
time, and then added the nonnegativity restriction to the CP
decomposition model to obtain a nonnegative CP decomposi-
tion model (NNCP). To address the fluctuations in QoS data
with time, Luo et al. [81] proposed a biased nonnegative latent
factorization of tensors (BNLFTs) model. BNLFTs models the
linear bias (LB) for users, services, and time points, and takes
the LB vectors with the same dimension to form rank-one ten-
sors of LBs. It applies additive GD with respect to each single
latent factor and LB and manipulates the learning rates to
cancel the negative terms with the initial status of the corre-
sponding parameter. To achieve a highly efficient ADM-
based training scheme, it decomposes the original optimiza-
tion task into multiple interdependent subtasks and solves
each subtask sequentially. To obtain high prediction accu-
racy, Cheng et al. [82] proposed a QoS prediction approach
based on hierarchical tensor decomposition (QoSHTD),
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which first introduces a local three-order tensor to model the
clustering of local users, services, and the access time, and
then adopts a good approximation of the Tucker decomposi-
tion method to decompose the local three-order tensor. The
global tensor-decomposition model blends the local QoS-
attribute predictive value into global tensor decomposition
by using linear weighting, thereby obtaining high prediction
accuracy. To exploit the structural relationships among the
multidimensional QoS data, Wang et al. [83] presented a five-
dimensional QoS data structure (i.e., location, QoS property,
user, service, and time period) for Web services. They then
proposed an integrated QoS prediction approach (HDOP),
which unifies the modeling of the multidimensional QoS
data via multilinear algebra based on the tensor concept. This
enables accurate QoS prediction via tensor decomposition
and reconstruction optimization algorithms.

Statistical Time Series Models. The latent factorization of
tensors does not consider the impact of time series. In prac-
tice, the QoS values of a user in a specific time interval will
not only be affected by similar users” QoS values but also by
the QoS values for previous time intervals. Amin ef al. [84]
proposed a forecasting approach that integrates ARIMA
with the generalized autoregressive conditional heterosce-
dastic (GARCH) model to forecast future QoS values for
Web services. With the QoS values exhibiting mostly non-
linear behavior, Amin et al. [85] then proposed an auto-
mated forecasting approach combining linear and nonlinear
time series models, in which ARIMA and the self-exciting
threshold autoregressive moving average (SETARMA) are
used as the nonlinear and linear models respectively. In an
alternative approach, Li et al. [86] proposed a time-aware
matrix factorization (TMF) model that provides two-phase
QoS predictions. It first uses adaptive MF to predict missing
QoS values and then employs the time series to smooth the
predicted curve.

Neural Network-Based Models. Accompanying the vigor-
ous development of deep learning technology, research
work based on neural networks has been carried out
recently in the field of QoS prediction. Wang ef al. [87] used
motifs-based dynamic Bayesian networks to represent the
conditional dependency among time intervals and yield
near-future time series predictions. They adopted the con-
cept of motifs to describe the patterns of historical QoS
value time series and then employed first-order Markov-
chain rules to capture the causal relationships among differ-
ent QoS value time series. These relationships are repre-
sented as conditional probability tables, which are used to
make predictions based upon the updated QoS value time
series. Wang et al. [88] extended their previous work [87] by
developing a new method for QoS time series prediction
based on long short-term memory (LSTM) [89], aiming to
avoid the problem of long-term dependencies and the van-
ishing gradient when the length of sequences grows. Taking
advantage of LSTM in capturing temporal dependencies,
Xiong et al. [90] proposed a novel personalized LSTM-based
matrix factorization approach (P-LSTM), which uses a user-
side P-LSTM and a service-side P-LSTM to learn the users’
and services’ latent factor matrices for MF, respectively.
These models only consider the temporal dependence of
end-to-end paths, which makes it hard to describe the state
of the whole network at various times. Considering this,
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Zhou et al. [73] proposed a spatiotemporal context-aware
collaborative multilayered neural network model, which
characterizes each time slice by a latent feature vector to
describe the state of the whole network at different times.

Other Models. Zhu et al. [91] argued that the time-
dimensional characteristics can be typically captured by a
finite set of context conditions, each of which is an abstract
representation of the underlying factors such as service
workloads and network conditions. Therefore, a specific
context condition is likely to determine the QoS values for a
specific time slice. Based on this observation, they proposed
a context-aware model r(u, s, ¢), where ¢ denotes the specific
context condition under which the invocations inv(u, s, t)
are performed. In particular, r(u, s,t) = r(u, s, ¢). To charac-
terize and identify different context conditions, they emp-
loyed K-means clustering to cluster the QoS data R with T'
time slices into C' clusters, where each cluster represents a
specific context and different time slices grouped into one
cluster belong to the same context. Wang et al. [92] assumed
that the QoS prediction residual is a zero mean Laplace
prior distribution and modeled the QoS prediction as a least
absolute shrinkage and selection operator (Lasso) regression
problem. Then, they employed the geolocation of users and
Web services to detect neighbors for building the sparse
representation, thus reducing the searching range while
improving prediction accuracy.

5.4 Model-Based CF QoS Prediction Approaches

Incorporating Additional Context Information
The model-based CF QoS prediction approaches described
in Sections 5.2 and 5.3 only consider the impact of spatial
and temporal information. In real service invocations, the
QoS performance would also be greatly affected by addi-
tional contextual information. In this subsection, we will
summarize and analyze state-of-the-art model-based CF
QoS prediction approaches that incorporate this additional
context information.

Xu et al. [93] claimed that the services provided by the
same company are likely to share the same running envi-
ronment and resources, such as network bandwidth, CPU
performance, storage size, and so on. They proposed using
a linear ensemble MF model (LE-MF) that combined the
geographical information from the user side and the com-
pany affiliation from the service side. LE-MF uses the com-
pany affiliation (i.e., which company runs the service) to
identify the context of the service when running. If a service
has insufficient neighbors, it randomly selects a second set
of neighbors for service j from each company that is in the
same country as the company that runs service j.

Wu et al. [94] claimed that QoS values depend on the con-
figuration of hosts, the status of servers, and the network
conditions. They proposed a general context-sensitive matrix
factorization approach (CSMF), which models the interac-
tions of users to services and environment to environment
simultaneously and makes full use of implicit and explicit
contextual factors. In practice, a service will be invoked by
different users, and those users having similar behavioral
patterns can be grouped in terms of similar services. Service
collaboration is used to model the users’ behavioral interac-
tions among services. By considering the context of service
collaboration, Guo ef al. [95] proposed a service-oriented
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tensor (SOT) model, which incorporates service collabora-
tion from other similar services and relevant users by using a
three-dimensional user-service-service tensor. They then
employed CP decomposition to find an optimized rank
approximation of the tensor.

These methods use only a few types of contextual infor-
mation. However, to fully enhance the precision, multidi-
mensional context data must be exploited as much as
possible. Xiong et al. [96] integrated dynamic multidimen-
sional context tracklets systematically and used the LSTM
model to transform this complex multidimensional context
into more useful feature expressions. They then extracted
hidden features from the context and computed the similar-
ity between users and services based on the hidden features.
Wu et al. [97] proposed a multilayered neural network for
making multiple QoS predictions with multiple contextual
features. In the input layer, users, services, and all contextual
factors are represented in a feature vector. Next, in the
embedding layer, each feature is mapped into a dense vector
to capture the implied semantics. The interaction layer then
generates more useful cross features and reduces the model
parameters by pooling operations on features. The percep-
tion layer learns the higher-order interactions between fea-
tures. Finally, the task-specific layer separates the perception
modules to provide distinct prediction tasks with corre-
sponding feature selection and weighting functionality.

In Table 2, we summarize the context information used
by the various model-based CF algorithms described in
Sections 5.2, 5.3, and 5.4.

6 HyBRID CF QOS PREDICTION APPROACHES

Memory-based approaches utilize the local information of
similar users or services in the user-service matrix to detect
neighborhood relationships. But these approaches often
ignore the vast majority of QoS values by a user, thus they
are unable to capture the totality of weak signals encom-
passed in all of a user’s QoS values. Model-based approaches
construct a global model based on the observed QoS data,
they are generally effective at estimating overall structure
that relates simultaneously to most or all services. However,
these approaches are poor at detecting strong associations
among a set of closely related users or services. The memory-
based and model-based approaches address quite different
levels of structure in the data, so none of them is optimal on
its own [98]. Hybrid CF approaches combine the memory-
based and model-based approaches to solve the limitations
of the aforementioned CF approaches and improve predic-
tion performance.

6.1 Memory-Based Models Exploring Latent
Features

Users that share common latent environmental factors
would be expected to receive and deliver similar QoS values
and can therefore be grouped together. The same would
apply to services. Memory-based models that explore latent
features first factorize the user-service matrix P into W and
H. They then use W and H to identify similar neighbors
through similarity computations. Finally, they predict the
missing values based on the similar neighbors’” QoS values.
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TABLE 2
Context Information Used by Model-Based QoS Prediction
Approaches

Spatial

User Service

Methods Temporal Others

LBFM [72]
LBR [74]
Colbar[75]
HMF [76]
LME-PP [77]
LoNMF [78]
WSPred [54]
NNCP [79]
BNLFTSs [81]
QOoSHTD [82]
HDOP [83]
ARIMA+GARCH [84]
ARIMA+SETARMA [85]
TMEF [86]
LSTM [87]
P-LSTM [90]
STCA[73]
CARP [91]
LASSO [92]
LE-MF [93]
CSMF [94]
SOT [95]
LMDC [96]
DNM [97]

v

SUSUX X SUSUX SUX X X X X SUSUX X X SURUi

LAXX X AUNANLNNCNNNNNUUX XXX XX
LULUUUX XX X XX XX XX XX XXXXXXX

LUX XX UX XX X X X SUX X X X SO X X

Zhang et al. [99] proposed CloudPred. They first utilized
nonnegative NMF to factorize the sparse user-service matrix
into the user latent factor matrix W and the service latent
factor matrix H. Then they calculated the neighborhood
similarities based on latent factor vectors and finally identi-
fied similar neighbors. Note that W and H are dense matri-
ces with all entries available, enabling all missing values to
be predicted. CloudPred utilizes both local information
about similar users and global information about all avail-
able QoS values in the user-service matrix, thereby achiev-
ing better prediction accuracy in cases involving data
sparsity. In an alternative approach, Yu et al. [100] proposed
nonnegative matrix tri-factorization (NMTF) to factorize the
QoS matrix P, which results in three matrices, W, H, and R,
ie, P = W x Rx H. More specifically, W € R™* is the
user-cluster indicator matrix, H € R"*! is the service cluster
indicator matrix, and R € R**! is the cluster-association
matrix that captures the relationship between user clusters
and service clusters. In this way, NMTF simultaneously
clusters the m users into % disjoint user groups and n serv-
ices into ! disjoint service groups. The method is able to
obtain similar neighbors for users and services and is there-
fore more effective.

6.2 Neighborhood-Integrated MF Models

Services that have similar historical QoS values tend to have
similar factors that can influence the QoS values. Therefore,
these services also tend to have similar latent features. Those
users whose QoS values are similar also tend to encounter
similar influencing factors that impact the QoS values for
Web services. Unlike memory-based models that explore
latent features, neighborhood-integrated MF models (NIMFs)
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first identify similar neighbors through similarity computa-
tions. They then utilize revamped MF models to predict the
missing values based on the neighborhood information.
There are two kinds of NIMF objective functions: neighbor-
hood-integrated error objective functions and neighborhood-
integrated regularization terms.

Neighborhood-Integrated Error Functions. The neighbor-
hood-integrated error objective function integrates the rela-
tionship between similar neighbors to minimize both the
global difference within different neighborhoods and the
feature differences between each user or service and its
neighbors. Zheng et al. [3] proposed a NIMF whose core
idea is that whenever factorizing a QoS value, it will be
treated as the ensemble of a user’s information and the
user’s neighbors” information. Xu et al. [101] took this a step
further by building a service neighborhood-based MF
model (SN-MF) and a user neighborhood-based MF model
(UN-MF). Multivariate linear regression was then used to
combine the UN-MF and SN-MF.

Neighborhood-Integrated Regularization Terms. The neigh-
borhood-integrated regularization term integrates a regular-
ization term into the objective function. The term aims to
minimize the latent difference between each user or service
and its neighbors to facilitate personalized quality predic-
tion. Lo et al. [102] proposed extending the MF framework
with novel relational regularization terms for user regulari-
zation and service regularization, aiming to revamp the
classic MF model into a unified framework. Zhang et al.
[103] proposed a covering-based NMF (CNMF) to enable
high-quality predictions. CNMF first employs a covering-
based clustering algorithm to partition similar users and
similar Web services into clusters. The clustering method
does not require the number of clusters or the cluster cent-
roids to be prespecified. It then uses users’ and services’
neighborhood information to perform user-integrated MF
and service-integrated MF, respectively. Finally, to utilize
the neighborhood information fully, CNMF combines the
predicted values from the user-integrated MF and the ser-
vice-integrated MF.

These hybrid CF approaches that combine the advan-
tages of memory-based CF methods and model-based CF
methods can obtain better prediction results, particularly
for new users and new services. However, they rely on
external information that is often not available and imple-
mentation complexity may be an issue.

In Table 3, we summarize and assess the main advan-
tages and shortcomings of the memory-based, model-based,
and hybrid CF approaches.

7 RECENT CHALLENGES

The approaches discussed above focus on how to improve
the accuracy of prediction under the challenges of sparsity,
scalability, and objectivity. However, in recent times, three
additional challenges have emerged: (a) In a dynamic envi-
ronment, existing QoS values will be continuously updated
with newly observed values. (b) Some user-contributed QoS
values could be untrustworthy, caused by malicious users
submitting incorrect QoS values. (c) Because users’ private
information might be deduced from submitted QoS values,
policies should exist to protect users’ privacy.
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TABLE 3
Main Advantages and Shortcomings of the Approaches

CF categories Main advantages

Main shortcomings

Memory-based

*better understanding of the reasoning
*ease of adding new data incrementally

*limited scalability
*low performance with sparse data

Conventional *higher prediction accuracy *poor at detecting associations among
Model-based *better performance under the challenges a set of closely related users or services
of sparsity and scalability *expensive retraining with new data
Hybrid *higher prediction accuracy *requirements for external information
*better performance under the challenge of sparsity | *the complexity of implementation increased
*higher prediction accuracy
Incorporating Memory-based *better performance under the challenges *limited scalability for large datasets
. of sparsity and scalability *low performance with sparse data
Location *better understanding of the reasoning
Information

Model-based *higher prediction accuracy

*better performance under the challenge of sparsity

*the complexity of implementation increased
*expensive retraining with new data

Incorporating Time
Information

Memory-based

*better understanding of the reasoning
*ease of adding new data incrementally

*limited scalability
*low performance with sparse data

Model-based

*better performance under the challenge of sparsity

*expensive retraining with new data

s L
Incorporating higher prediction accuracy

Other Context

Memory-based

*better understanding of the reasoning

*limited scalability for large datasets
*low performance with sparse data
*requirements for external information

Information *higher prediction accuracy

Model-based

*better performance under the challenges of sparsity

*requirements for external information

In this section, we discuss approaches to these three
challenges via adaptive CF QoS prediction, credible CF
QoS prediction, and privacy-preserving CF QoS predic-
tion, respectively.

7.1 Adaptive CF QoS Prediction Approaches

QoS values of Web services are dynamic in that existing
QoS values are continuously updated with newly observed
values. QoS prediction approaches should enable continu-
ous and incremental updating using sequentially observed
QoS data if they are to adapt to continuous QoS changes. To
adapt to QoS fluctuations over time, adaptive QoS predic-
tion studies have been proposed for each of the memory-
based, model-based, and hybrid CF approaches.

Memory-based CF must update similar neighbors when
a certain number of QoS data come in. However, the online
time complexity for both user-based and item-based CF
approaches is O(mn), where m represents the number of
users and n represents the number of services. This high
computational complexity makes it difficult for memory-
based CF algorithms to handle large amounts of perfor-
mance data if timely prediction is required. Some extended
memory-based approaches, such as those that employ clus-
tering, are more efficient and well suited for large datasets.
However, when the QoS values change, the correspon-
ding user clusters and service clusters should be updated.
Yu et al. [56] proposed an online updating approach, claim-
ing that the clusters would be updated quickly by employ-
ing representative users and services. However, the cluster
quality would decrease with an increase in the execution
time for the online updating process. Therefore, the users or
services should be reclassified whenever the quality of clus-
ters significantly decreases.

The MF-based CF approaches need to train a factor model
before making missing value predictions. Retraining the fac-
tor model with new data is quite expensive, particularly
when retraining needs to be performed regularly. GD can be
used to solve the minimization problem, but it typically
works offline (with all data assembled) and cannot easily
adapt to time-varying QoS values. Zhu et al. [104] proposed
using adaptive matrix factorization, which employs SGD

and adaptive weights to control the step size when training
the model to perform well with rapidly changing QoS values
for users and services. For example, if service s1 has an inac-
curacy of 10 percent and service s2 has an inaccuracy of 1
percent, the step size should be less when updating service
s1 than when updating service s2. The neural-network-based
models [87], [88], [90] use a sliding window to deal with new
data in a timely fashion. A long sliding window can help to
incorporate more data in each update, but it may also result
in an excessive training time. To update the prediction model
more rapidly, Zhang et al. [105] proposed LA-LMRBF, a
novel online QoS-forecasting approach that uses advertise-
ment and the Levenberg-Marquardt (LM) improved radial
basis function (RBF). LA-LMRBF first uses affinity propaga-
tion clustering to calculate the number of hidden-layer nodes
of the RBF neural network and then employs the LM algo-
rithm to learn the weights in the implicit layer and the output
layer via iterative training. The model can produce predic-
tion results with the new QoS values but, if the error function
of new QoS values is larger than the threshold value, the
originally trained model parameters may no longer meet the
requirements of the new data. Therefore, it becomes neces-
sary to use the improved LM algorithm again to calculate
updated weights that meet the requirements of the dynamic
prediction model.

Hybrid CF such as the neighborhood-integrated MF
approaches [3], [102] need a series of experiments to find sat-
isfactory parameters for use in QoS prediction. This is time-
consuming and impractical in a dynamic environment. Luo
et al. [106] designed an optimal online parameter-tuning
method based on approximate dynamic programming that
aims to find satisfactory parameters through online optimi-
zation. The tuner uses a neural network to compute the opti-
mal solution to a multistage dynamic decision-making
process. It can adapt to the changes in the network environ-
ment without requiring prior knowledge or identification of
the prediction model. Considering that a change of any con-
textual factor will cause change of services” QoS, Liu et al.
[107] proposed a context-aware real-time multi-QoS predic-
tion method, which constructs a QoS case model combining
the multi-QoS attributes and four contextual factors (i.e., task
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type, task volume, network speed, and service workload).
They first predicted the service workload by an optimized
support vector machine, and then took the predicted work-
load and other contextual factors as input data to calculate
the similarity between the target QoS case and a historical
QoS case, finally predicted the multi-QoS of services.

The classical CF methods for adaptive QoS prediction are
not incremental approaches and usually face heavy compu-
tational overheads. As discussed above, memory-based
approaches can accommodate to QoS changes by simply
storing the new data, however, it is difficult to handle large
amounts of performance data in timely prediction. And
retraining the factor model with new data is quite expensive
in model-based approaches, especially if retraining needs to
be performed regularly. A practical prediction system will
be required to operate with rapidly changing QoS values.
For example, an existing Web service may be discontinued
by its provider or expire after a certain time in the absence
of updating. However, these changes need a certain amount
of information for them to be evaluated. During this time,
the predicted QoS values may remain unchanged, and
users may then assume that the prediction accuracy is low
and may not agree to provide more QoS values. These
approaches therefore have a trade-off between accuracy
and the speed of the trend shifts. One possible approach is
to evaluate the amount of information by measuring the dif-
ference between the predicted QoS values before and after
the changes.

7.2 Credible CF QoS Prediction Approaches

Predictions are made based on the historical QoS values
contributed by different users. Therefore, the prediction
accuracy of CF approaches will be highly influenced by the
trustworthiness of the user-contributed QoS values. How-
ever, existing CF prediction approaches are based on the
hypothesis that all user-contributed values on services are
trustworthy. In reality, some user-contributed QoS values
can be untrustworthy for the following reasons: (1) mali-
cious users may submit wrong values in their service QoS
evaluation data; (2) some users may always give maximal/
minimal values for their unevaluated services; (3) service
users who are also service providers may give high QoS val-
ues for their services and low values to their competitors.
Therefore, it is important to consider data credibility if
robust Web service QoS value prediction is sought.

Registries that certify the QoS performance of all avail-
able Web services via third-party agents are used to
improve the trustworthiness of the Web service QoS in
Manikrao ef al. [108] and Ran ef al. [109]. However, this can
lead to overload of the registry servers if there are large
numbers of QoS feedback responses and the collection of
massive amounts of real-time QoS data. To resolve the trust-
worthiness issue for QoS and to provide accurate prediction
results, several approaches have been developed, including
reputation-aware algorithms, feedback-based algorithms,
and clustering-based algorithms.

Reputation-Aware Approaches. Reputation mechanisms can
provide an incentive for honest feedback behavior and help
users to make decisions about whom to trust. Qiu et al. [110]
proposed a memory-based reputation-aware prediction
approach that calculates the reputation of each user based
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on the difference of their contributed QoS values and the
weighted average of other users’ QoS values. Untrustwor-
thy users with low reputation are then excluded. Xu et al.
[111] proposed a reputation-aware MF-based CF approach
in which the user reputation is integrated into the MF
model. They applied a weighting parameter to reduce the
influence of low-reputation users and gave more attention
to the QoS values observed by users with a high reputation.
However, these two reputation-aware algorithms are sensi-
tive to their parameter settings, with inappropriate parame-
ter values leading to inaccurate reputation evaluation and a
resultant low prediction accuracy. To address this problem,
Su et al. [112] presented a trust-aware QoS prediction
approach that employs unsupervised K-means clustering
and a beta-distribution-based method to calculate the repu-
tation of users. They first employed the K-means clustering
algorithm to cluster the QoS data provided by the different
users and assigned the cluster containing the most users as
the honest cluster. They then calculated the reputation of
users by evaluating their deviation from the honest cluster.

Feedback-Based Approaches. Chen et al. [113] presented a
feedback-based trust model, which uses prediction feedback
to improve the performance of QoS prediction. First, they
collected the feedback to the prediction results from similar
neighbors, including the times similar neighbors were satis-
fied with the prediction results, the times similar neighbors
were not satisfied with the prediction results, and the total
number of similar neighbors making predictions. They then
used a Bayesian-average voting algorithm to evaluate the
trust in the user. Finally, they combined this user trust with
the user similarity to generate the trust-based similarity. The
trust model is effective and complementary to the memory-
based CF prediction approaches, but it is sometimes difficult
to collect feedback because users may not always give feed-
back on the prediction results.

Clustering-Based Approaches. Clustering-based approaches
employ an unsupervised clustering algorithm to identify
untrustworthy users based on the clustering information.
Wu et al. [114] proposed a novel credibility-aware QoS pre-
diction method that uses two-phase K-means clustering to
identify the untrustworthy users. In the first phase, they clus-
tered the QoS values for each service, and defined those
users belonging to the cluster who had the minimum num-
ber of elements as candidates for being untrustworthy. In the
second phase, they clustered all users based on their untrust-
worthy index and identified the cluster containing the users
with the highest untrustworthy index as a set of untrustwor-
thy users. To address the overloading problem for the QoS-
certifier server caused by large-scale QoS data, Tao et al. [115]
first collected QoS values using event-driven adaptive Pois-
son sampling and then adopted the partitioning around
medoids clustering algorithm to obtain trustworthy QoS
data. Liu et al. [116] divided trust into two main types,
namely local trust and global trust. Being the degree of trust
between two users, local trust is measured by averaging the
prediction error on co-invoked services, whereas global trust
can be computed by averaging the local trust values from
neighbors. They then removed those users who did not sat-
isfy a trust threshold to reconstruct the trusted network.

Reputation-aware approaches try to calculate the user
reputation precisely, feedback-based approaches need to
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collect QoS feedback, and clustering-based employ cluster-
ing algorithm to identify untrustworthy users. These credi-
ble CF QoS prediction approaches can detect some malicious
users. However, if the attackers are aware of such detection
strategies being applied, their attack could be modified to
avoid detection. This flaw make these approaches vulnerable
to sophisticated attacks. For example, some malicious users
collude to propose QoS values that are significantly different
from others, thereby allowing the QoS values proposed by
another malicious user to be considered trustworthy. More
research is needed in this area.

7.3 Privacy-Preserving CF QoS Prediction
Approaches

To collect QoS values on the client side, users are required to
supply their observed QoS values. However, there is a risk of
the users’ privacy leaking. Malicious recommender systems
may abuse the data, infer private information from the data,
or even resell the data to a competing user for profit [117].
An unintentional leakage of such data can expose users to a
broad set of privacy issues (e.g., QoS data may reveal the
underlying application configurations). Some researchers
point out that QoS properties such as response time and
availability are highly correlated with the users” physical
locations [53], [118], which means that a user’s location could
be deduced from the QoS information. Consequently, it is
essential to design privacy-preserving QoS prediction
approaches. There are three main privacy-preserving techni-
ques. First, randomized perturbation [119] adds randomness
from a specific distribution to the original data to prevent
information leakage. Next, homomorphic encryption [120]
allows computations to be carried out directly on ciphertexts.
Finally, differential privacy [121] can make the inference of
private user data from the output difficult by adding random
noise to every user’s observed QoS data according to a Lap-
lace mechanism. We summarize these three privacy-preserv-
ing QoS prediction approaches in the following.

Randomized Perturbation. Zhu et al. [122] presented a ran-
domized-perturbation-based privacy-preserving QoS pre-
diction framework. They first performed randomized
perturbation on the QoS values via random noise generated
from a specified distribution. They then applied memory-
based CF and model-based CF to predict QoS values based
on the obfuscated QoS values. Later, Zhu ef al. [123] designed
a similarity-maintaining privacy preservation (SPP) strategy
from the user-level perspective (vector-level instead of ele-
ment-level). With this SPP strategy, the similarities among
the obfuscated data is the same as that among the true data.
They then proposed a location-aware low-rank matrix factor-
ization (LLMF) schema to predict the missing QoS values.
However, LLMF only considers the services’ location infor-
mation, without utilizing the users’ location information.
Meng et al. [124] combined a region-aggregation strategy
with a randomized data obfuscation technique, for which
the region-aggregation strategy expands the target region,
thereby blurring the specific location of users and protecting
the users’ location information. These randomized-perturba-
tion-based approaches trade off privacy against accuracy
because the accuracy of the prediction is inversely correlated
with the magnitude of the noise. It is difficult to set an appro-
priate noise parameter that can maintain reasonable levels of
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user privacy and prediction accuracy at the same time. More-
over, Kargupta ef al. [125] questioned the security of random-
ized perturbation technology.

Homomorphic Encryption. Badsha et al. [126] proposed a
privacy-preserving QoS prediction framework via Yao’s
garbled circuit and homomorphic encryption. It first filters
the nearby users by computing the encrypted distance infor-
mation using the homomorphic property of the Paillier
cryptosystem. Then, two service providers, a recommender
server (RS) and a privacy server (PS), are incorporated to
enable privacy-preserving QoS prediction. RS is responsi-
ble for generating recommendations and PS is responsible
for generating keys and the decryption of the public key.
First, PS generates public and private keys, with all users
using the public key to encrypt their QoS values. This
encrypted information is then stored in RS. After sending
the query, RS predicts the missing QoS values based on the
encrypted QoS values of nearby users by using the homo-
morphic properties of the public-key encryptions and sends
the resultant ciphertexts to PS. Then, PS decrypts the pre-
diction results. Having completed this protocol, the kS and
PS retain no private information relating to any of the users.
Homomorphic encryption-based methods can not only pro-
tect the private data of users but can also produce the same
prediction results as non-private methods. However, this
comes at the cost of computational overheads, making the
method suitable mainly for offline prediction.

Differential Privacy. Liu et al. [131] proposed a privacy-pre-
serving solution for Web service QoS prediction via differen-
tial privacy, which adds noise via a Laplace mechanism to
ensure that the prediction result is insensitive to the removal
or addition of any QoS record. They designed two methods,
namely differential privacy on simple data (DPS) and differ-
ential privacy on aggregated data (DPA). DPS adds noise to
the users” QoS data directly, while DPA adds noise to the
aggregated user’s QoS data to improve the utility of the dis-
guised QoS data. In contrast to homomorphic encryption,
this solution is not only lightweight but also offers theoreti-
cally guaranteed security because differential privacy fol-
lows a rigorous and quantitative definition of privacy
leakage. However, the differential-privacy-based method
also suffers from the privacy-accuracy trade-off issue and is
assumed to involve a one-time computation; recalculation
may lead to privacy leakage when more data is available.
This is because maintaining privacy in multiple computa-
tions requires increasing the amount of introduced noise,
which will lead to decreased accuracy.

Randomized-perturbation-based and differential-pri-
vacy-based approaches trade off privacy against accuracy,
while homomorphic encryption-based methods come at the
cost of computational overheads. These privacy-preserving
research assume that complete privacy is unrealistic, and
that privacy may only come at the expense of accuracy or
some other trade-off such as computational overhead. It is
important to examine this trade-off carefully and make
compromises that minimize the invasion of privacy. More-
over, as the rigorous theoretical understanding of the
degree of privacy protection is quite limited, an alternative
is to define different privacy levels, such as the k-identity
[132], and to analyze the sensitivity of algorithms under dif-
ferent privacy levels.
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TABLE 4

Released Web Service QoS Datasets
Dataset Number of users Number of services
Shao[46] 136 20
Silic[127] 50 49
QWS [128] 1 2507
Vieira[129] 1 300
XiongLuo[65] 200 500
WS-DREAM1[47] 150 100
WS-DREAM2[130] 21,358 339
WS-DREAM3[54] 4,532 142

8 REAL-WORLD QOS DATASETS

With various QoS prediction approaches of Web services
having been comprehensively studied, a large-scale real-
world Web service QoS dataset is needed to compare their
prediction performance. Some approaches, such as that of
Karta [133], simply employ a movie-rating dataset for experi-
mental studies, which is insufficiently convincing. Shao et al.
[46] collected invoking records from 136 consumers for 20
real Web services, where each volunteer submitted 200
invoking records for each service, on average. Silic et al. [127]
implemented RESTful services involving various levels of
computational complexity and placed these services in dif-
ferent geographic locations worldwide. Luo et al. [65] col-
lected data that involved several properties such as response
time and throughput from 200 users for 500 Web services.
Al-Masri et al. [128] released a Web service QoS dataset
named Quality of Web Service (QWS), which involved only
one service user of 2,507 Web services. The fact that different
users will observe quite different QoS for the same Web ser-
vice limits the applicability of this dataset. Vieira et al. [129]
conducted an experimental evaluation of security vulner-
abilities for 300 publicly available Web services. However,
security vulnerabilities usually exist at the server side and
are user independent (different users will undergo the same
security vulnerabilities on the target Web service). Zheng
et al. [47] monitored 100 Web services by using 150 distrib-
uted computer nodes located all over the world. This dataset
contains 150 files, where each file involves 10,000 Web ser-
vice invocations on 100 Web services by a service user. Alto-
gether, there are more than 1.5 million Web service
invocations. Zheng et al. [130] also conducted evaluations on
the real-world user-observed QoS for 5,825 Web services
from distributed locations. In this dataset, the response time
and the throughput performance are evaluated by 339 dis-
tributed-service users. Zhang et al. [54] included response
time values and throughput values for 4,532 Web services
invoked by 142 service users in 64 time intervals. These data-
sets can be employed in experiments designed to evaluate
the prediction accuracy of different prediction approaches.
Table 4 summarizes some of these available Web service QoS
datasets.

9 FUTURE RESEARCH POSSIBILITIES

Previous works show that CF approaches have gained sub-
stantial momentum for Web service QoS prediction. How-
ever, CF approaches are yet to offer satisfactory solutions
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under some conditions. In this section, we consider several
promising directions for further research.

QoS Prediction for Other Emerging Services. The research of
Web service QoS prediction should be extended to non-
WSDL-described services, because a large proportion of
modern Web services are non-WSDL-described, such as
cloud-based services, mobile services, and Internet of Things
(IoT) services. First, the popularity of cloud computing has
promoted the rapid growth of cloud-based services. Millions
of cloud-based services provide multiple real-time functions.
Second, smart mobile devices such as smartphones, tablets,
wearable devices, and autonomous vehicles are becoming
more and more popular. In the era of mobile devices, mil-
lions of mobile services are downloadable from the app
stores. Third, in an IoT environment, a huge number of het-
erogeneous devices have led to QoS concerns, and QoS
approaches have been proposed in each layer of the IoT
architecture and take into consideration different QoS prop-
erties. It is a critical challenge to predict the QoS values of
such large-scale and highly dynamic services to fulfill user
requirements.

Distributed QoS Prediction Approaches. A typical QoS pre-
diction system collects the QoS data of its own users. This
results in the historical QoS data distributed in different plat-
forms. some of these platforms may not have enough user
data to achieve high prediction accuracy. Due to data pri-
vacy, these platforms may be willing to but dares not share
their data with other platforms. Although some researches
have been proposed to solve the data privacy in a distributed
situation [134], [135], the performance and privacy-preserv-
ing are still challenging in a distributed scene. On the other
hand, the prediction is based on the contributed QoS data of
users. However, there is currently no incentive mechanism
for encouraging users to contribute. A fair incentive mecha-
nism is required, whereby the more users contribute, the
greater the reward they receive. Moreover, the authenticity
of participants should be verifiable, because some partici-
pants may behave abnormally or even exhibit deliberately
obscure or potentially adversarial behavior to maximize
their financial interest. Designing blockchain-based QoS pre-
diction methods, which could encourage users to participate
by guaranteeing freedom from fraud, will be an important
research direction for the future.

Novel Approaches to QoS Prediction. Although recent
approaches achieve good performance to some extent, there
is still much room to improve. Employing new technologies
to further improve the prediction accuracy is one promising
direction. For example, Graph Neural Network (GNN), as a
new emerging recommendation model, has recently been
used for recommender systems. GNN aggregates the feature
information of neighbor nodes to obtain the feature informa-
tion of the target node, and then capture the structure infor-
mation of the whole graph through layer by layer fusion.
Applying GNN to QoS prediction, the feature information of
neighbor nodes and the structure information of the whole
graph can be used for prediction, which will alleviate the
problems of data sparsity and cold start. As another exam-
ple, there are a variety of objects and rich relationships in the
context-aware service network, such as spatial and temporal
information, that naturally form a heterogeneous informa-
tion network. The rich heterogeneous information can be
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incorporated into QoS prediction to address the data sparsity
and cold-start problem.

Case Studies of Industrial Implementations. QoS prediction
plays an increasingly important role in service-based sys-
tem development. But there is still a lack of research on the
industrial implementations of QoS prediction. On the one
hand, in real-world implementations, millions of services
provide real-time functionality to millions of users. It is a
difficult mission to predict the QoS values of such large-
scale, highly dynamic services to meet the needs of users.
On the other hand, due to user data privacy concerns,
industrial companies may be reluctant to disclose informa-
tion about how QoS prediction methods are used. However,
it is very important to explain how the CF-based QoS pre-
diction has then been used in the industry, which will
increase the significance of this work. Case studies of indus-
trial implementations may provide a promising direction,
which needs urgent attention.

10 CONCLUSION

QoS prediction plays an increasingly important role in ser-
vice-based system development. In this survey, we have pre-
sented a comprehensive review of CF-based QoS prediction
approaches. We have summarized and analyzed conven-
tional memory-based and model-based CF QoS prediction
approaches and their extended versions that incorporate
spatial, temporal, and other context information. In terms of
hybrid CF QoS prediction approaches, we divided them into
memory-based models exploring latent features and neigh-
borhood-based MF models. We also summarized three new
challenges for QoS prediction, namely adaptive CF, credible
CF, and privacy-preserving CF. In addition, we described
several Web service QoS datasets for QoS prediction evalua-
tion. Finally, we suggested some future research directions
for QoS prediction.
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