
May 29, 2002 10:40 WSPC/117-ijseke 00084

International Journal of Software Engineering and Knowledge Engineering
Vol. 12, No. 2 (2002) 107–133
c© World Scientific Publishing Company

COMPONENT-BASED EMBEDDED SOFTWARE ENGINEERING:

DEVELOPMENT FRAMEWORK, QUALITY ASSURANCE AND

A GENERIC ASSESSMENT ENVIRONMENT

XIA CAI∗,‡, MICHAEL R. LYU∗,§ and KAM-FAI WONG†,¶

∗Department of Computer Science and Engineering,
†Department of System Engineering and Engineering Management,

The Chinese University of Hong Kong, Hong Kong
‡xcai@cse.cuhk.edu.hk
§lyu@cse.cuhk.edu.hk
¶kfwong@se.cuhk.edu.hk

Embedded software is used to control the functions of mechanical and physical de-
vices by dedicated digital signal processor and computers. Nowadays, heterogeneous
and collaborative embedded software systems are widely adopted to engage the physi-
cal world. To make such software extremely reliable, very efficient and highly flexible,
component-based embedded software development can be employed for the complex
embedded systems, especially those based on object-oriented (OO) approaches. In this
paper, we introduce a component-based embedded software framework and the features
it inherits. We propose a quality assurance (QA) model for component-based embedded
software development, which covers both the component QA and the system QA as well
as their interactions. Furthermore, we propose a generic quality assessment environment
for component-based embedded systems: ComPARE. ComPARE can be used to assess
real-life off-the-shelf components and to evaluate and validate the models selected for
their evaluation. The overall component-based embedded systems can then be composed
and analyzed seamlessly.

Keywords: Embedded software; component-based embedded system; quality assurance;
CORBA; COM/DCOM; JavaBeans

1. Introduction

Embedded software is used to control the functions of mechanical and physical

devices by dedicated digital signal processors and computers. Today, embedded

software appears in everything from telephones and pagers, portable MP3 players,

television set-top boxes, digital cameras to systems for medical diagnostics, climate

control and manufacturing [1]. Once deemed too small and retro, embedded software

systems have drawn the interest and attention of researchers recently, because of

their wide adoption and the changes of hardware capabilities. The main task of

embedded software is to engage the physical world, interacting directly with sensors

and actuators. Typically, such software must be extremely reliable, very efficient

and compact, and precise in its handling of the rapid and unpredictable timing of

107

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

108 X. Cai, M. R. Lyu & K.-F. Wong

inputs and outputs [2]. Generally, embedded systems have the following features:

inherent complexity, hardware/software concurrency, tight cost and performance

constraints, and heterogeneous.

To achieve high reliability, efficiency and flexibility, embedded software systems

can be built from some existing modules from a third party [3]. Such modules

can be regarded as “components”, which is the fundamental idea of component-

based software development (CBSD). The component-based software development

approach is one of the most promising solutions for the emerging high development

cost, low productivity, unmanageable software equality and high risk, and move to

new technology in software development today [4]. This approach is based on the

idea that software systems can be developed by selecting appropriate off-the-shelf

components and then assembling them with a well-defined software architecture

[5]. This new software development approach is very different from the traditional

approach in which software systems can only be implemented from scratch. These

commercial off-the-shelf (COTS) components can be developed by different develop-

ers using different languages and different platforms. This can be shown in Fig. 1,

where COTS components can be checked out from a component repository, and

assembled into a target software system.

In general, a component has three main features:

(1) a component is an independent and replaceable part of a system that fulfills a

clear function;

(2) a component works in the context of a well-defined architecture; and

(3) a component communicates with other components by its interface [6].

Current component technologies have been used to implement different embed-

ded software systems, such as embedded web servers and embedded databases [3].

As embedded software often encapsulates domain expertise, and becomes more

complex, modular, adaptive, and network-aware, the emerging embedded software

components business is a consequence of this trend [2].

To ensure that a component-based software system can run properly and ef-

fectively, the system architecture is the most important factor. According to both

the research community [7] and industry practice [8], the system architecture of

component-based embedded software systems should be a layered and modular ar-

chitecture. This architecture can be seen in Fig. 2. The top application layer is

the application systems supporting various customers. The second layer consists

of components engaged in only a specific embedded-system or application domain,

including components usable in more than a single application. The third layer

is cross-system middleware components consisting of common software and inter-

faces to other established entities. The fourth layer of system software components

includes basic components that interface with the underlying operating systems

and hosting hardware. Finally, the lowest two layers are the operating system and

hardware layers [9].

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 109

...

Component n

Component
repository

Component 1

Component 2

 select

Software
system

assemble

Commercial off-the-shelf (COTS)
components

Fig. 1. Component-based embedded software development.

Special embedded-system
components

Common components

Basic components

App2
App1

App3
Application

Layer

Component
Layer

Operating System

Hardware

OS/Hardware
Layer

Fig. 2. System architecture of component-based software systems.

Component-based embedded software engineering will introduce component-

based software development approach into the embedded software systems.

Component-based embedded software development can significantly reduce devel-

opment cost and time-to-market, and improve maintainability, reliability and overall

quality of embedded software systems [10].

Traditional embedded software is often developed using low-level programming

languages, such as an assembler or C. However, it is not the case for complex

embedded systems because modern embedded systems require software reuse and

maintenance, as well as a significant amount of expertise. Also the aggregation and

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

110 X. Cai, M. R. Lyu & K.-F. Wong

connection of embedded systems over the Internet needs to cope with the heteroge-

neous, collaborative systems [10]. As object-oriented programming languages have

greatly enhance both software reusability and software quality, they can be used

to satisfy complex embedded systems. Object-oriented languages and some new

techniques based on them can be applied to embedded systems [11–13]. In this

paper, we will address the component-based embedded software engineering based

on object-oriented approaches.

The rest of this paper will introduce the current technologies for component-

based embedded software, and the quality assurance (QA) issues of such ap-

proaches. We formulate a QA model which addresses the quality management in

the component-based embedded software development process. We also propose a

generic quality assessment environment to simulate the process of selecting quali-

fied components from components repository to build a component-based embedded

software, then predict and evaluate the final system based on these components.

2. A Development Framework for Component-Based

Embedded Systems

A framework can be defined as a set of constraints on the components and their

interactions, and a set of benefits that derive from those constraints [2]. To identify

the development framework for component-based embedded software, the frame-

work or infrastructure for components should be identified first, as components are

the basic units in the component-based embedded systems.

Some approaches, such as Visual Basic Controls (VBX), ActiveX controls, class

libraries, and JavaBeans, make it possible for their related languages, such as Vi-

sual Basic, C++, Java, and the supporting tools to share and distribute application

pieces. But all of these approaches rely on certain underlying services to provide

the communication and coordination necessary for the application. The infrastruc-

ture of components (sometimes called a component model) acts as the “plumbing”

that allows communication among components [6]. Among the component infras-

tructure technologies that have been developed, three have become standardized:

OMG’s CORBA, Microsoft’s Component Object Model (COM) and Distributed

COM (DCOM), and Sun’s JavaBeans and Enterprise JavaBeans [14]. All these

technologies can be applied to component-based embedded systems [11,12,13].

2.1. Common Object Request Broker Architecture (CORBA)

CORBA is an open standard for application interoperability that is defined and

supported by the Object Management Group (OMG), an organization of over 400

software vendors and object technology user companies [15]. Simply stated, CORBA

manages details of component interoperability, and allows applications to communi-

cate with one another despite their different locations and designers. The interface

is the only way that applications or components communicate with each other.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 111

The most important part of a CORBA system is the Object Request Broker

(ORB). The ORB is the middleware that establishes the client-server relationships

between components. Using an ORB, a client can invoke a method on a server

object, whose embedded location is completely transparent. The ORB is responsible

for intercepting a call, finding an object that can implement the request, passing

its parameters, invoking its method, and returning the results. The client does not

need to know where the object is located, its programming language, its operating

system, or any other system aspects that are not related to the interface. In this

way, the ORB provides interoperability among embedded applications on different

machines in heterogeneous distributed environments and seamlessly interconnects

multiple object systems.

CORBA is widely used in Object-Oriented distributed systems [16] includ-

ing component-based embedded software systems because it offers a consistent

distributed programming and run-time environment over common programming

languages, operating systems, and distributed networks. The OMG has defined

two standards for embedded applications: Minimum CORBA and Real-Time

CORBA. Minimum CORBA defines a standard, fully interoperable subset (pro-

file) of CORBA functionality that is appropriate for resource-constraint applica-

tions, while Real-Time CORBA extends CORBA so that it can be used to build

deterministic applications [12].

2.2. Component Object Model (COM) and Distributed COM

(DCOM)

Introduced in 1993, Component Object Model (COM) is a general architecture for

component software [17]. It provides platform-dependent (based on Windows and

Windows NT), and language-independent component-based applications.

COM defines how components and their clients interact. This interaction is

defined such that the client and the component can connect without the need for

any intermediate system component. Specially, COM provides a binary standard

that components and their clients must follow to ensure dynamic interoperability.

This enables on-line software update and cross-language software reuse [18].

As an extension of the Component Object Model (COM), Distributed COM

(DCOM), is a protocol that enables software components to communicate directly

over a network in a reliable, secure, and efficient manner. DCOM is designed for

use across multiple network transports, including Internet protocols such as HTTP.

When a client and its component reside on different embedded machines, DCOM

simply replaces the local interprocess communication with a network protocol.

Neither the client nor the component is aware of the changes of the physical

connections.

More about COM/DCOM, and how to create implementations of COM/DCOM

for embedded systems, can be found in [13].

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

112 X. Cai, M. R. Lyu & K.-F. Wong

2.3. Sun Microsystems’s JavaBeans and Enterprise JavaBeans

Sun’s Java-based component model consists of two parts: the JavaBeans for client-

side component development and the Enterprise JavaBeans (EJB) for the server-

side component development. The JavaBeans component architecture supports em-

bedded applications of multiple platforms, as well as reusable, client-side and server-

side components [19].

The Java platform offers an efficient solution to the portability and security

problems through the use of portable Java bytecodes and the concept of trusted

and untrusted Java applets. Java provides a universal integration and enabling

technology for embedded enterprise application development, including

(1) interoperating across multivendor servers;

(2) propagating transaction and security contexts;

(3) servicing multilingual clients; and

(4) supporting ActiveX via DCOM/CORBA bridges.

JavaBeans and EJB extend all native strengths of Java including portability

and security into the area of component-based development. The portability, se-

curity, and reliability of Java are well suited for developing robust server objects

independent of operating systems, Web servers and database management servers.

2.4. Comparison among different architectures

Comparison among the development technologies for component-based embedded

systems can be found in [6], [20] and [21]. We summarize their different features in

Table 1.

3. Quality Assurance for Component-Based Embedded Systems

3.1. The life cycle of component-based embedded software systems

Component-based embedded software systems are developed by selecting various

components and assembling them together rather than programming an over-

all system from scratch, thus the life cycle of component-based embedded soft-

ware systems is different from that of traditional embedded software systems. The

life cycle of component-based embedded software systems can be summarized as

follows [5]:

(1) Requirements analysis;

(2) Embedded software architecture selection, construction, analysis, and

evaluation;

(3) Component identification and customization;

(4) Embedded system integration;

(5) Embedded system testing;

(6) Software maintenance.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 113

Table 1. Comparison of development technologies for component-based embedded systems.

CORBA EJB COM/DCOM

Development
environment

Underdeveloped Emerging Supported by a wide
range of strong develop-
ment environments

Binary inter-
facing standard

Not binary standards Based on COM; Java
specific

A binary standard for
component interaction
is the heart of COM

Compatibility
& portability

Particularly strong in
standardizing language
bindings; but not so
portable

Portable by Java lan-
guage specification; but
not very compatible.

Not having any concept
of source-level standard
of standard language
binding.

Modification &
maintenance

CORBA IDL for defin-
ing component inter-
faces, need extra modi-
fication & maintenance

Not involving IDL files,
defining interfaces be-
tween component and
container. Easier modi-
fication & maintenance.

Microsoft IDL for defin-
ing component inter-
faces, need extra modi-
fication & maintenance

Services
provided

A full set of standard-
ized services; lack of
implementations

Neither standardized
nor implemented

Recently supplemented
by a number of key ser-
vices

Platform
dependency

Platform independent Platform independent Platform dependent

Language
dependency

Language independent Language dependent Language independent

Implementation Strongest for tradi-
tional enterprise com-
puting

Strongest on general
Web clients.

Strongest on the tradi-
tional desktop applica-
tions

The architecture of embedded software defines an embedded system in terms

of computational components and interactions among the components. The focus

is on composing and assembling components that are likely to have been devel-

oped separately, and even independently. Component identification, customization

and integration is a crucial activity in the life cycle of component-based embedded

systems. It includes two main parts: (1) evaluation of each candidate COTS com-

ponent based on the functional and quality requirements that will be used to assess

that component; and (2) customization of those candidate COTS components that

should be modified before being integrated into new component-based embedded

software systems. Integration is to make key decisions on how to provide communi-

cation and coordination among various components of a target embedded software

system.

Quality assurance for component-based embedded software systems should ad-

dress the life cycle and its key activities to analyze the components and achieve

high quality component-based embedded software systems. QA technologies for

component-based embedded software systems are currently premature, as the spe-

cific characteristics of component systems differ from those of traditional systems.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

114 X. Cai, M. R. Lyu & K.-F. Wong

Although some QA techniques such as reliability analysis model for distributed

software systems [22, 23] and component-based approach to software engineering

[24] have been studied, there is still no clear and well-defined standards or guide-

lines for component-based embedded software systems. The identification of the

QA characteristics, along with the models, tools and metrics, are all under urgent

needs. In Sec. 4 we propose an initial attempt to draft a simple QA model for the

development of component-based embedded software systems.

3.2. Quality characteristics of components

As much work is yet to be done for component-based embedded software develop-

ment, QA technologies for component-based embedded software development has

to address the two inseparable parts: (1) How to certify the quality of a component?

(2) How to certify the quality of the whole embedded system based on components?

To answer these questions, models should be promoted to define the overall quality

control of components and systems; metrics should be found to measure the size,

complexity, reusability and reliability of components and systems; and tools should

be decided to test the existing components and systems. To evaluate a component,

we must determine how to certify the quality of the component. The quality char-

acteristics of components are the foundation to guarantee the quality of the com-

ponents, and thus the foundation to guarantee the quality of the whole component-

based embedded software systems. Here we suggest a list of recommended character-

istics for the quality of components: (1) Functionality; (2) Interface; (3) Usability;

(4) Testability; (5) Maintainability; (6) Reliability.

Software metrics can be proposed to measure software complexity and assure

its quality [25, 26]. Such metrics often used to classify components include [27]:

(1) Size. This affects both reuse cost and quality. If it is too small, the benefits

will not exceed the cost of managing it. If it is too large, it is hard to achieve

high quality.

(2) Complexity. This also affects reuse cost and quality. A too-trivial component

is not profitable to reuse while a too-complex component is hard to inherit high

quality.

(3) Reuse frequency. The number of incidences where a component is used is a

solid indicator of its usefulness.

(4) Reliability. The probability of failure-free operations of a component under

certain operational scenarios [28].

4. A Quality Assurance Model for Component-Based Embedded

Systems

Because component-based embedded software systems are developed on an under-

lying process different from that of the traditional software, their quality assurance

model should address both the process of components and the process of the overall

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 115

�����������	
��
���������

�������

�		�
���

���
�

Fig. 3. Quality assurance model for both components and embedded systems.

system. Figure 3 illustrates this view.

Many standards and guidelines are used to control the quality activities of soft-

ware development process, such as ISO9001 and CMM model. In particular, the

Hong Kong Productivity Council has developed the HKSQA model to localize the

general SQA models [29]. In this section, we propose a framework of quality assur-

ance model for the component-based embedded software development paradigm.

The main practices relating to components and embedded systems in this model

contain the following phases: (1) Component requirement analysis; (2) Component

development; (3) Component certification; (4) Component customization; (5) Sys-

tem architecture design; (6) System integration; (7) System testing; and (8) System

maintenance. Details of these phases and their activities are described as follows.

4.1. Component requirement analysis

Component requirement analysis is the process of discovering, understanding, doc-

umenting, validating and managing the requirements for a component. The objec-

tives of component requirement analysis are to produce complete, consistent and

relevant requirements that a component should realize, as well as the programming

language, the embedded platform and the interfaces related to the component.

The component requirement process overview diagram is shown in Fig. 4. Ini-

tiated by the request of users or customers for new development or changes on old

embedded systems, component requirement analysis consists of four main steps:

requirements gathering and definition, requirement analysis, component modeling,

and requirement validation. The output of this phase is the current user requirement

documentation, which should be transferred to the next component development

phase, and the user requirement changes for the system maintenance phase.

4.2. Component development

Component development is the process of implementing the requirements for a

well-functional, high quality component with multiple interfaces. The objectives

of component development are the final component products, the interfaces, and

development documents. Component development should lead to the final compo-

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

116 X. Cai, M. R. Lyu & K.-F. Wong

Requirements
Gathering and
Definition

Requirement
Analysis

Component
Modeling

Requirement
Validation

Component
Development

System
Maintenance

Draft User Requirement
 Documentation (URD)

Format &
Structure

Component Requirement
 Document (CRD)

Updated CRD with
 model included

Current URD
 User Requirement
 Changes

Data
Dictionary

 Structure for
naming &
Describing

Current
URD

Requirement
Document
Template

Request for new development
 or change

Initiators (Users, Customers,
Manager etc.)

Fig. 4. Component requirement analysis process overview.

Developers

Implementation
�

Self-Testing
�

(Function)
�

Self-Testing
�

(Reliability)
�

Development
Document

�
Component

�

Certification
�

System
�

Maintenance

Techniques required

Draft Component

Requirements

Well-Functional Component
�

Reliable Component

Submit
�

 For Reference

Existing
Fault

Component
�

Requirement
Document

Fig. 5. Component development process.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 117

nents satisfying the requirements with correct and expected results, well-defined

behaviors, and flexible interfaces.

The component development process overview diagram is shown in Fig. 5. Com-

ponent development consists of four procedures: implementation, function testing,

reliability testing, and development document. The input to this phase is the com-

ponent requirement document. The output should be the developed component and

its documents, ready for the following phases of component certification and system

maintenance, respectively.

The components in embedded systems contain both hardware components (i.e.,

programmable components such as micro-controllers and Digital Signal Processors

[30]) and software components (i.e., basic components including database access

and security, communication components and industry-specific components such as

phone API and smart card access).

4.3. Component certification

Component certification is the process that involves:

(1) component outsourcing: managing a component outsourcing contract and au-

diting the contractor performance;

(2) component selection: selecting the right components in accordance with the

requirement for both functionality and reliability; and

(3) component testing: confirm that the component satisfies the requirement with

acceptable quality and reliability.

The objectives of component certification are to outsource, select and test the can-

didate components and check whether they satisfy the system requirement with

high quality and reliability. The governing policies are:

(1) Component outsourcing should be charged by a software contract manager;

(2) All candidate components should be tested to be free from all known defects;

and

(3) Testing should be in the target embedded environment or a simulated

environment.

The component certification process overview diagram is shown in Fig. 6. The input

to this phase should be component development document, and the output should

be testing documentation for system maintenance.

4.4. Component customization

Component customization is the process that involves (1) modifying the component

for the specific requirement; (2) doing necessary changes to run the component on

embedded platforms; (3) upgrading the specific component to get better perfor-

mance or higher quality. The objectives of component customization are to make

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

118 X. Cai, M. R. Lyu & K.-F. Wong

System Requirements

Component
Outsourcing

Component
Testing

Component
Selecting

Acceptance System
Maintenance

Specific Component
Requirements

 Component Released

Component
Functions

Well-Functional Component
�

 Component fit for the special
 requirements

Contract Signoffs,
Payments

Reject
�

Component
Development

Document

Fig. 6. Component certification process overview.

necessary changes for a developed component so that it can be used in an embedded

environment or cooperate with other components well.

All components must be customized according to the operational system re-

quirements or the interface requirements with other components in which the com-

ponents should work. The component customization process overview diagram is

shown in Fig. 7. The input to component customization is the system requirement,

the component requirement, and component development document. The output

should be the customized component and document for system integration and

system maintenance.

4.5. System architecture design

System architecture design is the process of evaluating, selecting and creating soft-

ware architecture of a component-based embedded system. The objectives of system

architecture design are to collect the users requirement, identify the system speci-

fication, select appropriate system architecture, and determine the implementation

details such as platform, programming languages, etc.

System architecture design should address the advantage for selecting a partic-

ular embedded system architecture from other architectures. The process overview

diagram is shown in Fig. 8. This phase consists of system requirement gather-

ing, analysis, embedded system architecture design, and system specification. The

output of this phase should be the embedded system specification document for

integration, and the embedded system requirement for the system testing phase

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 119

System Requirements & Other
Component Requirements

Component
Customization

Component
Document

Component
Testing

Acceptance System
Maintenance

Specific System & Other
Component Requirements

�

 Component Changed

Component
�

Document
�

New Component Document
�

 Component fit for the special
 requirements

Component
�

Document
�

Reject
�

Component
Development

Document

System
Integration Assemble

�

Fig. 7. Component customization process overview.

Initiators

System Requirement
Gathering

System Requirement
Analysis

�

System Architecture
Design

System
Specification

System
Integration

Requests for New Systems
�

 Draft System Requirements
 Document

Format &
�

Structure

System Requirement Document

System Architecure
�

System Specification
Document

Current
�

Document
�

Requirement
Document

�

Template

System
Testing System

Requirement

System
�

Maintenance

Fig. 8. System architecture design process overview.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

120 X. Cai, M. R. Lyu & K.-F. Wong

and system maintenance phase.

Some of the embedded system design efforts address the hardware-software co-

design issue, i.e., the concurrent development of standard hardware components,

the selection of programmable components, and the development of the application

software that will run on them. Others emphasize the sequence consisting of the

initial functional design and its analysis, the mapping of such functional description

into architecture, and the consequent performance evaluation and validation [30].

4.6. System integration

System integration is the process of assembling the selected components into a com-

plete system under the designed embedded system architecture. The objective of

system integration is the final system composed by the selected components. The

process overview diagram is shown in Fig. 9. The input is the embedded system

requirement documentation and the specific architecture. There are four steps in

this phase: integration, testing, changing component and re-integration (if neces-

sary). After exiting this phase, we will get the final embedded system ready for the

system testing phase, and the document for the system maintenance phase. It is

noted that system integration should emphasize specific properties related to the

integration of embedded components, such as timing issues, synchronization issues,

etc.

System
Requirement

System
Integration

Self-Testing

Component
Changing

Final
�

System
System

Maintenance

Requirements for New
�

Systems

 Draft System

Architecture
�

Fault Component
�

Selecting New Component

System Integration
Document

�

Current
�

Component
�

System
Architecture

System
Testing Final System

Component
Certification

Component
�

Requirement

Fig. 9. System integration process overview.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 121

4.7. System testing

System testing is the process of evaluating a system to: (1) confirm that the em-

bedded system satisfies the specified requirements; (2) identify and correct defects

in the system implementation. The objective of system testing is the final em-

bedded system integrated by components selected in accordance with the system

requirements. System testing should contain functional testing and reliability test-

ing. The process overview diagram is shown in Fig. 10. This phase consists of

selecting testing strategy, system testing, user acceptance testing, and completion

activities. The input should be the documents from component development and

system integration phases, and the output should be the testing documentation for

system maintenance. Note this procedure should address the interaction testing of

embedded components, such as coordination issues, deadlocks, etc.

4.8. System maintenance

System maintenance is the process of providing service and maintenance activities

needed to use the software effectively after it has been delivered. The objectives of

system maintenance are to provide an effective product or service to the end-users

while correcting faults, improving software performance or other attributes, and

adapting the embedded system to a changed environment.

System Design
Document

Testing
Strategy

System
Testing

User Acceptance
Testing

Test Completion
Activities

System
Maintenance

 Testing Requirements

 System Testing Plan

Test
Dependencies

System Tested

User Accepted System
�

System Integration
Document

System
Maintenance

(Previous
Software Life

Cycle)

Component
Development

Component
�

Document

System
Integration

Component
�

Document
System Test
Spec.

User Acceptance
�

Test Spec.

Fig. 10. System testing process overview.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

122 X. Cai, M. R. Lyu & K.-F. Wong

There shall be a maintenance organization for every software product in the

operational use. All changes for the delivered system should be reflected in the

related documents. The process overview diagram is shown in Fig. 11. According

to the outputs from all previous phases as well as requests and problem reports

from users, system maintenance should be held for determining support strategy

and problem management (e.g., identification and approval). As the output of this

phase, a new version can be produced for system testing phase for a new life cycle.

Users

Support
Strategy

Problem
Management

System
Maintenance

 Request and Problem Reports

User Support Agreement
�

 Documents,
 Strategies

Change Requests
�

All Previous
Phases

System
Testing

New Version
�

Fig. 11. System maintenance process overview.

5. A Generic Quality Assessment Environment for

Component-Based Embedded Systems ComPARE

We propose a Component-based Program Analysis and Reliability Evaluation

(ComPARE) to evaluate the quality of software systems in component-based em-

bedded software development. ComPARE automates the collection of different met-

rics, the selection of different prediction models, the formulation of user-defined

models, and the validation of established models according to faulty data col-

lected during the development process. Different from other existing tools [31],

ComPARE takes dynamic metrics into account (such as code coverage and perfor-

mance metrics), integrates them with process metrics and more static code metrics

for object-oriented programs (such as complexity metrics, coupling and cohesion

metrics, inheritance metrics), and provides different estimation models for overall

system assessment with high accuracy.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 123

Metrics
Computation

Criteria
Selection

Model
Definition

Model
Validation

Result
Display

Case Base

Failure
Data

Candidate
Components

System
Architecture

Fig. 12. Architecture of ComPARE.

5.1. Objective

A number of commercial tools are available for the measurement of software metrics

for object-oriented programs in embedded systems. Also there are off-the-shelf tools

for testing or debugging software components. However, few tools can measure the

static and dynamic metrics of embedded software systems, perform various quality

modeling, and validate such models against actual quality data.

ComPARE aims to provide an environment for quality prediction of soft-

ware components and assess their reliability in the overall system developed us-

ing component-based embedded software development. The overall architecture of

ComPARE is shown in Fig. 12. First of all, various metrics are computed for the

candidate components, then the users can select and weigh the metrics deemed

important to quality assessment. After the models have been constructed and exe-

cuted (e.g., “case base” is used in BBN model), the users can validate the selected

models with failure data in real life. If users are not satisfied with the prediction

result, they can go back to the previous step, re-define the criteria and construct a

revised model. Finally, the overall quality prediction can be displayed based on the

architecture of the candidate system. Results from individual components can also

be displayed for sensitivity analysis and system redesign.

The objective of ComPARE can be summarized as follows:

1. To predict the overall quality by using process metrics, static code metrics as well

as dynamic metrics. In addition to complexity metrics, we use process metrics,

cohesion metrics, inheritance metrics and dynamic metrics (such as code coverage

and call graph metrics) as the input to the quality prediction models. Thus the

prediction is more accurate as it is based on data from every aspect of the

candidate software components tailored for embedded systems.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

124 X. Cai, M. R. Lyu & K.-F. Wong

2. To integrate several quality prediction models into one environment and compare

the prediction result of different models. ComPARE integrates several existing

quality models into one environment. In addition to selecting or defining these

different models, users can also compare the prediction results of the models on

the candidate component and see how good the predictions are if the failure data

of the particular component is available.

3. To define the quality prediction models interactively. In ComPARE, there are

several quality prediction models that users can select to perform their own

predictions. Moreover, the users can also define their own models and validate

their models by the evaluation procedure.

4. To display the quality of components by different categories. Once the metrics

are computed and the models are selected, the overall quality of each component

can be displayed according to the category it belongs to. Program modules with

problems can also be identified.

5. To validate reliability models defined by user against real failure data (e.g.,

change report). Using the validation criteria, the result of the selected qual-

ity prediction model can be compared with failure data in real life. The users

can redefine their models according to the comparison.

6. To show the source code with potential problems at line-level granularity.

ComPARE can identify the source code with high risk (i.e., the code that is

not covered by test cases in the embedded environment) at line-level granular-

ity. This can help the users to locate high risk program modules or portions

promptly and conveniently.

7. To adopt commercial tools in accessing software data related to quality attributes.

We adopt Metamata [32] and Jprobe [33] suites to measure the different metrics

for the candidate components. These two tools, including metrics, audits, debug-

ging, as well as code coverage, memory and deadlock detection, are commercially

available in the component-based program testing market.

5.2. Metrics used in ComPARE

Three different categories of metrics, namely process, static, and dynamic metrics,

are computed and collected in CompARE to give an overall quality prediction. We

have chosen the most useful metrics, which are widely adopted by previous software

quality prediction tools from the software engineering research community. The

process metrics selected are listed in Table 2 [34].

As we perceive Object-Oriented (OO) techniques to be essential in the

component-based embedded software development approach, we select static code

metrics according to the most important features in OO programs: complexity,

coupling, inheritance and cohesion. They are listed in Table 3 [32, 35–37]. The dy-

namic metrics encapsulate measurement of the features of components when they

are executed. Table 4 shows the detailed description of the dynamic metrics.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 125

Table 2. Process metrics.

Metric Description

Time Time spent from the design to the delivery (months)

Effort The total human resources used (man*month)

Change Report Number of faults found in the development

Table 3. Static code metrics.

Abbreviation Description

Lines of Code (LOC) Number of lines in the components including the statements,
the blank lines of code, the lines of commentary, and the lines
consisting only of syntax such as block delimiters.

Cyclomatic Complexity (CC) A measure of the control flow complexity of a method or con-
structor. It counts the number of branches in the body of
the method, defined by the number of WHILE statements, IF
statements, FOR statements, and CASE statements.

Number of Attributes (NA) Number of fields declared in the class or interface.

Number of Classes (NOC) Number of classes or interfaces that are declared. This is usu-
ally 1, but nested class declarations will increase this number.

Depth of Inheritance Tree
(DIT)

Length of inheritance path between the current class and the
base class.

Depth of Interface Extension
Tree (DIET)

The path between the current interface and the base interface.

Data Abstraction Coupling
(DAC)

Number of reference types that are used in the field declara-
tions of the class or interface.

Fan Out (FANOUT) Number of reference types that are used in field declarations,
formal parameters, return types, throws declarations, and lo-
cal variables.

Coupling between Objects
(CO)

Number of reference types that are used in field declarations,
formal parameters, return types, throws declarations, local
variables and also types from which field and method selec-
tions are made.

Method Calls Input/Output
(MCI/MCO)

Number of calls to/from a method. It helps to analyze the
coupling between methods.

Lack of Cohesion of Methods
(LCOM)

For each pair of methods in the class, the set of fields each of
them accesses is determined. If they have disjoint sets of field
accesses then increase the count P by one. If they share at least
one field access then increase Q by one. After considering each

pair of methods,

LCOM = (P > Q)?(P −Q) : 0

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

126 X. Cai, M. R. Lyu & K.-F. Wong

Table 4. Dynamic metrics.

Metric Description

Test Case Coverage The coverage of the source code when executing the given test
cases. It may help to design effective test cases.

Call Graph metrics The relationships between the methods, including method time
(the amount of time the method spent in execution), method ob-
ject count (the number of objects created during the method ex-
ecution) and number of calls (how many times each method is

called in you application).

Heap metrics Number of live instances of a particular class/package, and the
memory used by each live instance.

This set of process, static, and dynamic metrics can be collected from some

commercial tools, e.g., Metamata Suite [32] and Jprobe Testing Suite [33]. We will

measure and apply these metrics in ComPARE.

5.3. Models definition

In order to predict the quality of different software components, several techniques

have been developed to classify software components according to their reliability

[38]. These techniques include discriminant analysis [39], classification trees [40],

pattern recognition [41], Bayesian network [42], case-based reasoning (CBR) [43]

and regression tree model [34]. In ComPARE, we integrate five types of models to

evaluate the quality of the software components for an overall component-based

embedded system evaluation. Users can customize these models and compare the

prediction results from different tailor-made models.

5.3.1. Summation model

This model gives a prediction by simply adding all the metrics selected and weighted

by a user. The user can validate the result by real failure data, and then benchmark

the result. Later when new components are included, the user can predict their

quality according to their differences from the benchmarks. The concept of the

summation model can be formulated in the following:

Q =
n∑
i=1

αimi (1)

where mi is the value of one particular metric, αi is its corresponding weighting

factor, n is the number of metrics, and Q is the overall quality mark.

5.3.2. Product model

Similar to the summation model, the product model multiplies all the metrics se-

lected and weighted by the user and the resulting value indicates the level of quality

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 127

of a given component. Similarly, the user can validate the result by real failure data,

and then determine the benchmark for a later usage. The concept of the product

model is shown as the following:

Q =
n∏
i=1

mi (2)

where mi is the value of one particular metric, n is the number of metrics, and Q

is the overall quality mark. Note that mi’s are normalized as a value which is close

to 1, so that none of them will dominate the result.

5.3.3. Classification tree model

Classification tree model [40] is used to classify the candidate components into

different quality categories by constructing a tree structure. All the candidate com-

ponents are leaves in the tree. Each node of the tree represents a metric (or a

composed metric calculated by other metrics) of a certain value. All the children of

the left sub tree of the node represent those components whose value of the same

metric is smaller than the value of the node, while all the children of the right

sub-tree of the node are those components whose value of the same metric is equal

to or larger than the value of the node.

In ComPARE, a user can define the metrics and their values at each node from

the root to the leaves. Once the tree is constructed, a candidate component can be

directly classified by following the threshold of each node in the tree until it reaches

a leaf node. Again, the user can validate and evaluate the final tree model after its

definition. Below is an example of the outcome of a tree model. At each node of

the tree there are metrics and values, and the leaves represent the components with

certain number of predicted faults in the classification result.

Fig. 13. An example of classification tree model.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

128 X. Cai, M. R. Lyu & K.-F. Wong

5.3.4. Case-based reasoning model

Case-based reasoning (CBR) has been proposed for predicting the quality of soft-

ware components [43]. A CBR classifier uses previous “similar” cases as the basis

for the prediction. Previous cases are stored in a case base. Similarity is defined

in terms of a set of metrics. The major conjecture behind this model is that the

candidate component that has a similar structure to the components in the case

base will inherit a similar quality level.

A CBR classifier can be instantiated in different ways by varying its parameters.

But according to the previous research, there is no significant difference in predic-

tion validity when using any combination of parameters in CBR. So we adopt the

simplest CBR classifier modeling with Euclidean distance, z-score standardization

[43], but no weighting scheme. Finally, we select the single, nearest neighbor for the

prediction purpose.

5.3.5. Bayesian network model

Bayesian networks (also known as Bayesian Belief Networks, BBN) is a graphi-

cal network that represents probabilistic relationships among variables [42]. BBNs

enable reasoning under uncertainty. Besides, the framework of Bayesian networks

offers a compact, intuitive, and efficient graphical representation of dependence

relations between entities of a problem domain. The graphical structure reflects

properties of the problem domain directly, which provides a tangible visual repre-

sentation as well as a sound mathematical basis in Bayesian probability [44]. The

foundation of Bayesian networks is the following theorem known as Bayes’ Theorem:

P (H|E, c) =
P (H|c)P (E|H, c)

P (E|c) (3)

where H,E, c are independent events, and P is the probability of such event under

certain circumstances.

With BBNs, it is possible to integrate expert beliefs about the dependencies

between different variables and to propagate consistently the impact of evidence

on the probabilities of uncertain outcomes, such as “unknown component quality”.

Details of the BBN model for quality prediction can be found in [42]. Users can

also define their own BBN models in ComPARE and compare the results with other

models.

5.4. Operations in ComPARE

As a generic quality assessment environment for component-based embedded soft-

ware system, ComPARE implements eight major functional areas: File Operations,

Selecting Metrics, Selecting Criteria, Model Selection and Definition, Model Vali-

dation, Display Result, Windows Switch, and Help System. The details of some key

functions are described in the following sections.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 129

5.4.1. Selecting metrics

Users can select the metrics they want to collect for the component-based embedded

systems. Three categories of metrics are available: process metrics, static metrics

and dynamic metrics. The details of these metrics are shown in Sec. 5.2.

5.4.2. Selecting and weighing criteria

After computing the different metrics, users need to select and weigh the criteria

on these metrics before using them in the reliability modeling. Each metric can

be selected or omitted, and if selected, be marked with the weight between 0 and

100%. Such information will provide input parameters later in the quality prediction

models.

5.4.3. Models selection and definition

Models operations allow users to select or define the model they would like to

perform in the evaluation. The users should give the probability of each item related

to the overall quality of the candidate component.

5.4.4. Model validation

Model validation allows comparisons between different models and with respect to

actual software failure data. It facilitates users to compare different results based

on a chosen subset of the software failure data under certain validation criteria.

The comparisons between different models in their predictive capability are sum-

marized in a summary table. Model Validation operations are activated only when

the software failure data are available.

5.5. Prototype

Under the framework that we have described, we prototyped a specific version of

ComPARE which targets software components developed by the Java language

for embedded systems. Java is one of the most popular languages used in off-the-

shelf components development today, and it is a common language binding in the

three standard architecture of component-based embedded software development:

CORBA, DCOM and Java/RMI.

Figures 14 and 15 show screen dumps for the described ComPARE prototype

tool. The computation of various metrics for software components and application

of quality prediction models can be seen as a straightforward process. Users also

have flexible choices in selecting and defining different models. The combination of

simple operations and a variety of quality models makes it easy for the users to

identify an appropriate prediction model for a given component-based embedded

system with its encapsulated components.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

130 X. Cai, M. R. Lyu & K.-F. Wong

������� ����	�
���
�������

Fig. 14. GUI of ComPARE for metrics, criteria and tree model.

���������� ����	�
 ���
�������

Fig. 15. GUI of ComPARE for prediction display, risky source code and result statistics.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 131

6. Conclusions

In this paper, we introduce a component-based embedded software development

framework and the features it inherits. We propose a QA model for component-

based embedded software development, which covers both the component QA and

the system QA as well as their interactions. As far as we know, this is the first

effort to formulate a QA model for developing embedded systems based on compo-

nent technologies. We further propose a generic quality assessment environment for

component-based embedded systems: ComPARE. ComPARE is new in that it col-

lects metrics of more aspects for embedded software systems, including process met-

rics, static code metrics, and dynamic metrics for software components, integrates

reliability assessment models from different techniques used in current quality pre-

diction area, and validates these models against the failure data collected in real life.

ComPARE can be used to assess real-life off-the-shelf components and to evaluate

and validate the models selected for their evaluation. The overall component-based

embedded system can then be composed and analyzed seamlessly. ComPARE can

be an effective environment to promote component-based embedded system con-

struction with higher reliability evaluation and proper quality assurance.

Acknowledgements

The work described in this paper was fully supported by a grant from the Re-

search Grants Council of the Hong Kong Special Administrative Region (Project

No. CUHK4222/01E), and the Open Component Foundation under the Innovation

and Technology Fund (Reference No. AF/94/99).

References

1. http://www.utdallas.edu/research/esc/.
2. E. A. Lee, “What’s ahead for embedded software?” Computer, Sept. 2000, pp. 18–26.
3. A. Rhodes, “Component-based development for embedded systems”, Proc. Embedded

of Systems Conference, No. 313.
4. G. Pour, “Software component technologies: JavaBeans and ActiveX”, Proc. Technol-

ogy of Object-Oriented Languages and Systems, 1999, pp. 398–398.
5. G. Pour, “Component-based embedded software development approach: New opportu-

nities and challenges”, Proc. Technology of Object-Oriented Languages, 1998, TOOLS
26, pp. 375–383.

6. A. W. Brown and K. C. Wallnau, “The current state of CBSE”, IEEE Software 15
(1998) 37–46.

7. M. L. Griss, “Software reuse architecture, process, and organization for business suc-
cess”, Proc. Eighth Israeli Conference on Computer Systems and Software Engineer-
ing, 1997, pp. 86–98.

8. IBM: http://www4.ibm.com/software/ad/sanfrancisco.
9. U. Hansmann, L. Merk, M. S. Nicklous and T. Stober, Pervasive Computing Handbook,

Springer, New York, 2001.
10. J. H. Jahnke and M. Entremont, “Component-based engineering of distributed em-

bedded systems”, Proc. Embedded Systems Conference, San Francisco, Apr. 2001,
No. 371.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

132 X. Cai, M. R. Lyu & K.-F. Wong

11. M. Barr, “Developing embedded software in Java”, Proc. Embedded Systems Confer-
ence, San Francisco, Apr. 2001, No. 371.

12. J. Currey, “Using CORBA to accelerate distributed application development and
improve network management”, Proc. Embedded Systems Conference, San Francisco,
Apr. 2001, No. 444.

13. S. Mailet, “Using COM for embedded systems”, Proc. Embedded Systems Conference,
San Francisco, Apr. 2001, No. 504.

14. W. Kozaczynski and G. Booch, “Component-based embedded software engineering”,
IEEE Software 155 (1998) 34–36.

15. OMG: http://www.omg.org/corba/whatiscorba.html.
16. S. S. Yau and B. Xia, “Object-oriented distributed component software development

based on CORBA”, Proc. 22nd Ann. Int. Conf. of COMPSAC’98, 1998, pp. 246–251.
17. Microsoft: http://www.microsoft.com/isapi.
18. Y. M. Wang, O. P. Damani and W. J. Lee, “Reliability and availability issues in Dis-

tributed Component Object Model (DCOM)”, Fourth Int. Workshop on Community
Networking Proceedings, 1997, pp. 59–63.

19. SUN http://developer.java.sun.com/developer.
20. G. Pour, M. Griss and J. Favaro, “Making the transition to component-based enter-

prise software development: Overcoming the obstacles — Patterns for success”, Proc.
Technology of Object-Oriented Languages and Systems, 1999, pp. 419–419.

21. C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison-
Wesley, New York, 1998.

22. S. M. Yacoub, B. Cukic and H. H. Ammar, “A component-based approach to re-
liability analysis of distributed systems”, Proc. 18th IEEE Symposium on Reliable
Distributed Systems, 1999, pp. 158–167.

23. S. M. Yacoub, B. Cukic and H. H. Ammar, “A scenario-based reliability analysis
of component-based embedded software”, Proc. 10th Int. Symposium on Software
Reliability Engineering, 1999, pp. 22–31.

24. J. Q. Ning, K. Miriyala and W. Kozaczynski, “An architecture-driven, business-
specific, and component-based approach to software engineering”, Proc. Third Int.
Conf. on Software Reuse: Advances in Software Reusability, 1994, pp. 84–93.

25. C. Rajaraman and M. R. Lyu, “Reliability and maintainability related software cou-
pling metrics in C++ programs”, Proc. 3rd IEEE Int. Symposium on Software Reli-
ability Engineering (ISSRE’92), 1992, pp. 303–311.

26. C. Rajaraman and M. R. Lyu, “Some coupling measures for C++ programs”, Proc.
TOOLS USA 92 Conference, August 1992, pp. 225–234.

27. I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented Software
Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

28. M. R. Lyu, “Software reliability theory”, Encyclopedia of Software Engineering, eds.
J. J. Marciniak, Wiley, New York, 2001, pp. 1161–1630.

29. Hong Kong Productivity Council, http://www.hkpc.org/itd/servic11.htm, April,
2000.

30. F. Balarin, et al., Hardware-Software Co-Design of Embedded Systems, Kluwer Aca-
demic Publishers, Norwell, 1997.

31. M. R. Lyu, J. S. Yu, E. Keramidas and S. R. Dalal, “ARMOR: Analyzer for reducing
module operational risk”, Proc. 25th Int. Symposium on Fault-Tolerant Computing
(FTCS-25), 1995, pp. 137–142.

32. http://www.metamata.com.
33. http://www.klgroup.com.
34. A. A. Keshlaf and K. Hashim, “A model and prototype tool to manage software risks”,

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

May 29, 2002 10:40 WSPC/117-ijseke 00084

Component-Based Embedded Software Engineering 133

Proc. First Asia-Pacific Conference on Quality Software, 2000, pp. 297–305.
35. M. R. Lyu (ed.), Handbook of Software Reliability Engineering, McGraw-Hill, New

York, 1996.
36. J. Voas and J. Payne, “Dependability certification of software components”, The

Journal of Systems and Software 52 (2000) 165–172.
37. T. Systa, Y. Ping and H. Muller, “Analyzing Java software by combining metrics and

program visualization”, Proc. Fourth European Software Maintenance and Reengi-
neering, 2000, pp. 199–208.

38. S. S. Gokhale and M. R. Lyu, “Regression tree modeling for the prediction of software
quality”, Proc. Third ISSAT Int. Conf. on Reliability and Quality in Design, Anaheim,
California, March 1997.

39. J. Munson and T. Khoshgoftaar, “The detection of fault-prone programs”, IEEE
Transactions on Software Engineering 18(5) (May 1992).

40. A. A. Porter and R. W. Selby, “Empirically guided software development using metric-
based classification trees”, IEEE Software, Mar. 1990, pp. 46–53.

41. L. C. Briand, V. R. Basili and C. Hetmanski, “Developing interpretable models for
optimized set reduction for identifying high-risk software components”, IEEE Trans-
actions on Software Engineering 19(11) (1993) 1028–1034.

42. N. E. Fenton and M. Neil, “A critique of software defect prediction models”, IEEE
Transactions on Software Engineering 25(5) (1999) 675–689.

43. K. E. Emam, S. Benlarbi, N. Goel and S. N. Rai, “Comparing case-based reasoning
classifiers for predicting high risk software components”, The Journal of Systems and
Software 55 (2001) 301–320.

44. http://www.hugin.com.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
00

2.
12

:1
07

-1
33

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F
H

O
N

G
 K

O
N

G
 o

n
02

/1
1/

21
. R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

