
SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2010; 20:209–236
Published online 6 July 2009 inWiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.414

Automatic string test data
generation for detecting
domain errors

Ruilian Zhao1,∗,†, Michael R. Lyu2 andYinghua Min3

1Department of Computer Science, Beijing University of Chemical Technology,
Beijing 100029, China
2Department of Computer Science, Chinese University of Hong Kong, Hong Kong
3Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100080, China

SUMMARY

Domain testing is designed to detect domain errors that result from a small boundary shift in a path
domain. Although many researchers have studied domain testing, automatic domain test data generation
for string predicates has seldom been explored. This paper presents a novel approach for the automatic
generation of ON–OFF test points for string predicate borders, and describes a corresponding test data
generator. Our empirical work is conducted on a set of programs with string predicates, where extensive
trials have been done for each string predicate, and the results are analysed using the SPSS tool. Conclu-
sions are drawn that: (i) the approach is promising and effective; (ii) there is a strong linear relationship
between the performance of the test generator and the length of target string in the predicate tested;
and (iii) initial inputs, no shorter than the target string and with characters generated randomly, may
enhance the performance in the test data generation for string predicates. Copyright © 2009 John Wiley
& Sons, Ltd.

Received 16 August 2007; Revised 14 April 2009; Accepted 28 April 2009

KEY WORDS: domain testing; string predicate; dynamic test data generation; ON–OFF test point

∗Correspondence to: Ruilian Zhao, Department of Computer Science, Beijing University of Chemical Technology, Beijing
100029, China.

†E-mail: rlzhao@mail.buct.edu.cn

Contract/grant sponsor: National Natural Science Foundation of China; contract/grant number: 60473032
Contract/grant sponsor: Beijing Natural Science Foundation; contract/grant number: 4072021
Contract/grant sponsor: Hong Kong Research Grants Council; contract/grant number: CUHK4150/07E

Copyright q 2009 John Wiley & Sons, Ltd.

210 R. ZHAO, M. R. LYU AND Y. MIN

1. INTRODUCTION

Software testing plays an important role in the process of guaranteeing software quality and reli-
ability [1]. One of the most difficult and expensive problems in software testing is the effective
generation of test data. Test data generation is the process of creating program inputs that satisfy
some testing criterion [2]. Obviously, manually developing a large test data set to satisfy a testing
criterion is usually expensive, laborious, difficult and error-prone. If test data could be automatically
generated, the cost of software testing would be significantly reduced.
It is usually observed that the input data near the boundary of a domain are more sensitive to

program faults and should be carefully checked. A domain testing strategy is very effective in
verifying the correctness of the boundary of a path domain; however, such a domain strategy is
hard to implement since the strategy requires test data generated on and near the boundary, and
the test generation is more difficult when some of the constraints are nonlinear or in a discrete
space [3]. Domain testing has received a certain amount of research attention [3–9], although
automatic ON–OFF test generation has mostly focused on numeric data types and ignored string
data. That is to say, most recent domain testing strategies have been limited to programs in which
each predicate can contain Boolean data, numeric data, relational operators, or binary Boolean
operators, etc. but string data have not been taken into account. The few studies that have addressed
string test generation have concentrated on string mutation operations such as deletion, insertion and
substitution rather than domain testing [10]. This negligence seriously restricts the usefulness of the
domain testing strategy in practice, where string predicates are widely used in modern programming
techniques.
In the research reported in this paper, we define the distance between two strings and develop a

test data generator to automatically generateON–OFF test points for string predicate borders during
unit testing. In order to identify how close the current input is near the border, an objective function
is associated with the string predicate, and a greedy heuristic search algorithm is used to guide the
search for an input string pair, namely ON–OFF test points, such that the ON test point lies on the
given string predicate border, whereas the OFF test point is selected just outside the border, and
is as close to the ON test point as possible. The current values of variables in the predicate are
calculated or collected by the program instrumentation techniques. Each character element of the
target string in the string predicate under test is determined in turn by the search technique so that
the ON–OFF test points corresponding to the predicate are automatically generated.
In order to investigate the effectiveness of the stringON–OFF test generation approach, a number

of experiments have been conducted on empirical programs containing string predicates; these
programs are derived from books or Web sources. Four hundred and eighty trials have been done
for each string predicate, and the experimental outcomes are analysed in detail using the statistical
analysis tool such as SPSS. The results presented in Section 5 show the effectiveness of this
methodology.
The remainder of this paper is organized as follows. Section 2 introduces the basic terminology

and domain testing strategies. Section 3 briefly reviews the dynamic test data generation technique.
Section 4 describes the main principle of the automatic ON–OFF test point generation with respect
to string predicate borders, and gives an example to illustrate in detail how the test generation
approach works. Section 5 reports the empirical analysis of the string test data generation. Finally,
conclusions are given in Section 6.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 211

2. BASIC TERMINOLOGY AND DOMAIN TESTING

2.1. Basic terminology

A program structure can be represented by a control flow graph, denoted by G=(V,E,s,e), where
V is a set of nodes of G, E is a set of edges and s and e (s,e∈V) are, respectively, the unique entry
and exit nodes. Here, nodes stand for statements, and edges indicate the possible flow of control
between statements. A subpath � from vi to vk is a sequence of nodes �=<vi ,vi+1, . . . ,vk >,
where each adjacent pair (vi+ j ,vi+ j+1) is an edge in G for 0≤ j <k−i . A prefix path is a subpath
that starts from the entry node s, and a (complete) path is a subpath from the entry node s to
the exit node e. An edge (vi ,v j) is called a branch if vi corresponds to a decision statement at
which the control flow has two or more alternative execution routes, such as if–then–else, switch,
for or while statements in C programs. Each branch in a control flow graph can be labeled with
a predicate that describes the conditions under which the branch will be traversed. A predicate
is usually connected with a predicate interpretation that is obtained by replacing each variable
appearing in the predicate with its symbolic value in terms of input variables. Each path is associated
with a path condition that is the conjunction of all the predicate interpretations that are taken along
the path. The path condition represents the constraints that have to be satisfied for inputs in order
to execute the path. These inputs construct the path domain. The boundary of a path domain is
determined by the predicates encountered along the path. Each predicate corresponds to a segment
of the boundary called a border. The border to be tested is called the given border, which may
or may not be correctly implemented. The one that corresponds to the given border in a correct
program is called the correct border. When a given border differs from the correct border, a border
shift is said to occur [4,7].

2.2. Domain testing strategy

The critical feature of a good testing strategy is its ability to guide test case selection to maximize
the possibility of finding hidden faults. Thus, some analysis of how faults occur in a program is
helpful and necessary for choosing a test strategy. As identified by Howden, program errors‡ can
be classified into three categories: computation errors, missing-path errors and domain errors [11],
where error is used to represent the difference between the actual and the expected output. A program
is said to contain a computation error if a specific input follows a correct path, but the output is
incorrect due to faults in some computations along the path. Amissing-path error appears when some
path that should be traversed by a specific input for the program is missing. A domain error, which
can be manifested by one of the given borders being shifted from its correct location, occurs when a
specific input traverses a wrong path because of faults existing near the boundary of a path domain.
Detecting a domain error may be thought of as determining whether a border shift has occurred.

A domain testing strategy, first proposed byWhite and Cohen, is used to detect these types of errors.

‡In the IEEE Standard Glossary of Software Engineering Terminology, the two words ‘error’ and ‘fault’ have different
meanings, and ‘error’ used here should be replaced with ‘fault’. But, for historical reasons, the terms ‘computation error,
missing-path error and domain error’ are still used in this field today. Thus, the words ‘error’ and ‘fault’ are used
interchangeably in this paper.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

212 R. ZHAO, M. R. LYU AND Y. MIN

For a linear predicate with a total of n distinct numeric variables, the strategy involves designing
n ON test points and one OFF test point. The ON test points lie on the given border, while the
OFF test point is selected just outside the border, and is close to these ON test points [4]. However,
Clarke et al. discovered that some domain errors went undetected by White and Cohen’s strategy,
and presented two alternatives V ×1 and V ×V , assuming that the border holds V vertices. Their
strategies select V ON test points with one for each vertex and one or V OFF test points, respectively,
to be placed at a uniform distance away from the border [5]. Zeil et al. extended domain testing
to detect linear errors in a nonlinear predicate [6]. Later, Jeng and Weyuker developed a simplified
domain testing strategy, which generates one ON and one OFF test points in any dimension for
an inequality border corresponding to a predicate that contains one of the operators ≤, <, ≥ or >.
For an equality or non-equality border associated with the operator = or �=, one ON test point and
two OFF test points are requested. The strategy requires that the ON test point should be selected
on the border, whereas the OFF test point should be placed outside the border, and the ON–OFF
point pairs have to be as close to each other as possible. In this case, the only way a border shift can
escape detection is the correct border passing through in between the ON and OFF points. Since the
ON–OFF point pairs are very close to each other, this is unlikely to happen [7]. Hajnal and Forgacs
introduced an algorithm to generate ON–OFF test points according to the simplified domain testing
strategy with some manual assistance [8]. In addition, Jeng integrated domain testing and data flow
testing to enhance their effectiveness in fault detection [9]. The majority of the systems developed
by applying these techniques have focused on generating numeric ON–OFF test points, though
Jeng and Weyuker made a suggestion on how strings may be handled at the end of their paper [7].
In this paper, however, we focus on character string domain testing.

3. DYNAMIC TEST DATA GENERATION

3.1. Dynamic test data generation

There are many automatic test data generation approaches. The most often used are random test data
generation, symbolic execution-based test data generation and dynamic test data generation [12].
Random test data generation develops test data at random until an appropriate input is found

[12,13]. This approach is easy to understand and commonly employed in the literature. However,
randomly generated test data have difficulties in revealing domain errors since the ON–OFF test
points with respect to a given border can be very specific in the wide input domain, and the likelihood
of finding suitable test points randomly can be extremely low. For example, consider generating an
ON test point to check the predicate in the program fragment shown below.

Procedure(x: string)
{ . . .
strncpy(v,x,5); /* copy initial 5 characters of x to v */
strupr(v); /* convert each lowercase character to uppercase */
if (strcmp(v, “LEFT”)<0) . . . ; /* compare v and ‘LEFT’ lexicographically */
. . .
}

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 213

where x is a string input variable and v is a string variable. The possibility for a randomly generated
input to set the variable v to be equal to the literal LEFT is very low. Thus, in practice, random test
data generation performs poorly, and is most often used merely as a benchmark for the evaluation
of guided search methods.
The basic idea in a symbolic execution system is to allow numeric variables to take on symbolic

values [14,15]. However, symbolic execution is computationally very intensive and a number of
technical problems are often encountered in practice, such as indefinite loops, subprogram calls and
array references [12], especially for programs containing string predicates. For instance, considering
the above codes fragment, in general, the relationship between the string v and the input x may not
be represented in a straightforward way. As a result, it is difficult to express the value of variable
v in terms of the symbolic value of the input x in the predicate that follows.
Dynamic test data generation is the most commonly used approach for developing test data.

During dynamic test data generation, if some desired test requirement is not reached, data generated
in each test execution are used to identify how close the test input is in meeting the requirement. With
the aid of feedback, test inputs are gradually modified until one of them satisfies the requirement.
For example, suppose that a program contains the condition statement

if (y≤128) . . .

where y is a variable. The True branch of the predicate should be taken when the program is
executed up to the condition statement. Thus, we must find an input that can make the variable y
hold a value smaller than or equal to the constant 128 when the condition statement is reached.
Without loss of generality, a predicate is assumed to be of the form E1 op E2, where E1 and E2

are the arithmetic expressions and op is a relational operator. As discussed in References [16,17],
each predicate E1 op E2 can be transformed to an equivalent form as

� op1 0

where � is a real-valued function, referred to as an objective function, and � and op1 are given in
Table I. The function is either (1) positive (or zero if op1 is ‘<’) when the predicate for the required
branch is false or (2) negative (or zero if op1 is ‘=’ or ‘≤’) when the predicate is true.
A simple way to calculate the current value of variable y in the predicate is to execute the program

up to the condition statement and record the value of y. Let ycondition(x) represent the current value
of variable y on input x when the program is executed up to the predicate. Then the objective
function can be expressed as follows:

�(x)= ycondition(x)−128

Table I. The objective functions for predicates.

Predicate Objective function � op1

E1>E2 E2−E1 <
E1≥E2 E2−E1 ≤
E1<E2 E1−E2 <
E1≤E2 E1−E2 ≤
E1=E2 abs(E1−E2) =
E1 �=E2 −abs(E1−E2) <

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

214 R. ZHAO, M. R. LYU AND Y. MIN

The function �(x) is negative or zero when the True branch is taken to reach the conditional
statement. Therefore, the objective function �(x) can be used to guide the search for test data.
Furthermore, it also indicates how close the current input is to meeting the predicate requirement; in
other words, the value of �(x) determines how many modifications must be performed to transform
an initial input into a solution, for instance, an ON test point.
Various dynamic test data generation methods have been used, including a greedy heuristic search

algorithm, a genetic algorithm, a simulated annealing algorithm and so on [16–19]. For example,
Harman et al. apply testability transformation to improve the performance of evolutionary test data
generation in the presence of a flag variable [18]. Mansour and Salame compare a genetic algorithm
and a simulated annealing algorithm with each other and with a known greedy heuristic search
algorithm, for integer- and real-valued programs. Their work shows that a genetic algorithm is
faster than a simulated annealing algorithm; however, a greedy heuristic search algorithm, when it
succeeds in finding test data, is the fastest [19]. Therefore, in our research, we employ a greedy
heuristic search algorithm to derive ON–OFF test points for string predicate borders associated
with a path domain.

3.2. Greedy heuristic search algorithm

In this section, we describe how a greedy heuristic search algorithm works§ . Suppose x0 is an
original input on which the program is executed up to a predicate, and the False branch of the
predicate is taken. An objective function can be constructed, whose value is positive for input x0. In
order to search for a good adjustment direction, a new input x ′ is created via a small increment or
decrement with respect to x0 on an input variable that has influence on the predicate, while keeping
all other input variables unchanged. The program is executed on input x ′ and the objective function
is evaluated. If neither an increase nor a decrease of the input variable causes an improvement, i.e.
a decrement of the objective function, another input variable is selected.
When an appropriate direction is found, i.e. the program execution reaches the predicate and the

objective function is improved, a larger adjustment is made in this direction. Then, the program is
executed on the new input, and the objective function is evaluated again. If the program no longer
reaches the predicate, i.e. a constraint violation occurs, an adjustment continues in this direction with
a smaller amount. If the objective function is not further decreased, the last value of the objective
function is retained, and a new direction is searched on the previous input. If the positive minimum
of the objective function is located, an adjustment direction is searched from this minimum using
another input variable. The cycle repeats either until the objective function becomes negative or
zero, meaning the input that will cause execution of the desired branch of the predicate has been
found, or until no further decrease can be made for any input variable, meaning there is no input
that can make the True branch of the predicate to be taken.
A greedy heuristic search algorithm falls into the category of a local search technique. A short-

coming is that the algorithms are likely to fail when they meet a local minimum. This occurs when
the objective function appears to have reached the global minimum, but in fact it has not. However,
our algorithm is not subject to this problem (see Section 4.5).

§The framework of the algorithm is originated from Korel’s dynamic approach which is aimed at deriving test data to cover
the selected paths.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 215

4. DOMAIN TESTING BASED ON STRING PREDICATES

Domain testing has been thought of as a path-oriented testingmethod. This technique first determines
a program execution path to be followed. A number of path selection strategies have already been
reported in the literature [20,21]. In this paper, we focus on how to automatically generate ON–OFF
test points for string predicate borders associated with a path.

4.1. Character string search space

Although modern software uses 16-bit character strings, an empirical investigation of the character
distribution shows that the typical strings contain only characters in the ASCII range 32–126, while
127 is non-printable. This means that the 16-bit character set does not need to be fully examined
when generating test data for practical programs. Let us consider some programs. The empirical
programs in Table II are open source C/C++ programs downloaded from Web sources. The size
of each program is given in terms of lines of code (LOC), which is the sum of data declaration and
executable statements. NOAC is the number of all characters in each program. NOPC is the number
of printable characters within the range from the space character to the ‘∼’ character, i.e. ASCII
values between 32 and 126. NA32-127 is the number of the characters from ASCII value 32–127.
Printable%, A32-127%, A0-127% and A0-255%, respectively, are the percent of characters with
ASCII values in 32–126, in 32–127, in 0–127 and in 0–255 as a proportion of all the characters
in the source codes. In these programs, the shortest includes 122 LOC and the longest includes
6 684 201 LOC. For each program, A0-127% is the same as A0-255%, averaging 99.99%, and the
number of printable characters is equal to the number of characters between 32 and 127 except
for the program linux-2.6.17-rc1, which contains only 6 ASCII 127 characters in over 18 million
characters. A0-127% is higher than A32-127% since tab, LF and CR characters, with ASCII 9, 10
and 13, respectively, are counted in A0-127%, but not in A32-127%. We therefore assume that it
is very unlikely that non-printable characters occur in program string input, and hence characters
outside the ASCII range 32–126 are excluded entirely in our test data generation.

4.2. String predicate and string distance

A string predicate in programs is a string ordinal predicate that consists of at least one string variable
or one string comparison function, e.g. strcmp() in C language. As for numerical predicates, a string
predicate can be simple or compound. A simple string predicate is of the following form:

str cmp(str1,str2) op 0

where str cmp is a function that compares two strings, such as strncmp(), str1 and str2 are string
literals or variables, and operator op is a member of {<,≤,=, �=,≥,>}. A compound string predi-
cate is a Boolean combination (NOT , AND, OR) of one, two or more simple string predicates. Each
string predicate determines a border, called a string predicate border.
In dynamic test generation, the test input is successively modified in order to bring it ever closer

to satisfying a current test requirement by evaluating an objective function, which heuristically tells
how close each input has come to meeting the requirement. This process is equivalent to conducting
a minimization of the objective function. Thus, the problem that must be solved first is to find how

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

216 R. ZHAO, M. R. LYU AND Y. MIN

Ta
bl
e
II
.
T
he

re
su
lt
of

em
pi
ri
ca
l
in
ve
st
ig
at
io
n
fo
r
C

/
C

++
pr
og

ra
m
s.

Fi
le

na
m
e

L
O
C

N
O
A
C

N
O
PC

N
A
32

-1
27

Pr
in
ta
bl
e
(%

)
A
32

-1
27

(%
)

A
0-
12

7
(%

)
A
0-
25

5
(%

)

ba
ck
do

or
12

2
25

83
24

61
24

61
95

.2
76

80
9

95
.2
76

80
9

10
0

10
0

ch
m
od

19
2

57
06

55
14

55
14

96
.6
35

12
96

.6
35

12
10

0
10

0
de
s

71
6

21
94

1
19

92
6

19
92

6
90

.8
16

28
90

.8
16

28
10

0
10

0
ex
e2
bi
n(
do

s)
30

3
86

67
83

64
83

64
96

.5
03

98
96

.5
03

98
10

0
10

0
gc
c

85
6
13

7
53

98
4
21

5
51

46
0
87

7
51

46
0
87

7
95

.3
25

78
5

95
.3
25

78
5

99
.9
99

88
7

99
.9
99

88
7

gi
f2
pc
x

29
2

54
95

52
03

52
03

94
.6
86

07
8

94
.6
86

07
8

10
0

10
0

gr
ep
(t
c)

67
6

16
85

2
16

17
6

16
17

6
95

.9
88

60
6

95
.9
88

60
6

10
0

10
0

L
H
A

20
26

51
67

7
44

45
3

44
45

3
86

.0
20

86
86

.0
20

86
97

.5
63

71
3

97
.5
63

71
3

lin
ux

-2
.6
.1
7-
rc
1

6
68

4
20

1
19

5
37

5
50

5
18

1
45

3
52

9
18

1
45

3
53

5
92

.8
74

24
6

92
.8
74

25
99

.9
99

48
7

99
.9
99

48
7

M
D
5C

66
2

18
08

5
17

26
4

17
26

4
95

.4
60

32
6

95
.4
60

32
6

99
.5
79

76
2

99
.5
79

76
2

m
em

(d
os
)

18
9

47
27

45
38

45
38

96
.0
01

69
2

96
.0
01

69
2

10
0

10
0

m
ov
e

49
3

13
36

7
12

86
6

12
86

6
96

.2
51

96
3

96
.2
51

96
3

10
0

10
0

un
zi
p

95
3

19
71

4
18

76
0

18
76

0
95

.1
60

79
9

95
.1
60

79
9

99
.9
94

92
7

99
.9
94

92
7

To
ta
l

8
54

6
96

2
24

9
52

8
53

4
23

3
06

9
93

1
23

3
06

9
93

7
93

.4
04

11
9

93
.4
04

12
2

99
.9
99

03
8

99
.9
99

03
8

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 217

to compare two strings, as well as how to evaluate an objective function with respect to a string
predicate. Some known string comparison metrics, such as the Hamming distance [22] and the edit
distance [10], can be found in the literature. These string distances attempt to measure the degree
of dissimilarity between two strings.

4.2.1. Hamming distance

Hamming distance was originally conceived for detection and correction of errors in digital commu-
nication. It assesses the difference between two messages, which is expressed by the number of
characters that need to be changed to obtain one from another. The Hamming distance was defined
as the number of places in which the two strings differ, i.e. have different characters. e.g. 0101
and 0110 have a Hamming distance of two, whereas ‘Butter’ and ‘ladder’ are 4 characters apart.
However, the definition takes no account of character set ordering.

4.2.2. Edit distance

The edit distance (or Levenshtein distance) is derived from the consideration of three operators that
perform character insertion, deletion and substitution. The edit distance defines the smallest number
of insertions, deletions and substitutions, required to change one string into another. Adding or
removing a character is known as an edit operation. E.g. ‘Butter’ and ‘ladder’ have an edit distance
of 4 because four substitutions are sufficient to match these two strings.
Alshraideh and Bottaci [10] use an edit distance as the cost function to guide the test generation

in achieving branch coverage by a genetic algorithm for string data, and they have a bias to use
program literals from the program under test as initial candidates in the test generation. However,
if there is a comparison statement such as if (str1<= ‘HELLO)’ in a program, in general, variable
str1 is not an input variable. The input may be processed by any number of statements before the
string comparison is made, and in a great number of instances, it may not be possible to determine
how a program transforms its input. In addition, there exist string predicates that do not contain a
string literal. Moreover, even if, for example, XHELLO is a candidate solution, in general, deleting
X from XHELLO does not guarantee str1 equal to HELLO. Furthermore, the edit distance fails to
consider the ordering of character set. For instance, a comparison between the three strings ‘abc’,
‘def’ and ‘xyz’ yields the same Hamming distance and edit distance, namely 3. This is intuitively
unreasonable as two strings are, in general, compared lexicographically in programming language,
such as string comparison in C library functions, where the distance between ‘abc’ and ‘def’ is
obviously smaller than that between ‘def’ and ‘xyz’.
Especially in domain testing strategy where the ON–OFF test point pair has to be as close to

each other as possible, Hamming distance and edit distance are clearly unsuitable to be an objective
function to guide the search for test data. Consider a particular situation that str1 in string predicate
(str1<= ‘HELLO’) is an input variable and the ON test point is str1= ‘HELLO’. What is the OFF
test point? There are a lot of conceivable strings causing Hamming distance or the edit distance
equal to the lowest value, namely 1, such as XHELLO, HLLO, KELLO, etc. But, only string HELLP
is appropriate to be used as an OFF point because it is the only string just greater than HELLO by
1 in string comparison.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

218 R. ZHAO, M. R. LYU AND Y. MIN

4.2.3. String ordinal distance

In order to overcome the above problem, we define a string ordinal distance. First, a function � is
defined to map a string to a non-negative integer as follows:

�(str)=
L−1∑
i=0

str[i]×wL−i−1 (1)

where str is a string, L is its length, str[i] is the ASCII value of the i th character of string str,
wL−i−1 is a positive weighting factor representing a weighting value imposed on each character
element of the string and w is set to 127. A character string is then mapped to a non-negative integer
based on units of 127.

Property. Suppose S is a set of strings, and N+ is a set of non-negative integers. Let �(str) be
defined as in Equation [1], and map S to N. Then �(str) is a one-to-one function from S to N+.
The property has been proved in [23]¶ . It is easy to see that a string can be transformed into a

unique non-negative integer by using Equation [1]. It is noted that �(str) may be very large for long
strings, which are too large to be represented using language provided integer data types. However,
we are not going to really calculate �(str) in our algorithm, but to compare and search for the
nearest strings.

Definition. Let L1 and L2 denote the length of strings str1 and str2, respectively. Suppose L=
max(L1, L2), where max(L1, L2) is the maximum of L1 and L2. Without loss of generality, let
L= L2 and str1[k]=′ \0′, (k= L1≤ L); in other words, the strings are left aligned and absent
characters are treated as nulls. By the ordinal distance between string str1 and str2, represented by
Dis(str1,str2), we mean

Dis(str1,str2)=|�(str1)−�(str2)|=
∣∣∣∣∣
L1−1∑
i=0

str1[i]×wL−i−1−
L2−1∑
i=0

str2[i]×wL−i−1

∣∣∣∣∣ (2)

By the distance between the i th characters of string str1 and str2, denoted by di (str1,str2), we
imply

di (str1,str2)=
{|str1[i]−str2[i]| , 0≤ i≤ L1−1

str2[i], L1≤ i≤ L−1
(3)

where the comparison between str1 and str2 (or str1 [i] and str2[i]) is related to the lexicographic
order.

¶ In our early research [23], we discussed how to generate test data for a given path including character string predicates.
The test input string was generated automatically for program paths by using the greedy heuristic search algorithm and
the investigation on test generation for each feasible path of a Max program illustrates that the search algorithm is more
economical than the gradual descent and the random algorithm under the same coverage. In this paper, we consider how to
generate ON–OFF test points in a string domain by applying the greedy heuristic search algorithm, and further correct the
distance definitions between two strings as well as between ith characters. Moreover, a number of experiments have been
conducted on empirical programs containing string predicates in order to evaluate the effectiveness of the string ON–OFF
test generation.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 219

The distance Dis(str1,str2) uniquely determines a non-negative integer. For example, if
str1= ‘abcd’, str2= ‘ab-xy’, then L=5 and Dis(str1,str2)=|�(str1)−�(str2)|=[′a′ ∗1274+′
b′ ∗1273+′−′∗1272+′ x ′ ∗127+′ y′] − [′a′ ∗1274+′b′ ∗1273+′c′ ∗1272+′d ′ ∗127] = (99− 95) ∗
16129+(100−120)∗127+(0−121)=61855.
In addition, Dis(‘abc’,‘def’)=�(def)−�(abc)=48771, and Dis(‘def’,‘xyz’)=�(xyz)−�(def)=

325140.

4.3. ON–OFF test point generation in a string domain

In this section, we describe how to generate ON–OFF test points with respect to a string predicate
border based on the simplified domain testing strategy. The problem can be stated as follows:
‘Given a string predicate border, the goal is to find a program input pair so that one lies on the

given border, whereas the other is placed outside this border, and the pair has to be as close together
as possible.’
For this purpose, we develop an ON–OFF test point generator for the programs written in C

Language. As shown in Figure 1, the program under test is first inserted with additional codes
manually before each decision statement, so that the current values of variables in the predicates
can be calculated or collected. The instrumented program is then compiled, and executes as a sub-
program of the test generator. According to each string predicate, the test generator constructs an

Program P

Instrumented program P

Compiler

Test Generation

Program P

Instrumented program P

ON-OFF test point

Instrumentation

Compiler

Test Generation

Figure 1. The framework of the ON–OFF test generator.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

220 R. ZHAO, M. R. LYU AND Y. MIN

objective function � and � is evaluated once a new input is generated. The process is repeated
until � becomes zero (or negative) or until no further decrease can be made. In the first case,
two input strings are obtained, of which one satisfies �≤0 while the other meets �>0. The test
generator invokes the function dis min() to minimize the distance between the two strings. The
two corresponding inputs are selected as ON and OFF test points, respectively. In the second case,
the other input variables are taken into account.
It is observed that many string predicates consist of string comparison functions such as strcmp()

or strncmp() in C language. Therefore, standard string comparison functions from ANSI C are
considered in our test point generator.
In what follows we will explain in detail how to automatically generate ON–OFF test points

for a string predicate border‖. Suppose that x0 is an initial input (selected randomly or by hand)
on which the program can be executed to a string predicate, e.g. strcmp(str1,str2)>0, along a
given path, and the path condition cannot be satisfied for the string predicate. First, we construct an
objective function � with respect to the string predicate, whose value is positive for the initial input
x0. Specifically, let �=Dis(str1,str2)>0. Since �(str) may be very large for long strings, � may
be very large. In order to make �<0, a great deal of � evaluation may be required. On the other
hand, if a string is considered one character at a time, and each character after plus or minus an
adjusted amount, is still included in 32–126, then the number of evaluating

∑�i in the ON-OFF
test generation would be much lower than that of �. Thus, a practical approach is to construct
an objective function for each character of string str1 and str2. That is to say, we can construct
�i corresponding to their i th characters, i.e. let �i =di (str1,str2)>0, (i=0,1,2, . . . , L−1) and
L=max(L1, L2). Second, an appropriate direction on the i th character of the current adjusted input
variable, named adjustr, is sought so that �i can be improved (decreased). Each �i can arrive at
a negative or zero value by using a greedy heuristic search algorithm. As a result, we obtain two
distinct characters such that one satisfies �i ≤0, whereas the other meets �i >0. The two characters
are refined gradually until the distance di (str1,str2) is minimized. As each character is determined
in turn, the objective function � with respect to the predicate can become negative (or zero).
If strings str1 and string str2 have the same values on input x0, the test generation algorithm does

not need to be invoked. We select x0 and the corresponding input with which the last character
of the adjusted variable adjustr is increased or decreased by 1 (the remaining input variables are
held unchanged) as ON and OFF test points, respectively, depending on the operator op in the
string predicate. If str1 and str2 are not equal, the corresponding characters of strings str1 and str2
are compared from position 0 to L−1. That is, an objective function �i is constructed such that
�i =di (str1,str2)>0 for the i th unequal character. Then, an adjustment direction is searched by
modifying the i th character of the adjusted variable adjustr, denoted by ci , namely let c′

i =ci +1 or
c′
i =ci −1. If c′

i results in a better �i value than ci , c′
i replaces ci , and the appropriate direction has

been found; otherwise, if there is another input variable, it is selected for adjustment. If all variable

‖Nowadays, a general objective function for each predicate is made up of two components—the approach level and the
branch distance [17]. The approach level measures how close an input was to executing the target node. The branch
distance reflects how close the alternative branch was to being taken when the first component is minimized to zero. In
this paper, we aim at the effectiveness of the branch distance component on ON–OFF test point generation for string
predicate border. Thus, we ignore approach level determination, and manually set the branches before the target predicate
to be True or False according to its path condition in our experiments. In further work, the effectiveness of the approach
level component will be taken into account.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 221

adjustment options have been exhausted unsuccessfully, the ON–OFF test point generation has
failed for the predicate border. For instance, suppose that only the input variable instr is connected
with a predicate strcmp(str1,str2)>0, and the program implements the function: str1 =‘abc’+instr,
str2 = ‘2334’. In this case, irrespective of the value of the input variable instr, str1 is always greater
than str2. Hence, there is no possible OFF test point for the border.
When a good direction is found, the adjusted amount can be boldly increased (e.g. doubled) until

either (1) �i ≤0, or (2) �i is not improved, or (3) constraint violation occurs, or (4) c′
i is outside

the range 32–126. In the last three cases, we reduce the adjustment amount and the corresponding
input is tried again. In the first case of �i ≤0, we obtain two distinct values, referred to as Con
and Coff , with respect to the adjusted variable adjustr on position i , such that Con meets �i ≤0,
whereas Coff satisfies �i >0. The two values are refined gradually with the help of a temporary
variable Citemp whose initial value is Coff . Subsequently, we halve the adjusted amount by which
Citemp is modified. The code is executed with the new input and �i is evaluated. If �i corresponding
to Citemp is negative, then Con takes the value of Citemp; otherwise Coff takes the value of Citemp.
The process is repeated until the distance di (str1,str2) has not been diminished. If di (str1,str2)
is equal to 0, the i th character of the adjusted variable adjustr has been determined, and the next
character, i.e. the (i+1)th character, is taken into account. If the adjusted variable adjustr ends
before position L−1, namely adjustr[i]=‘\0’ (i< L−1), then a space character is added at position
i and the next position acts as the string termination, i.e. adjustr[i]= ‘ ′ and adjustr[i+1]=′ \0′. The
comparison continues until i= L−1 or there is no decrease on di (str1,str2) and di (str1,str2) �=0.
In the case of i= L−1, if dL−1(str1,str2) is equal to 0, the current input and the input with the
adjusted variable plus or minus 1 on the last character (where other variables are kept unchanged)
are selected, respectively, as the ON (or OFF) test points depending on the operator op in the string
predicate. As a result, the distance between ON and OFF test points is only 1, namely the shortest.
In the case of di (str1,str2) �=0, the di (str1,str2) is minimized, denoted by di−min, and we get two
refined Con and Coff values. We take the Con and Coff as the i th character of the adjusted variable
adjustr, respectively, and keep other characters of the variable adjustr as well as other variables
unchanged. Thus, we obtain two inputs, selected as the ON (or OFF) test points, and the distance
between them is di−min×wL−i−1.
The main algorithm to generate ON–OFF test points with respect to a string predicate border

associated with a program path is thus described as follows:

For the i th character ci of adjusted input variable
Initialize �i
Search an adjustment direction Dir(±)

If (Dir is not found), exit
Else initialize AMOUNT⇐2

Repeat
ci =ci Dir AMOUNT
Invoking instrumented program()
Evaluate �i

If (�i ≤0)
Obtain two distinct characters Con and Coff at position i
Repeat refining the distinct characters

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

222 R. ZHAO, M. R. LYU AND Y. MIN

Until di is minimized
If (di =0)

the i th character is determined
Else obtain ON, OFF points, exit
Endif

Else If (�i decreases)
AMOUNT ⇐ AMOUNT ×2 // Enlarge adjusted amount.//

Else AMOUNT ⇐ AMOUNT \2 //Lessen adjusted amount.//
Endif

Endif
Until (AMOUNT ≤1)

Endif
Endfor

4.4. An example of ON–OFF test point generation in a string domain

This section gives an example to illustrate the ON–OFF test point generation procedure in detail.
Max is a variation of a program in [24]. It prints the lexicographic maximum of its command-line

arguments. Max has an option: -ceiling which provides a ceiling: if the maximum would be larger
than this, it is the maximum. If the word after ‘max’ begins with a ‘-’ and it is not ‘-ceiling’, then
an error message will be printed. The author of Reference [24] considers ‘repeated option’ as an
interesting requirement, and corresponding checking is designed into a for loop. According to the
specification of Max program and for convenience, we change the for loop into an if statement.
In addition, some data declaration statements and initialization codes are deleted, e.g. #define
BUFSIZE 20, result [BUFSIZE]=‘\’ 0, etc. for simplicity purpose.
As shown in Figure 2,Max has two input variables. One is an integer variable argc, and the other

is a string variable argv. Although the program is made up of only a handful of statements, it contains
a number of structures, such as numerical predicates, string predicates, compound predicates, if–
then–else statements and for loop statements. The current values of variables in the predicates are
calculated or collected by the program instrumentation technique. An instrumented version of the
Max program is shown in Figure 3, in which the instrumentation statements are displayed in italics.
Suppose programMax is traversed along path {1,2,3,4,5,6,7,10,13,14,15,16,17,19} on input

x : argc=4, argv[1]=‘−ceiling’, argv[2]=‘193’ and argv[3]=‘A2’. The predicate strcmp(result,
ceiling)>0) (statement 16) refers to a given string predicate, where ceiling is the target string and
argv[3] is an adjusted input variable. The instrumented Max program is executed, and we gain the
current value of the variables result and ceiling in the predicate on input x , that is, result = ‘A2’,
and ceiling= ‘193’.
According to the test generation algorithm, the ON–OFF test points for the predicate border are

as follows:
ON test point: argc=4, argv[1]= ‘−ceiling’, argv[2]= ‘193’, argv[3]= ‘192’.
OFF test point: argc=4, argv[1]= ‘−ceiling’, argv[2]= ‘193’, argv[3]= ‘193’.
It is clear that the distance between ON and OFF test point is minimized, which is equal to just 1.

The details are as follows.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 223

int max(int argc, char ** argv)
{
1 argc--;
2 argv++;
3 if ((argc>0)&&('-'==**argv))
4 { if (!strcmp(argv[0],"-ceiling"))
5 { strncpy(ceiling,argv[1],BUFSIZE);
6 argv++; argv++; /*Skip argument.*/
7 argc--; argc--; }
 else
8 { fprintf("Illegal option %s.\n",argv[0]);
9 return(0); }; }
10 if(argc==0)
11 { fprintf("At least one arguments.\n");
12 return(0); }
13 for(;argc>0;argc--,argv++)
14 { if(strcmp(argv[0],result)>0)
15 strncpy(result,argv[0],BUFSIZE); }
16 if (strcmp(result, ceiling)>0)
17 printf("\n max:%s", result);
18 else printf("\n max:%s", ceiling);
19 return(1);
 }

Figure 2. Max Program.

record (argc,0,'>',"&&");
record('-',**argv, '=');
if ((argc>0)&&('-'==**argv))
{ record(argv[0],"-ceiling", '!');
 if (!strcmp(argv[0],"-ceiling"))
 …;
 }
record(argc,0,'=');
if(argc==0)
…;
record(argc,0,'>');
for(;argc>0;argc--,argv++)
{ record(argv[0],result, '>', 0);
 if (strcmp(argv[0],result)>0)
 …;
 record(argc,0,'>');
}
record(ceiling,result, '<=', 0);
if (strcmp(ceiling,result)<=0)
 …;

Figure 3. Instrumented Max program.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

224 R. ZHAO, M. R. LYU AND Y. MIN

Table III. (a) Search for distinct characters at position 0 and (b) refine distinct characters at position 0.

AMOUNT C0 C
′
0 �0 Ceiling[0] Dir

(a)
1 65 64 15 −
2 64 62 13
4 62 58 9 49
8 58 50 1
16 50 34 <0

(b)
AMOUNT Coff Con Citemp �0

16 50 34 50−8=42 <0
8 42 50−4=46 <0
4 46 50−2=48 <0
2 48 50−1=49 =0

Table IV. Search for distinct characters at position 1.

AMOUNT C1 C
′
1 �1 Ceiling[1] Dir

1 50 51 6 57 +
2 51 53 4
4 53 57 0

At position 0, argv[3][0]= ‘A’. Here, result[0]= ‘A’, with an ASCII value of 65, and ceiling[0]=
‘1’, with an ASCII value of 49. Thus, �0=result[0]−ceiling[0]=16 and the adjustment direc-
tion will be negative. The steps required for the determination of the 0th distinct character are
demonstrated in Table III(a).
When �0<0, we get two distinct characters whose ASCII values are 50 and 34, respectively. The

two distinct characters are refined gradually until �0=0 (shown in Table III(b)). Here, Citemp=49.
Thus ,argv[3][0] is set to 49, and thus the 0th character of input variable argv[3] has been successfully
determined; at this point, argv[3]= ‘12’.
Then, we compare the 1st character of variables result and ceiling. At position 1, argv[3][1]= ‘2’.

Here, result[1]= ‘2’, whose ASCII value is 50, and ceiling[1]= ‘9’, whose ASCII value is 57. Thus,
�1=ceiling[1]−result[1]=7, and the adjustment direction will be positive. The steps required for
the determination of the 1st distinct character are shown in Table IV.
When C

′
1=57, we derive �1=0. Thus, it is of no value for the process to refine two distinct

characters. We thus set argv[3][1]=57, and hence the 1st character of input variable argv[3] has
been obtained. At this point, argv[3]= ‘19’. We now continue to compare the next character.
At position 2, argv[3][2]= ‘\0’, but ceiling[2] �= ‘\0’. Let argv[3][2]=‘ ’, and argv[3][3]=‘\0’.

Here result[2]= ‘ ’, whose ASCII value is 32, and ceiling[2]=‘3’, whose ASCII value is 51. Thus
�2=ceiling[2]−result1[2]=19, and the adjustment direction will be positive. The steps required
for the determination of the 2nd distinct character are shown in Table V.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 225

Table V. (a) Search for distinct characters at position 2 and (b) refine distinct characters at position 2.

AMOUNT C2 C
′
2 �2 Ceiling[2] Dir

(a)
1 32 33 18
2 33 35 16
4 35 39 12 51 +
8 39 47 4
16 47 63 <0

(b)
AMOUNT Coff Con Citemp �2

16 47 63 47+8=55 <0
8 55 47+4=51 =0

When Citemp=51, �2=0. Let argv[3][2]=51; then argv[3]= ‘193’. The algorithm terminates
since ceiling[3]=‘\0’. According to the operator of the predicate, the current input is selected
as the OFF test point, i.e. the OFF test point is argc=4, argv[1]= ‘-ceiling’, argv[2]=‘193’,
argv[3]=‘193’. The ON test point is the same input as the last character of the adjusted vari-
able argv[3] decremented by 1, i.e. argv[3][2]=argv[3][2]−1, while the other input variables
remain unchanged. Therefore, the ON test point is argc=4, argv[1]=‘-ceiling’, argv[2]=‘193’
and argv[3]=‘192’. It can be seen that the distance between the ON and OFF test points obtained
in this way is minimized.

4.5. Some explanations for the string test generation algorithm

As mentioned above, �(str) may be very large for long strings. However, integer overflow can be
avoided because our implementation of the algorithm compares and searches for one character at
a time using a single character distance function.
Although generally speaking, greedy heuristic algorithms can fail if a local minimum is

encountered, this cannot happen in our case. The statement for this is as follows. We have
analysed 163 library functions in C Language [25] and found 462 simple predicates, of the form
str cmp(str1,str2) op 0 or E1 op E2, where str cmp is a string comparison function, E1 and E2
are arithmetic expressions and op is one of {<,≤,=, �=,>,≥}. In 388 of these predicates (84% of
the total), one of E1 and E2 (or string str1 and str2) is constant (or string literal). In the remaining
74, there are 47 predicates (10%) for which each variable is related to a different input variable. The
two variables in the other 27 predicates (only 6% of the total) are involved with one input variable.
Consequently, we can draw the conclusion that for simple string predicates, in most cases, one of
string str1 and string str2 is irrelevant to the adjusted variable. Let ci represent the i th character of
the adjusted variable and L=max(L1, L2)= L2. Thus, at position i , we have �i =|str1[i]−str2[i]|,
(0≤ i≤ L1−1) or �i =str2[i], (L1≤ i≤ L−1). If str1 is independent of the adjusted variable,
then str1[i] is not connected with ci and can be thought of as a constant, represented by M ,
whereas str2[i] is a function of ci , denoted as ϑ(ci). Accordingly, the objective function �i can be
expressed as �i =|M−ϑ(ci)| or �i =ϑ(ci). If str2 is independent of the adjusted variable, then

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

226 R. ZHAO, M. R. LYU AND Y. MIN

�i =|ϑ(ci)−M|, (0≤ i≤ L1−1) or �i =M(L1≤ i≤ L−1). If �i is a constant, no matter whether
c′
i =ci +1 or c′

i =ci −1, c′
i does not result in a better �i value than ci . In this case, our algorithm

selects another input variable for adjustment.
Hence, the objective function �i is a monotonically increasing or decreasing function, i.e. the

effect of adjusting each character is not restricted to a localized region of �i . The objective function
�i can reach negative values or zero so that each character of the adjusted variable is determined
in turn. As a result, the function � does not suffer from the local minimum problem.

5. EMPIRICAL ASSESSMENT OF THE STRING ON–OFF TEST GENERATION

In order to investigate and illustrate the effectiveness of the string ON–OFF test generation, we
have conducted a substantial number of experiments for ten C programs of unit and module-level
containing string predicates, obtained from books or Web source [24,26], and an instrumented
version of each of them is constructed to compute the current values of the variables in the predicates.
The string predicates can be simple or compound. A compound predicate can be decomposed easily
into two or more simple predicates. In this case, we separately generate ON–OFF test points for
each simple predicate border, and add a new constraint arising from the remaining part of the
compound predicate. The constraint requires that the Boolean result of the remaining part should
have no influence on the result of the compound predicate; i.e. if the result of the simple predicate
Psimp is true, then the result of the compound predicate Pcomp is also true. The decomposition is
illustrated by the following example.

Example. Assume that a compound predicate Pcomp contains five simple predicates P1, P2, P3, P4
and P5 as follows: Pcomp=(P1 or P2) and (P3 or P4) andP5. All five simple predicates should
be separately tested. Now consider P1, then the remaining part of Pcomp should take P2=F(Flase),
(P3 or P4)=T(True) and P5=T. Thus, the result of P2, P3, P4 and P5 can be:

P2 P3 P4 P5
F T T T
F F T T
F T F T

As described in Table VI, the total counts of LOC and the number of string predicates (NOSP)
are listed for each program. TheMax program has four string predicates, the Booksystem program 4
and the Findstring program 3, denoted by the corresponding program name following ‘-pre’ and
the serial number of the predicates, e.g. the fourth predicate of the Max program is signified by
Max-pre4. Each of the other programs has a string predicate, denoted by the corresponding program
name, e.g. predicate Student corresponds to program Student. A target string in the predicate under
the test is the string with which input will match. In the predicatesMax-pre1, Max-pre2, Password,
Random, Book-pre1, Book-pre2, Book-pre3, Book-pre4, Find-pre1, Find-pre2 and Find-pre3 the
target strings are literals containing 1, 8, 5, 4, 4, 6, 6, 4, 5, 5 and 3 characters, respectively. For
example, the target string in predicate Max-pre2 is equal to literal ‘-ceiling’. The target strings in
the remaining predicates are string variables, such as result in predicate Max-pre3. If the target
string is not a literal, in order to simplify the task, we assume that it contains 5 characters, or that
its length is not larger than 10.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 227

Ta
bl
e
V
I.
E
xp

er
im

en
ta
l
pr
og

ra
m
s
de
sc
ri
pt
io
n.

N
am

e
Pr
og

ra
m

de
sc
ri
pt
io
n

L
O
C

N
O
SP

M
ax

Se
ar
ch

fo
r
th
e
m
ax

st
ri
ng

fr
om

a
se
t
of

st
ri
ng

s
su
pp

lie
d
by

th
e
us
er

53
4

Pa
ss
w
or
d

C
he
ck

if
a
pa
ss
w
or
d
is

ri
gh

t
or

w
ro
ng

15
1

R
an

do
m

A
lit
tle

ga
m
e
w
ith

ra
nd
om

in
fo
rm

at
io
n

31
1

C
on

ca
te

C
on

ca
te
na
te

an
d
co
m
pa
re

tw
o
st
ri
ng

s
en
te
re
d
by

th
e
us
er

63
1

St
ud

en
t

C
re
at
es

a
st
ud

en
t
lis
t.
U
se
r
ca
n
ad
d,

di
sp
la
y,

de
le
te

na
m
es
,
an
d
ap
pl
y
bu
bb

le
so
rt
an
d
bi
na
ry

se
ar
ch

12
2

1
B
oo

ks
ys
te
m

R
ec
or
d
w
he
th
er

bo
ok

s
ar
e
bo

rr
ow

ed
or

re
tu
rn
ed
.

56
4

B
ub

bl
e

A
pr
og

ra
m

to
so
rt
st
ri
ng

s
53

1
F
in
ds
tr
in
g

A
pr
og

ra
m

to
fin

d
a
st
ri
ng

am
on

g
th
re
e
st
ri
ng

s
26

3
N
ot
eb
oo

k
A

no
te
bo

ok
m
an
ag
em

en
t
pr
og

ra
m

21
1

In
ve
nt
or
y

A
in
ve
nt
or
y
m
an
ag
em

en
t
pr
og

ra
m

43
1

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

228 R. ZHAO, M. R. LYU AND Y. MIN

In our experiments, 24 initial input sets are designed for each string predicate, each consisting
of 20 inputs that vary in length from 1 to 20 characters, and all character values are limited in the
range between 32 and 126. In total, 24×20=480 trials are conducted for each string predicate.
The maximum string length of 20 characters is used to create a large search space. The search is
conducted to generate ON–OFF test points for one string predicate border at a time.
Dynamic test data generation is a heuristic process. When a new input is created, the instrumented

program has to be executed again in order to evaluate its objective function. The cost of the
ON–OFF test generation algorithm depends mainly on the number of times that the objective
function must be evaluated, i.e. the number of times of the instrumented program is executed. Thus,
in this paper, the performance of the ON–OFF test point generator is defined as the number of
evaluations of the objective function. For each string predicate in the programs listed in Table VI,
the average numbers of evaluations in the 480 trials are shown in Figure 4. Here, String literal
implies that the target string in the predicate under test is a literal. String of fixed length indicates
that the target string is a variable composed of 5 characters, and String of varied length points
out that the length of the target string is a random integer between 1 and 10, but each character
is chosen at random. These results show that the number of evaluations of the objective function
corresponding to the predicates Max-pre3, Max-pre4, password, Concate, Student, Bubble, Find-
pre1, Find-pre2, Notebook and Inventory is approximate, even though some of the target strings
are literals with 5 characters, and the others are treated as variables whose lengths range from 1 to
10 or are fixed at 5. For the target string in predicate Student, we count the average number of the
evaluations in two cases, namely fixed length and varied length.
To obtain a more detailed insight, we analyse the experimental results using the statistical anal-

ysis tool SPSS. The statistical descriptions are shown in Tables VII(a) and (b). In Table VII(a),
corresponding to the greyish bar for Password, Find-pre1 and Find-pre2 and the black bars for
Concate Student, Bubble and Notebook in Figure 4, there are only slight differences in their mean
numbers of evaluation of the objective function as well as their standard deviations, and their stan-
dard deviations are small for only about 6.67. In Table VII(b), with reference to the white bars for
Max-pre3, Max-pre4, Student and Inventory in Figure 4, there are only trivial differences in their
mean numbers of the evaluation as well as standard deviations, but their standard deviations are
larger for about 22.18. In addition, the number of evaluations ranges between 1 and 102, whereas the
number varies only between 16 and 58 for the experiments in Table VII(a). This is easy to explain
since the target strings in the predicates in Table VII(b) differ between 1 and 10 in length, whereas

0

10

20

30

40

50

60

70

80

M
ax-Pre1

M
ax-Pre2

M
ax-Pre3

M
ax-Pre4

Password
Random
Concate
Student
Book-Pre1
Book-Pre2
Book-Pre3
Book-Pre4
Bubble
Find-Pre1
Find-Pre2
Find-Pre3
Notebook
Inventory

N
um

be
r

of
 e

va
lu

at
io

n

String literal String of fixed length String of varied length

Figure 4. Predicates under test.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 229

Table VII. (a) Stastistical results of target string with 5 characters and (b) statistical result of target
string with varied character number.

Predicate under test N Minimum Maximum Mean Std. deviation

(a)
Password 480 17 56 41.2938 7.23590
Concate 480 24 58 40.7979 6.39405
Student 480 17 57 40.5750 6.46030
Bubble 480 23 56 40.5896 6.42024
Find-pre1 480 16 54 41.6271 6.82655
Find-pre2 480 21 56 42.4500 7.45548
Notebook 480 19 55 40.5771 6.67234

(b)
Max pre 3 480 1 94 39.3604 22.18214
Max pre 4 480 1 94 39.8438 21.89076
Student 480 1 102 38.1042 22.23404

the lengths of the target string in the predicates in Table VII(a) are a constant 5. However, the mean
numbers of evaluations in Table VII(b), about 39.36, are close to the means in Table VII(a), about
40.79. Therefore, a conclusion can be drawn from the result that there is little connection between
the number of evaluations and the value of the target string as well as the program under test.
It is further observed that the number of the evaluation has a close correlation with the length

of target string. However, what is this relationship? Is there a constant upward or downward trend
that follows a straight-line pattern or a curved pattern? To address these questions, we apply a
regression analysis to the data of the Concate predicate. The plot of the regression line and the
actual data points is illustrated in Figure 5. The scatterplot exhibits a very strong linear relationship
between the number of the evaluation and the length of the target string. The formula for the linear
regression is

Number of Evaluation=−2.14+8.45∗Length of String

The coefficient of determination R-Square is 0.96 (96%), which is substantial. That is to say, the
regression model works very well. For example, if the target string includes 5 characters, from
the regression formula, the number of the evaluation would be −2.14+8.45∗5=40.11, whereas the
actual mean, from Table VII(a), is 40.80 with respect to predicate Concate. As another example, for
the target string literals in the predicates Max-pre1, Random, Password and Max-pre2, comprising
1, 4, 5 and 8 characters, respectively, the means of 480 trials on each string predicate are compared
with the values from the regression model. The result is displayed in Figure 6. It is clear that the
actual means of the number of the evaluation are very close to the values from the regression model.
Therefore, the regression model can be used to estimate or predict the number of the evaluation
when the length of the target string in the predicate under test is known.
The function of test point generation is to find an input to match the target string in the predicate

under test. It is evident that the initial input affects the efficiency of test data generation. This brings
us to the question posed earlier: what relationship exists between the number of the evaluation
and the length of initial input string? Furthermore, how should the characters in the initial input
be selected to enhance the performance of the test generation algorithm? In order to answer the

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

230 R. ZHAO, M. R. LYU AND Y. MIN

Linear Regression with
95.00% Mean Prediction Interval

2

Length of target string

6

26

46

66

86

106

126

146

166

186

N
um

be
r

of
 e

va
lu

at
io

n

Number_of_evaluation=-2.14+8.45*Length_of_string
R_Square=0.96

4 6 8 10 12 14 16 18 20

Figure 5. Correlation of number of evaluation versus length of target string for Concate predicate.

0

20

40

60

80

100

1

Lenrth of target string

N
um

be
r

of
 e

va
lu

at
io

n Regression value Actual mean value

2 3 4 5 6 7 8 9 10

Figure 6. Compare regression and actual mean values.

0

10

20

30

40

50

60

Length of input string

N
um

be
r

of
 e

va
lu

at
io

n

Password Concate Student

2019181716151413121110987654321

Figure 7. Number of evaluation versus length of input string.

first problem, we analyse the number of the evaluation versus different lengths of initial input
string, for predicate Password, Concate and Student, where the target strings include exactly 5
characters. The result is shown in Figure 7. It can be observed that there are no distinct differences
in the number of the evaluation with respect to the length of initial inputs ranging from 1 to 20.
A more detailed statistical description can be found in Table VIII corresponding to predicate

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 231

Table VIII. Statistical description of Concate predicate.

Length of string N Minimum Maximum Mean Std. deviation

1 24 34 55 45.2917 5.3445
2 24 26 51 41.2500 6.9673
3 24 31 56 43.2500 6.0163
4 24 32 49 40.5417 4.8810
5 24 24 52 39.5417 7.2049
6 24 27 54 39.1667 7.0444
7 24 27 53 40.5417 7.7234
8 24 26 54 40.0833 7.5695
9 24 29 53 39.1667 5.9466
10 24 27 54 40.3750 6.8829
11 24 35 58 43.9583 5.8717
12 24 28 52 38.9167 6.2618
13 24 30 50 40.9167 4.6054
14 24 27 53 39.1250 6.5628
15 24 28 51 39.3750 6.3439
16 24 31 51 41.9583 6.1040
17 24 32 51 41.5417 6.0215
18 24 31 51 40.8750 5.9659
19 24 28 51 40.7917 5.5949
20 24 24 48 39.2917 5.9453

Concate. The minimum and maximum numbers of the evaluations vary in the ranges 24–34 and
48–58, respectively, whereas the mean varies only between 38.92 and 45.29 when the length of
the initial input is varied from 1 to 20. For predicate Password, whose target string is a literal with
5 characters, there is an obvious increase in the number of the evaluation when initial input has
only a few characters, especially only 1 or 2 characters. The trend is clearer in Figure 8, where the
heaviest dotted line indicates the mean number of the evaluation in predicate Password. This can be
explained by noting that excess characters in the initial input are thrown away, whereas if the input
is too short, additional space characters need to be added. A similar trend is found in predicates
Max-pre2 and Random, Book-pre1, Book-pre2, Book-pre3, Book-pre4, Find-pre1, Find-pre2 and
Find-pre3, shown in Figure 9, where the target strings in these predicates are literals. Therefore,
we can derive the proposition that the initial input should not be shorter than the target string in the
predicate under test.
To address the second problem, i.e. how to select the characters in initial input, 480 initial

inputs are run on each string predicate, consisting of 24 initial input sets, each comprising 20
input strings ranging in length from 1 to 20. The first input set employs only the space character
(the lowest printable ASCII value); i.e. the 20 inputs contain 1–20 space characters, respectively.
Similarly, we create the second, third and fourth input sets composed of only, respectively, ‘*’,
‘<’ and ‘∼’ characters (the last being the highest printable ASCII value), which are referred to
as fixed characters in the following section. The remaining 20 input sets are made up of random
characters limited in range from space to the ‘∼’ character. The effect of different characters on the
number of the evaluation with respect to predicate Password is demonstrated in Figure 8. In this
figure, the two fine dotted lines indicate the number of the evaluation when initial inputs comprise,

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

232 R. ZHAO, M. R. LYU AND Y. MIN

Space character
Fxed character
Random character
Mean

Character of initial input

Length of input string

35

40

45

N
um

be
r

of
 e

va
lu

at
io

n

50

55

2018161412108642

Figure 8. Compare different initial character Password predicate.

respectively, space and fixed characters, the heavier dotted line shows the mean when initial inputs
consist of random characters, and the heaviest dotted line shows the mean of each group of 24
inputs corresponding to a certain length of input string. It is found that the number of the evaluation
is the largest when all initial inputs are composed of space characters. The least number of the
evaluation results from initial inputs in which all characters are generated randomly. In addition,
the initial inputs containing only space characters have the same number of the evaluation, even if
their length changes from 1 to 20. For the initial inputs with fixed characters, the number of the
evaluation decreases in tandem with the increase in the length of the input string until the length
is equal to that of the target string, here 5 for the predicate Password, and then the number of
the evaluation remains constant. For the initial inputs with random characters, the number of the
evaluation also diminishes as the length of the input string increases. However, when the length of
inputs is larger than that of the target string, the number of the evaluation fluctuates, but no more
so than with the fixed character input. The same behaviour is seen for the predicates with string
literal in Figure 9. As a result, we hypothesize that using characters generated randomly in initial
inputs produces more effective string test data than fixed and space characters, when target strings
in the predicate under test are literals.
For the predicates Concate, Student, Bubble and Notebook for which the target strings are 5

characters in length, but not literal, the effect of different initial characters on the number of the
evaluation is shown in Figure 10. Evidently, initial inputs comprised of random characters result in
a lower number of the evaluation on average, and the mean number of the evaluation fluctuates less
than the number for inputs consisted of space or fixed characters. Figure 11 shows a similar result
for the predicate Max-pre3, Max-pre4, Student and Inventory, whose target strings range from 1 to
10 characters. Also, the variations in the mean number of the evaluation with respect to the target
strings including 5 characters are compared with those relative to the target strings ranging between
1 and 10 characters. The result is displayed in Figure 12. The means in the two cases are almost the
same, as shown in Figure 4, Table VII(a) and (b), although the fluctuations in the mean are larger
when the length of the target strings varies. Thus, we can draw the conclusion that the characters
in the initial input string should be generated randomly in order to enhance the performance of
string test data generation, no matter whether the target strings involved in the predicate under test

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 233

Space character
Fixed character

Random character

Character of initial input

30
40
50
60
70
80

Book-pre3

Book-pre2Book-pre1

Book-pre4

RandomPasswordMax-pre2

Find-pre1

Find-pre2 Find-pre3

Space character

Fixed character
Random character

Character of initial input

Length of input string

30

40

50

60

30
40
50
60
70
80

N
um

be
r

of
ev

al
ua

tio
n

N
um

be
r

of
ev

al
ua

tio
n

N
um

be
r

of
ev

al
ua

tio
n

N
um

be
r

of
ev

al
ua

tio
n

30

40

50

60

2015105

Length of input string

Length of input string Length of input string

2015105

2015105 2015105
(a)

(b)

Figure 9. (a) Compare different initial characters for predicates with literal and (b) compare different initial
characters for predicates with literal.

are literal, fixed length or varied length. Indeed, it is not advisable that the initial input string be
comprised of any single character, especially the characters with minimum and maximum printable
ASCII values.
However, if the target string in the predicate under test is a literal that contains only one character,

such as for predicateMax-pre1, the above conclusions are invalid. Figure 13 compares the effect of
different initial characters on the number of the evaluation for predicate Max-pre1. Four hundred
and eighty trials show that the initial character generated randomly yields a larger number of the
evaluation than fixed and space characters. This indicates that the space character may be a good
choice for initial input relative to a target string containing only a single specified character.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

234 R. ZHAO, M. R. LYU AND Y. MIN

Notebook

StudentConcate

Bubble
Space character
Fixed character
Random character

Character of initial input35

40

45

50

55

2 4 6 8 10 12 14 16 18 20
Length of input string

N
um

be
r

of

ev
al

ua
tio

n
N

um
be

r
of

ev

al
ua

tio
n

2 4 6 8 10 12 14 16 18 20
Length of input string

35

40

45

50

55

Figure 10. Compare different initial characters for predicates with fixed length.

InventoryStudent

Max-pre3 Max-pre4

Space character
Fixed character
Random character

Character of initial input0

25

50

75

0

25

50

75

2 4 6 8 10 12 14 16 18 20

Length of input string
2 4 6 8 10 12 14 16 18 20

Length of input string

N
um

be
r

of

ev
al

ua
tio

n
N

um
be

r
of

ev

al
ua

tio
n

Figure 11. Compare different initial characters for predicates with varied length.

6. CONCLUSION

The objective of domain testing is to detect domain errors in programs. However, current work
in domain testing strategies has been limited largely to programs in which string predicates are
not taken into consideration. The same weakness is found in many currently available test data
generation systems. In this paper, we have presented a novel approach for the automatic generation of
ON–OFF test points for string predicate borders associated with program paths, and have developed
a corresponding test data generator.
In order to investigate and illustrate the effectiveness of our string ON–OFF test generation

approach, a number of experiments have been conducted on a set of programs containing string
predicates. Four hundred and eighty trials have been conducted for each string predicate under

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

AUTOMATIC STRING TEST DATA GENERATION 235

String with characters 1 to 10String with 5 characters

Space character
Fixed character
Random character

Character of initial input

Figure 12. Compare predicates with fixed and varied length.

Space character
Fixed character
Random character

Character of initial input

Length of input string

N
um

be
r

of
 e

va
lu

at
io

n

6

7

8

9

10

11

2018161412108642

Figure 13. Compare different initial characters for predicates Max-pre1.

test, and the experimental results were analysed in detail using statistical analysis tool SPSS. We
conclude that there is a strong linear relationship between the performance of the test generator
and the length of the target string in the predicate under test, and this relationship can be used to
estimate or predict the number of the evaluation of the objective function in order to match the
target string when the length of the target string is known. Moreover, with initial inputs not shorter
than the target string and with characters generated randomly, the performance of our string test
data generation algorithm can be enhanced. In summary, the results show that the methodology is
promising and effective in string test data generation for detecting domain errors.

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

236 R. ZHAO, M. R. LYU AND Y. MIN

ACKNOWLEDGEMENTS

Shanshan Lv conducted extensive experiments and analysis for this paper. Here we express our heartfelt
appreciation. The work described in this paper was supported by the National Natural Science Foundation of
China under Grant No.60473032; Beijing Natural Science Foundation under Grant No.4072021; and the Hong
Kong Research Grants Council, under Grant No.CUHK4150/07E.

REFERENCES

1. Lyu MR, Rangarajan S, Moorsel AP. Optimal allocation of test resources for software reliability growth modeling in
software development. IEEE Transactions on Reliability 2002; 51(2):183–192.

2. Offutt AJ, Jin ZY, Pan J. The dynamic domain reduction approach to test data generation. Software Practice and
Experience 1999; 29(2):167–193.

3. Jeng B, Forgacs I. An automatic approach of domain test data generation. The Journal of Systems and Software 1999;
49:97–112.

4. White LJ, Cohen EI. Domain strategy for computer program testing. IEEE Transactions on Software Engineering 1980;
6(3):247–257.

5. Clarke LA, Hassell J, Richardson DJ. A close look at domain testing. IEEE Transactions on Software Engineering 1982;
8(4):380–390.

6. Zeil SJ, Afifi FH, White LJ. Detection of linear errors via domain testing. ACM Transactions on Software Engineering
and Methodology 1992; 1(4):422–451.

7. Jeng B, Weyuker EJ. A simplified domain-testing strategy. ACM Transactions on Software Engineering and Methodology
1994; 3(3):254–270.

8. Hajnal A, Forgacs I. An applicable test data generation algorithm for domain errors. ISSTA’98, Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis, FL, U.S.A., March 1998; 63–72.

9. Jeng B. Toward an integration of data flow and domain testing. The Journal of Systems and Software 1999; 45:19–30.
10. Alshraideh M, Bottaci L. Search-based software test data generation for string data using program-specific search

operators. Software Testing Verification and Reliability 2006; 16(3):175–203.
11. Howden WE. Reliability of the path analysis testing strategy. IEEE Transactions on Software Engineering 1976;

2(3):208–215.
12. Michael CC, McGraw G, Schatz MA. Generating software test data by evolution. IEEE Transactions on Software

Engineering 2001; 27(12):1085–1110.
13. Gotlieb A, Petit M. Path-oriented random testing. Proceedings of the First International Workshop on Random Testing

(RT’06), Portland, U.S.A., July 2006; 28–35.
14. Gareth L, Morris J, Parker K, Gary A. Using symbolic execution to guide test generation. Software Testing, Verification

and Reliability 2004; 15(1):41–61.
15. Coward PD. Symbolic execution and testing. Information and Software Technique 1991; 33(1):229–239.
16. Korel B. Automated software test data generation. IEEE Transactions on Software Engineering 1990; 16(8):870–879.
17. McMinn P. Search-based software test data generation: a survey. Software Testing, Verification and Reliability 2004;

14(2):105–156.
18. Harman M, Hu L, Hierons RM, Wegener J, Sthamer H, Baresel A, Roper M. Testability transformation. IEEE Transactions

on Software Engineering 2004; 30(1):3–16.
19. Mansour N, Salame M. Data generation for path testing. Software Quality Journal 2004; 12:121–136.
20. Forgács I, Bertolino A. Feasible test path selection by principal slicing. Proceedings of the 6th European Conference on

Foundations of Software Engineering, Zurich, Switzerland, 1997; 378–394.
21. Peres LM, Vergilio SR, Jino M, Maldonado JC. Path selection in the structural testing: Proposition, implementation and

application of strategies. Proceedings of the International Conference of the Chilean Computer Science Society (SCCC
’01), Chile, 2001; 240–246.

22. Available at: http://www.nist.gov/dads/HTML/HammingDistance.html [6 August 2008].
23. Zhao R, Lyu MR. Character string predicate based automatic software test data generation. Proceedings of the 3rd

International Conference on Quality Software (QSIC 2003), Dallas, TX, November 2003. IEEE Computer Society Press:
LosAlamitos, CA, 2003; C255–C263.

24. Marick B. The Craft of Software Testing. PTR Prentice-Hall: New Jersey, 1995; 260.
25. Available at: http://ftp.gnu.org/gnu/glibc [6 August 2008].
26. Planet Source Code. Available at: http://www.planet-source-code.com/ [6 March 2007].

Copyright q 2009 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2010; 20:209–236
DOI: 10.1002/stvr

