
I) Combining the 
results of individual 
models may giue 
more accurate 
predictions than 
using component 
modelsalone, 
providing a general 
reliability method 
amoss projects. 

Applying 
Reliability 
Models More 
Effectively 
MICHAEL R. LYU, University of Iowa 
ALLEN NIKORA, Jet Propukion Laboratory, Caltech 

M ore than 40 
software-reliability models have been 
created since the first one appeared in 
1972.' As new projects arose, new reliabil- 
ity models were created to suit them. Now 
software engineers have a plethora of reli- 
ability models, none of whch work opti- 
mally across projects. 

Consequently, a major difficulty in 
software measurement is analyzing the 
context in which measurement is to take 
place to determine beforehand which 
model is likely to be tmstworthy. Because 
software development and operation in- 
volve many intricate human activities and 
because software failure pattems are un- 
certain, such determinations are difficult 
- if not impossible. Also, project data 
varies considerably and often does not 
coniply with a model's underlying as- 
sumptions. 

Thus, practitioners have no reliable 

way of knowing in advance which model 
is likely to produce the most trustworthy 
predictions. 

Instead of developing more detaded - 
and potentidy more complicated -models, 
we chose to focus on using existing models 
more effectively. To this end, we have devel- 
oped a set of hear combination models that 
combine the results of single, or component, 
models. As measured by statistical methods 
fordeterminingamodel'sappliabilitytoaset 
of Mure data, a combination model tends to 
have more accurate short-term and long- 
term predictions than a component model. 

After evaluating these models using 
both historical data sets and data from re- 
cent Jet Propulsion Laboratory projects, 
we have found that they are consistently 
satisfactory. To make it easier to apply re- 
liability models and to form combination 
models, we are developing a tool to auto- ' 8  

mate many reliability-measurement tasks. 

~ - -  ~ ~- ~ 
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WELL=KWOWW RELIABILITY MODELS 

liability model is a set of tech- 
niques that apply probability 
theory and statistical analysis to 
software reliability. Areliability 
model specifies the general 
form of the dependence of the 
Mure process on the principal 
factors that affect it: fault incro- 
duction, fault manifestation, 
failure detection and recovery, ures 
fault removal, and operational 
environment The primary 
goal of these models is to assess 
current reliability and forecast 
future reliability. 

We believe the component 
models &om two reliability- UK, 
measurement tools- Statisti- T h e  models these tools 
d Modeling and Estimation of offer are 
Reliability Functions for Soft- + 3dkk-Mwmda (JM): 
ware and Software Reliability One of the earliest models, it as- 
Modeling Programs - are the sume~ failures occur purely ran- 
most frequently used. domly and that all faults con- 

S M E m  is the only tool tribute an equally to total 
that allows multiple timedo- unreliability. When a Mure oc- 
main and interval-domain pa- curs, it assumes that the fk is 

The traditional soharere- rameter-estimation procedures. 
It is available fiee &om William 
Fan; Naval Surface Warfare 
Center, Code K-52, Dahlgren, 
VA22448. SRMP is the only 
tool that offers methods to ana- 
lyze prediction quality. It pro- 
vides users with graphics @e a- 

and noise of the prediction er- 

MODELING STRATEGY c @ / = I  
To create a combination model for im- 

proving reliability measurement, we rec- 
ommend the following procedure: 

1. Identify a basic set of models (the 
component models). Ifyou know the proj- 
ect testing environments, select models 
whose assumptions are closest to the real 
environments. 

2 .  Select models whose prediction 
biases tend to cancel out. A prediction bias 
is either pessimistic or optimistic. 

3 .  Separately apply each component 
model to the failure data. 

4. Apply certain criteria to weigh the 
selected component models and form one 
or more h e a r  combination models for 
final predictions. The weights can be ei- 
ther static or dynamic. 

In general, h s  approach is expressed as 
a mixed distribution: 

I? 

j ( f )  = c @i;3f) 
J= 1 

where rz is the number of models,jJ(t) is 
the predictive probability density function 
of thejth component model, given that 
you have made i - 1 observations of times 
between successive failures, and 

44 

1 
for all is. 

perfeq thus, the program’s fail- 
ure rate improves by the same 
amount at each fk. (2. Jelinski 
and P. Moranda, “Software Re- 
liability Research,” in Stat&?& 
Computer P ~ n c e  Evdw- 
tian, W. Freiberger, Academic 
Press, New York, 1972, pp, 
465-484.) - smRFs, SRFYrlP 

+ Bqesian3elimki-Mwanda 
(BJM): hentially the same as 
JM, this model uses a Bayesian 
inference scheme rather than 
maximum likelihood. (A. 
Abdel-Ghaly, P. Chan, and B. 
Littlewood, “Evaluation of 
Competing Software Reliabil- 
ity Predictions,” IEEE Tram. 
sofiwave Eqykehg, Sept. 
1986, pp. 950-967.) 
-SMERFS 

+ Schneidaubd (SM): Smi- 
ilar to JM, dw model’s philoso- 
phy is that the error-detection 
process changes as testing pro- 

than earlier counts in predict- 
ing future counts. (N. 
Schneidewind, “Analysis of 
Error Processes in Computer 
Software,” SigPh Notice, June 
1975,pp. 337-346.) 
- s1mRFs 

+ Geometric (GW: Avaria- 
tion ofJM, this model does not 
assume a fixed, finite number of 
program errors, nor does it as- 
sume that emrs  are equally 
likely to occur. (P. Moranda, 
“Event-Altered Rate Models 
for General Reliability Analy- 
sis,” IEEE Tram. Reliabdiy, 
Dec. 1979, pp. 376-381.) 
- - - S M W S  

+ Gawalized P o k m  (PM): 
Similar to JM, except within 
the error-count framework (R. 
Schafer et al., Widation of 
Software Reliability Models,” 
Tech. Report RADC-TR-79- 
147, Rome Air Development 

gresses and that recent error 
counts are usually more useful 

Ctr., Rome, N.Y., 1979.) 
- SiWWS 

best candidates for our linear combination 
models. \li: selected them because in our 
recent investisitions, we found that their 

1 predictions were d id . ’  Other practition- 
The linear combination model tends 1 ers have also found that they perfomi well, 

to preserve the features inherited from its and they are widelyused.’ Another reason 
component models. Also, because each ~ is that they represent different model Cdt- 

component model performs reliability ~ egories. GO, which is similar to JM and 
calculations independently, the combha- ’ SLZ1, represents the exponential-shape 
tion model remains fairly simple. The h7 IPP   no del, LMO represents the loga- 
component models are plugged into the rithmic-shape XHPP model, and L17 rep- 
combination model only at the last stage resents the inverse-polvnomial-shape 
for h a 1  predictions. Bayesian model. Finally, a t  least with the 

data set we analvzed, the biases of these Selecting appropriate component 
models is, of course, important to the suc- 
cess of the combination model. The pa- 
rameter-estimation method you select to 
implement the component models may, 
to a certain extent, affect the combination 
model’s prediction validity. We recom- 
mend using component models from two 
reliability-measurement tools: Statistical 
Modeling and Estimation of Reliability 
Functions for Software and Software Reli- 
ability Modeling Programs. Contacts for 
acquiring these tools and the reliability 
models they include are given in the boxes 
above and on the facing page. 

We felt that the GO, MO, and LS’ 
component models of these tools were the 

~~ ~~ ~ 
~~~ ~~~ 

models tend to cancel out. GO tends to be 
optimistic, LV tends to be pessimistic, and 
MO might go either way. 

COMBINATION MODELS 

From the MI, ,MO, and LV compo- 
nent models, we formed four combination 
models. The goal of each is to reduce the 
risk of relying on a specific model, which 
may produce grossly inaccurate predic- 
tions, while retaining much ofthe simplic- 
ity of using the component models: 

+ Equall~~ Weighted Lineal- Combination. 
This model is the simplest combination to 
form. Each component model has a con- 
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~ . - _ _ _  

+ GoeLOkmto (GO): Sim- 
ilar to JM, except it assumes the 
failure rate improves continu- 
ously in time. (A Goel and K. 
Okumoto, “Tune-Dependent 
Error-Detection Rate Model 
for Sohare Reliability and 
Other P&rmance Measures,” 
IEEE Trm. Rel&& Aug. 
1979, pp. 206-2 11.) 
-ssMERFs,sRMP 

Similar to GO, except it at- 
tempts to consider that later 
fixes have less effect on pro- 
gram reliability than earlier 
ones. 0. Musa and K 
Okumoto, “A Logarithmic 
Poisson Execution T i e  
Model for Soha re  Reliability 
Measurement,” h. IntS Cb$ 
S&me Eng., IEEE CS Press, 

+ M~-OkWurto (MO) 

Los Alamitos, Calif., 1984 pp. 
230-238.)-ShlERFS,SRMP 

+ E i d  DelayedS-Sbape 
(YMt): S d a r  to GO, except it 
accounts for the learning pe- 
riod that testers go through as 

~ _ _ .  ~ ~ 

they become familiar with the 
software at the start of testing. 
(S. Yamada, M. Ohba, and S. 
Osaki, “S-Shaped Reliability 
Growth Modeling for Soha re  
Error Detection,” IEEE Trm. 
Rehabdiq, Dec 1983, pp. 475- 

+ Littlewood 0: Similar 
478.) - SMERFS 

to JM, except it assumes that 
different faults have different 
sizes (contribute unequally to 
unreliability), which is more re- 
alistic Larger faults tend to be 
removed earlier, causing a “law 
of diminishing returns” in de- 
bugging. @. Littlewood, “Sto- 
chastic Reliability Growth: A 
Model for Fault Removal in 
Computer Programs and Hard- 
ware Designs, ” IEEE Trans. 
&kabdiq, Oct. 1981, pp. 3 13- 
320.) - SRMP 

+ Littlewood Nmbmge- 
nem Poisson Pmces (LNHPP): 
Similar to LM but assumes a 
continuous change in failure 
rate, rather than discrete jumps, 

when fixes take place. @. 
Miller, “Exponential Order Sta- 
tistic Models of Software Reli- 
ability Growth, IEEE Trans. 
Sofrware Eng., Jan. 1986, 
pp. 12-24.) - SRMP 

+ L‘itthoOd-Vmul o: 
Lets the size of failure-rate im- 
provement at a fix vary ran- 
domly, representing the uncer- 
tainty about fault size and the 
efficacy of the fix. (B. Little- 
wood and J. Verrall, “A Bayes- 
ian Reliability Growth Model 
for Computer Sohare,”J. 
Royal Stahtics Soc. C, Vol. 22, 
pp. 332-346.) - S M W S ,  
SRMP 

+ likuer-fihd(KL) 
Similar to the LV model but has 
adifkrentmathaaticalformfor 
&bilitygrowth. (2 Keiller et 
al., “Comparison of Sofisvare Re- 
liability Predictions,” h. lEEE 
IntSSyq. Frmi-Ehmt Camput- 
ing, IEEE CS Pres, Los Al- 
a”, W., 1983, pp. 128- 
134.) - SRMP 

stant, equal weight. The arithmetic aver- 
age of all component models’ predictions 
is taken as the ELC model prediction 

1 ELC =+GO + h 0  + -W 
3 3  

I hese weightings remain constant and 
unchanged throughout the modeling pro- 
cess. This model follows a strategy similar 
to that of a Delphi survey, in which au- 
thorities working independently are asked 
for an opinion on a subject, and an average 
of the results is taken. 

+ Median-Oiiented Linear Combinntion. 
The iMLC model does not rely on the arith- 
metic mean for prediction as in ELC. In- 
stead, it selem the component model whose 
predicted value lies between optimistic and 
pessimistic values. The justification for tlus 
approach is that the median might be more 
moderate than the mean in some cases, since 
it can better tolerate an erroneou prediction 
that is far away from the others. 

+ Unequally Weighted Lineal- Combina- 
tion. The ULC model is similar to the MLC 
model except that optimistic and pessimistic 
predic~ons contribute to the final predic- 
tion. The prediction isnotdetermined solely 
by the median value. Here we use 
weighting s d a r  to those in the Program 
Evaluation and Review Technique: 

? -  

1 4 1  
’ - 6  6 6 

UL(‘--O+-Iz/I+-P 

where 0 represents an optimistic predic- 
tion, P, a pessimistic prediction, and M, 
the median prediction. 

+ DymmicaUy Weighttd Linem- Cwnbi- 
natim. In the DLC model, we assunie that 
the applicability of any individual model to 
the projea data may change as testing pro- 
gresses and therefore that the component 
models’ weights will change according to 
changes in a model’s applicability. Here, 
we use changes in prequential likelihood 
- a measure that denotes a model’s accu- 
mulated accuracy - to assign weights to 
the component models, which could he 
taken over a few or many time frames. -4s a 
baseline, we formed the simplest DLC 
model by choosing an observation win- 
dow of one time frame before each predic- 
tion as the reference in assigning weights. 

SELECTING MODELS FOR COMPARISON 

To compare the combination models’ 
performance, we selected a subset of the 
component models in SMERFS and 
SRlLzp that ranked the highest in the fol- 
lowing criteria: 

+ M o d e l  ualidity. We viewed this crite- 
rion as the most important because we can 

~~~ ~ 
~~~~ 

+ Brooks md Motley @M): 
The BM binomial and Poisson 
models attempt to consider 
that not all of a program is 
tested equally during a testing 
period and that only some por- 
tions of the p m g ”  may be 
available for testing during its de- 
velopment (Vi.? Brooks and R 
Modey, Analysts of Discrete 
Software Reliability Models, 
Tech. Report RADC-TR-80-84, 
Rome Air Development Ctr, 
Rome, NX, 198O.)--SMERFS 

+ h n e  (DU): Developed 
for hadware burn-in testing, in 
which defective system compo- 
nents are detected and replaced 
in the early days of use. Once 
again, the model assumes that 
the failure rate changes contin- 
uously in time. (L. Cow, “Con- 
fidence Interval Procedures for 
Reliability Growth Analysis,” 
Teck Report 197, US Army 
Materiel Systems Analysis Ac- 
tivity, Aberdeen, Md., 1977.) 
- SM-, SRMP 

quantitatively define it; other measures 
tend to be more subjective. We adopted 
four measures to rate model 

1. Acaimy. We defined accuracy as 
the prequential likelihood measure, in 
which the observed data is a sequence of 
times between successive failures, denoted 
by tl , t 2 ,  . . . tt-l.  The objective is to use 
the data to predict the future unobserved 
T, - a randomvariable to denote the time 
to the ith faikre. Our goal is to get a good 
estimate of F,(t) ,  which is the probability 
that TI is less than a specific time value t. 
We a p m e  that the predictive distribu- 
tion F,( t )  tor T, based on tl ,  12, . . . ti-1 will 
have a probability density function of 

For such one-step-ahead predictions 
of q+,, ..., T,,,, the prequential likelihood is 

/+/ I  

I=/+ 1 
PI> , /  = n j i t , )  

Since this measure is usually very close 
to zero, we take its logarithmic value for 
comparison. The resulting number is al- 
ways negative. Given several models that 
use the same data set, the model with the 
largest value gives the most accurate pre- 
diction. 
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RECENT PROJECTS FROM THE JET PROPULSION LABORATORY 
Voyager. The Voyager 1 and 

2 spacecraft were developed 
during the mid- 1970s and 
launched inmid-1977. Both 
spacecraft flew past Jupiter and 
Saturn. Voyager 2 continued 
exploring the outer solar sys- 
tem by flying past Uranus in 
1986 and Neptune in 1989. 

The Voyagers were one of 
the first spacecraft in which 
software provided a large part 
of the functionality. This soft- 
ware, approximately 14,000 
lines of uncommented assem- 
bly language, was divided 
among three real-time em- 
bedded subsystems - the 
Attitude and Articulation 
Control Subsystem, the 
Command and Control Sub- 
system, and the Flight Data 
Subsystem. 

The failure data we ana- 
lyzed comes from spacecraft- 
system testing, at which point 
the AACS, CCS, and FDS had 
been integrated into the space- 
craft. Among the items re- 
corded on the problendfahe 
reports during system test are 
time of failure, failure type, and 

subsystem in which the failure 
occurred. Roughly 9.5 faults 
per thousand lines of code were 
discovered during system test 

G d h  Launched in 1989, 
Galileo was developed as a 
Jupiter orbiter c.rrying an at- 
mospheric probe. As with the 
Voyagers, a large fraction of 
Galileo’s functionality was pro- 
vided by software. Galileo con- 
tains an AACS and a Com- 
mand and Data Subsystem. 
Approximately 7,000 un- 
commentedsourm lines of 
W S  were implemented for 
the AACS. As with the Voyager;, 
the failure data comes fi-om 

mated 10.2 faultsperthousand 
lines of code were detected. 

Gdb UK. Failure data for 
the Galileo Command and 
Data Subsystem during one 
phase of subsystem-level inte- 
gration testing was available for 
analysis. Because one of us had 
been involved in this testing ef- 
fort, we could reconstruct some 
elements of the testing profile. 

For example, we knew that 
the hours of testing per week 

spacegaft-system testing Anesti- 

was nearly constant throughout 
the two testing stages. In addi- 
tion, the main functional areas 
of the software received 
roughly the same amount of 
testing every calendar week. 

Thisinformation made the 
failure data more accurate than 
that for other projeas. About 
15,oOO sourcehesofasxmbly 
language were developed fw the 
CDS. Dunngintegration testing, 
roughly 10.1 faultsperthousand 
lines of code were b e r e d .  

Maph.  A large portion of 
the on-board software for the 
Magellan Venus radar mapper 
is derived from Galileo’s soft- 
ware. Like Galileo, Magellan 
has an AACS and a CDS -the 
number of uncommented 
source lines of code for each is 
roughly the same as that for 
Galileo. As wi& Galileo and the 
Vbyagers, the failure data comes 
fromthespaedqstemtest 
period. An estimated 8.0 faults 
per thousand lines of code were 
deteaed during testing. 

M a  SAR. The Alaska Syn- 
thetic Aperture Radar fadty, 
installed on the Fairbanks cam- 

pus of the University of Alaska, 
is a facility for tracking and ac- 
quiring data &om Earth re- 
sources satellites in high-in&- 
nation orbits. Totaling about 
103 ,000 uncommented source 
lines of code, the sohare  is 
writcm in a “ r e  of C, For- 
tran, Equel, and OSL. About 
14,000 lines were reused from 
previous efforts. We obtained 
the failure data presented here 
from the development organi- 
zation’s anomaly reporting 
system during software integra- 
tion and test 

As with the other projects, 
we assume the test time per unit 
interval of calendar time was 
relatively constant, and the test- 
ing method remained constant, 
since this information was not 
systematically recorded. 
Largely because of this lack of 
information, we decided to 
model the reliability of the facil- 
ity as a whole, rather than at- 
tempt to model the component 
reliabilities. For the part of sys- 
tem testing that we analyzed, 
about 3.6 faults per thousand 
lines of code were discovered. 

2 .  Bias. T h i s  measure 
Kolinogorov distance - the maximum 
absolute vertical deviation - between the 
perfect prediction line of slope 1 and a plot 
ofthe following transformation: 

I I i  = FLti) 

which is the probability integral transform 
of the observed ti usingAthe previously 
calculated predictor F, based o n  
t l ,  tz, ... ~ ~ - 1 .  A positive number means 
that the model tends to be optimistic; a 
negative one means the model tends to 
be pessimistic. To derive this measure, we 
examine urs in the zc-plot (Sarah 
Brocklehiirst and Bev Littlewood describe 
the cl-plot on p. 36) to see whether they are 
above (optiniistic) or below (pessimistic) 
the line of unit slope through the origin. In 
any case, the smaller the number’s abso- 
lute value, the less the model is biased in 
either direction. 

3. Pend. Defined as the Kolmo- 
gorov distance of the following sequence 
of transfonmtions: 

I 

c ?/ 

c -ri 
PI 

- 1 -  I/ 

F’ 

,! 

where i is less than or equal to 1 2 .  This 
measure represents the consistency of the 
model’s bias. A small value means that the 
model is more adaptable to changes in the 
data’s behavior, and hence it could achieve 
a better performance. 

4. Noise. Defined as 

4 
where 1; is the predicted failure rate 1 /(Ti). 
Again, sinal1 values represent less noise in 
the model’s prediction behavior, indicat- 
ing more smoothness. A noise measure of 
m indicates that the model has predicted a 
zero failure rate. 

+ Ease of measuTYng parameten. This 
criterion concerns the number of parame- 

ters a model requires and the difficulty in 
estimating them. Easily measured param- 
eters not only reduce measurement cost 
but also tend to help reliability engineers 
successfully interpret the model’s physical 
significance, which can provide feedback 
to software development. 

+ Quality OfaJsmnptiOnr. The assump- 
tions a model is based on should he as close 
to real project testing and operation as 
possible. If the assumption is testable, it 
should be supported by data to validate it. 
If it is not testable, it should be examined 
for logical consistency. 

+ Cupabiliq. This criterion refers to 
the model’s ability to estimate reliability- 
related quantities for software systems, in- 
cluding present reliability, expected date 
of reaching a reliability objective, and cost 
required to reach that objective. 

+ Applicahi/iy. Applicability refers to 
the usefulness of the model in different 
development environments, operational 
environments, and life-cycle phases. It 
should be evaluated in different size, struc- 
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Measure JM GO MO DU LM 1v EL( ULC MLC DLC 

Accuracy -811.1 

Bias .0835 

Trend .062 3 

Noise 5.384 

(4) 

(8) 

(7) 

(9) 
Rank (6) 

-811.2 

.0761 

.0663 

5.209 

(7) 

(6) 

(9) 

(8) 
(8) 

-811.1 
(4) 

(1) 

( 5 )  

(9 
(4) 

.0586 

.0487 

4.088 

-812.7 
(9) 

-.O 845 
(9) 

.0630 
(8) 

3.714 
(2) 
(6) 

-810.8 
(2) 

(3) 

(3) 

(6) 

.OS94 

.0474 

4.196 

(3) 

-811.1 
(4) 

.OS86 
(1) 

.0480 
(4) 

4.073 
(4) 
(2) 

turd, functional, and application domains. 
+ Simplicy. Simplicity is generally a de- 

sirable feature for most mathematical mod- 
els. The simpler the model, the easier it is to 
gather project#c data, select generic 
parameten fromadatabase, andundemand 
and interpret the m o d e h  results. 

+ Imm‘tizity to noise. Reliability data 
generally contains information that is ir- 
relevant to the modeling process. A model 
is appealing if it can make accurate mea- 
surements even when failure data is in- 
complete or contains uncertainties. 

After applying the seven evaluation cri- 
teria! we found that JM, GO, MO, DU, 
LM, and LV ranked high enough to war- 
rant further study. We used these six com- 
ponent models plus our four combination 
models to evaluate prediction validity. 

EVALUATING MODEL PERFORMANCE 

To assess the prediction validity of our 
combination models, we evaluated their 
performance, plus the performance of the 
six component models we selected, using 
first three data sets from John Musa’s reli- 
ability data compiled in 19806 and then 
data from recent projects at the Jet Propul- 

I E E E  S O F T W A R E  

sion Laboratory. We then evaluated the 
models in terms of all the data. 

To compare models, we first deter- 
mined each model’s rank for each mea- 
sure. We then equally weighed the ranks 
by summing them. The models with a 
lower overall sum were better than those 
with a higher sum. Of course, others 
might apply different weights to each 
measure, and there can always be a “wild” 
measure that might totally disqualify a 
model. Nevertheless, we used this simple 
ranking algorithm without expanding the 
details of each measure, since such elabo- 
rations might involve subjective judg- 
ments that could themselves be biased. 

MUW dots sets. Table I shows the results 
fi-omMusa’sdata set 3, whichcontains 207 
data points. We began predictions at data 
point 60 so that we would have a small but 
reasonable set of data points (1-59) for pa- 
rameter estimation. 

The numbers in each row represent 
the computed measure under each crite- 
rion; the ranks are in parentheses. We ar- 
rived at the values in Rank (the last row) by 
summing them. 

As the table shows, the combination 

models performed relatively well com 
pared with the six component models. W 
obtained similar results for Musa’s othe 
data sets. 

JPL doto sets. We collected failure dat 
&om recent JPL projects, which are de 
scribed in the box on the facing page. Th 
data we collected was based mainly on cal 
endar times. The following informatior 
whch would have been useful, was nc 
available because it was not routinely re 
corded: 

+ Execution times between successiv 
failures or comparable information, sucl 
as the total time spent testing during 
calendar interval. 

+ Operational profile informatioi 
(like functional area being tested), refer 
enced to requirements or design docu 
mentation, the subsystem being testec 
and the points at which the testing metha 
may have changed. 

In general, data based on calendar tim 
tends to be noisy and might not compl 
with most of the reliability models’ as 
sumptions. We present it to show circum 
stances typical of actual practice. 

Table 2 shows comparisons when w 

4;  
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Dato JM GO MO DU LM LV EL( ULC MLC DLC I 

applied the four measurements of the 
model validity criterion for the Galileo 
Command and Data Subsystem’s flight 
soha re ,  which is a representative data set  
(Results kom all the data sets would take 
too much space.) The data contains 358 
points, and the starting point is 152. As the 
table shows, the ELC and ULC models 
ranked the highest. 

colnbined data sets. Tables 3 and 4 list the 
performance comparisons for all eight 
data sets we investigated. In Table 3, we 
used the four model validity measures; in 
Table 4, we used only the accuracy mea- 
sure, since we thought it was the most im- 
portant and would give a more detailed 
breakdown of performance. 

We considered a model satisfactory if 
and only if its ranking was 4 or better. We 
arrived at the values in Handicap by sub- 

~~ -_ _ _ ~  

tracting 4 (the par rank) kom the rank of a 
model for each data set before we added 
up its rankings in the overall evaluation 
(another way is to subtract 32 from Sum of 
rank). A negative handicap means that the 
model’s overall performance was satisfac- 
tory for the eight data sets. 

These tables illustrate several impor- 

+ In general, the combination models 
perform better than the component mod- 
els. In Table 3 (all criteria), the only ac- 
ceptable models (those with a negative 
handicap) are the combination models. In 
Table 4 (accuracy criterion alone), the 
three acceptable models are also combina- 
tion models. The handicap values of the 
combination models usually beat those of 
the component models by a significant 
margin. 

+ When the predictions from GO, 

tant points: 

MO, and LV are weighted or averaged, 
the combinational models are less sensi- 
tive to potential data noise than compo- 
nent models. This is true with data based 
on both execution and calendar time. 
Across all project data for the four accu- 
racy criteria, the combination models 
sometimes outperform all their compo- 
nent models and never perform worse 
than the worst component model. 

The DLC and ELC models per- 
form more consistently than the other 
models. Most other models seem to per- 
form well for a few data sets but poorly for 
other data sets - and the fluctuation is 
significant. The  ELC model’s perfor- 
mance is due to its equal weighting, which 
preserves GO’S, MO’s, and LVs good 
properties. On the other hand, since the 
DLC model is allowed to change its 
weighting; dynamically, accordmg to the 
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outcome of the accuracy measure, it can 
consistently produce the best accuracy 
measure for almost every data set. This 
consistency suggests that if you use what- 
ever accuracy measures you deem the 
most important as the weighting criterion 
in forming the DLC model, you d get 
the best results. 

EXTENSIONS AND ALTERNATIVES 

You a n  extend or alter our basic ap- 
proach in the following ways: 

+ Extend the DLC model by increas- 
ing the size of the observation window 
&om one time frame to N time frames. 
The DLC model consistently produces 
the best accuracy measure, but with only 
one observation window, it might fail to 
note a global measurement trend. Thus, a 
natural extension is to enlarge the window. 

+ Try to apply models other than GO, 
MO, and LV as component models. If 
some models perform well in a particular 
data set, they should be the candidate 
component models to form a combination 
model. 

+ Use more than three models as com- 
ponent models. We believe that the more 
component models you apply, the better 
the prediction. However, more computa- 
tions are required, and the returns may 
diminish as more models are added. 

+ Apply alternative weighting 
schemes that are based on project criteria 
and engineering judgments. Our ap- 
proach is flexible enough that you can de- 
cide how you want to form a combination 
model. 

+ Use the combination models them- 
selves as component models to form an- 
other combination model. 

+ As the original assumptions behind 
each model become lost through the lay- 
ers of linear combinations, a distribution- 
6ee (nonparametric) modeling technique 
may emerge. 

In our investigation, the most promis- 
ing approach was to extend the DLC 
model. We considered a DLC model with 
a fixed N window, D L m ,  and a DLC 
model with a sliding Nwindow, DLUS. 
Figure 1 shows how the two models differ. 

In the DLC/F window, the weight as- 

Wit? computation wi computation wi+, computation 

wi reference i wit, reference 
window I window - - 1- t 

w , + ~  reference 
window 

c------c 

-- 
w,+i reference 

window ‘!+I 
e-- 

w, reference 
window ‘1 

--_c 

“ I  

Figure 1. (4) The DLC model with a fiyed-size obsmation window and (B) the DLC m d e l  with a 
rliding-size obsffuation window. 

signments for each model are based on 
changes in the accuracy measure over the 
last N observations. The weight assign- 
ment for each model remains fixed for the 
next Npredictions. At the end ofthat time, 
the weights are recomputed according to 
the changes in accuracy over the last N 
observations. To compute the weight of a 
component model, you fim determine the 
amount of change in component model 
A’s accuracy measure over the last Nob-  
servations. You then identify component 
model B, the component model whose ac- 
curacy measure changed the most. The 
unnormalized weight for A is simply the 
ratio of the change in its accuracy measure 
to the change in Bs accuracy measure. 

In the D L U S  model, you recompute 
the weight assignments for each model at 
each data point, using changes in the a m -  
racy measure over the last N observations 
as the basis for determining each model’s 
weight. To compute weights for compo- 
nent models, the procedure is the same as 
that in the DLC/F model. 

Figure 2 summarizes the accuracy 
measure of the D L W  and D L U S  type 
models, n o d z e d  with respect to the 
number of measured points in each data 
set before being summed up for the eight 
data sets. 

As Figure 2 shows, the D L U S  model 
is generally superior to the D L m  model. 
This result is not surprising, since DLC/S 
allows the observing window to advance 
dynamically as step-by-step prediction 

moves ahead. In general, the accuracy of 
the DLC/F model deteriorates when the 
window becomes larger. The  DLC/S 
model’s performance, on the other hand, 
improves when the window becomes 
larger, but only slightly larger. We found 
that a window size of three to four time 
fi-ames is optimal. 

Of course, the best window size de- 
pends on your development environment, 
testing scheme, and operational profile, 
but, in general, the window size should be 
fewer than five time frames, since the 
model is then able to catch fast shifts in 
model applicability among the compo- 
nent models. 

The accuracy measure in Figure 2 is 

A 

-41 0 .. -40.9 

1-408 

p -407 ‘ -40b 

-40 5 -- -404- - ~ 

0 1 2  3 4 5 6 1 8  9 IO 
No of lime frames 

~ ~~ - -  
~ 

Figure 2. Summary of the DLC/F and DLC/S 
madeh fm w r h s  up to 10 nme$ames. 
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Figure 3. Long-temnpredictrons~~3PLS. Galileo Commandand Data Sub.ystem. 

the prequential hkelhood, but other accu- 
racy measures, such as the Akaike infor- 
mation criterion - a criterion to denote 
how close a prediction is to the actual data7 
- or mean square error, are also feasible. 
The main strength of the DLC models is 
that they combine component models in a 
way that lets the output be fed back for 
model adjustment. 

The fundamental approach of the lin- 
ear combination models is simple. How- 
ever, by applylng more complicated pro- 
cedures, we risk losing the individual 

tion models performed well in making 
step-by-step predictions - in whch you 
can adjust the model’s parameters for each 
prediction - but we also wanted to deter- 
mine how they performed in making 
long-term predictions, say 20 failures 
ahead. For th~s  evaluation, we selected the 
ELC and DLC models and compared 
them with the GO, MO, and LV compo- 
nent models. Figure 3 shows the predic- 
tion curve for each model for the Galileo 
CDS data. 

We used the first 152 data points in the 
project, orup to 777 cumulative test hours 
as indicated by the dashed line, to estimate 
each model’s parameters. Immediately 
following &IS estimation stage is the pre- 
diction stage. For the W l e o  CDS, these 
two stages follow the project’s natural 
breakdown into two testing stages. 

For the DLC model, we computed 
model preferences and weights in the esti- 
mation phase, and fixed the weight assign- 
ments in the prediction phase. 

LVs prediction curve is too pessimis- 
tic, and GO’S and MO’s are too optimistic. 
In fact, all three curves for the component 
models are out of the actual project data 
curve (the line labeled Actual). ELC and 
DLC, on the other hand, compensate 
these extremes and make rather reason- 
able long-term predictions. 

To show quantitative comparisons of 
long-term predictions, we use mean 
square error instead of prequential likeli- 
hood. Prequential likelihood is more ap- 
propriate for comparing step-by-step pre- 
dictions, while the mean square error 
Drovides a more widelv understood mea- 

~ sure of the distance between actual and 
predicted values. The mean square error is 
defined as model’s assumptions about the Dhvsical 

I ,  

process. It then becomes harder to get in- 
sight into the process of reliability engi- 
neering. Most reliability models view sofi- 
ware as a black box, fiom whch to observe 
failure data and make predictions. In that 
context, our combination models do not 
degrade any properties assumed in current 
reliability-modeling practices. 

LONG-TERM PREDICTIONS 

Our results showed that the combina- 

A I S E =  N 

where N is the total number of p ree t ed  
points in the prediction phase, and yl  and 
yI  are the predicted and actual number of 
failures, respectively. 

Table 5 shows the summary of long- 
term predictions. The values under Sum 
of MSEs and Sum of ranks show that the 
ELC and DLC models generally perform 
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better th;m component models. Even 
though the component models make a 
better prediction than the ELC and DLC 
models on several occasions, they also per- 
form signiticantly worse on others. The 
ELC ancl DLC models, on the other 
hand, never make the worst long-term 
predictions. 

AUTOMATING RELIABILITY MEASUREMENT 

Selecting component models to form 
combination models can be tedious and 
computation intensive. We are in Phase 1 
of a three-phase effort to develop a tool, 
called Computer-Aided Software Reli- 
ability Estimation, whch will automate 
most reliability-measurement tasks. 

Figure 4 shows CASRE’s archtecture. 
You can find many of its functions in cur- 
rent reliability-measurement tools, but no 
other tool lets you combine the results of 
several models in addition to executing 
one model. Feedback from model evalua- 
tion helps you identify a model or combi- 
nation of models best suited to the failure 
data being analyzed. Also, CASRE’s U 0  
facility, the user interface, and the mea- 
surement procedures are greatly enhanced 
over those in existing tools. 

Figures 5 and 6, two screen dumps from 
CASRE, show that you have many choices 
of mtdels and evaluation criteria, yet the se- 
lection operation remains fairly simple. 

CASRE’s major functions are 
+ Dam modificRti0n. CASE lets you 

create new failure-data files, modify exist- 
ing files, and perform global operations on 
files. You can also select appropriate 
s m o o h g  techques or apply data trans- 
fonnations to the failure data being ana- 
lyzed. You can plot the modified input 
data, use it as input to a reliability model, 
or write it to a new file for later use. 

+ Failure-data ana&. You can display 
the fdure data’s summary statistics, includ- 
ing the data’s mean, median, and variance 
and 2 5 -  and 7s-percentile cutofk. 

+ Motkling and meamrement. CASRE 
has two modeling functions: As Figure 4 
shows, you can execute either single compo- 
nent models on a data set or several models 
and combine their results. Through model 
evaluation, you can detennine how well a 
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Figure 4. A-lrchiterture Of‘CASRE, a tool to autmate the selection ofcomponent models to fmnt il iombindon 
model. PL ispreque??tial likelihood; AIC i.s Akaike Infirmation Criterion. 
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Figure F. CASRElr initial display offailure data 
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Figclre 6. Selecting the best models wrth CASRE. To specifi the m t m a  ly which you willpdge a model to be 
the best, mow the slide bars on the Selection Cnterra panel ( h e r  nght comer) to  set the relative weights of 
four mteria. 
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model applies to the data. 
+ Reszllts dqlay. C A S E  graphically 

displays model results of interfailure 
times, cumulative failures, failure intensi- 
ties, and the reliability-growth curve. You 
can plot both actual and estimated quanti- 
ties on the same figure. Plots also include 
user-specified confidence limits and con- 
trol over the plotted range of data. 

In a windowing environment, you can 
displaymultiple plots. You canthen either 
print the plots, save them as a disk file, or 
feed them to other software, such as a 
spreadsheet. The plotting function also 
produces graphics from the model 
evaluation’s output, whch indicate the de- 
gree and direction of model bias and the 
way in whch the bias changes over time. 

e combination models we have pro- T“ posed show promising results com- 
pared with traditional single models. Our 
approach is also flexible, letting you select 
models that best suit the failure data. 
C A S E  automates significant portions of 
the work, making software-reliability 
measurement even simpler. For instance, 
CASRE will let users run the combination 
models we have described just by selecting 
them from a menu. 

Users can also form their own combi- 
nation models, save them as part of the 
tool’s configuration, and run them in cur- 
rent or subsequent sessions. 

We recognize that much more work 
needs to be done to gain confidence that 
the combination models consistently out- 
perform component models. We urge you 
to apply different data sets to these models 
and to compare resulting predictions 
across a variety of projects. 

We have not addressed how models 
can more accurately describe software de- 
velopment and testing, although we real- 
ize that this area is of increasing concem. 
Because the detailed information we 
would require for such an investigation is 
not available, we decided OUT work was 
better confined to evaluating how to use 
existing models more effectively. 

We hope someday to address how to 
develop models that can more accurately 
describe software development. + 

__ 
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