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ore than 40
software-reliability models have been

® Combining the

. N L created since the first one appeared in
results Of individual 1972." As new projects arose, new reliabil-
wmodels m ay gl”() e ity models were created to suit them. Now

ability models, none of which work opti-
mally across projects.

Consequently, a major difficulty in
software measurement is analyzing the
context in which measurement is to take
place to determine beforehand which

more accurate
predictions than

using component

models 4107’16’, model is likely to be trustworthy. Because
. software development and operation in-
provldmg a gene ral volve many intricate human activities and |

veliability method

— if not impossible. Also, project data
varies considerably and often does not
comply with a models underlying as-
sumptons.

Thus, practitioners have no reliable

across projects.
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software engineers have a plethora of reli-

because software failure patterns are un- |
certain, such determinations are difficult |

way of knowing in advance which model
is likely to produce the most trustworthy
predictions.

Instead of developing more detailed —
and potentially more complicated —models,
we chose to focus on using existing models |
more effectively. To this end, we have devel- |
oped a set of linear combination models that
combine the results of single, or component,
models. As measured by statistical methods
for determining a model’s applicability toaset
of failure data, a combination mode] tends to
have more accurate short-term and long-
term predictions than a component model.

After evaluating these models using
both historical data sets and data from re-
cent Jet Propulsion Laboratory projects,
we have found that they are consistently
satisfactory. To make it easier to apply re-
liability models and to form combination
models, we are developing a tool to auto- |
mate many reliability-measurement tasks.
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: WELL-KNOWN RELIABILITY MODELS

The traditional software-re-  rameter-estimation procedures.
liability model is a set of tech- It is available free from William
niques that apply probability Farr, Naval Surface Warfare
theory and statistical analysisto ~ Center, Code K-52, Dahlgren,
software reliability. A reliability VA 22448. SRMP is the only
model specifies the general tool that offers methods to ana-
form of the dependence of the  lyze prediction quality. It pro-
failure process on the principal  vides users with graphics (like #-
factors that affect it: fanltintro- - plots and y-plots) and statistics
duction, fault manifestation, (like prequential likelihood fig-
failure detection and recovery, ~ ures) that help detect the bias
fault removal, and operational  and noise of the prediction er-

environment. The primary rors made by each model it im-
goal of these modelsistoassess plements. SRMP is available
current reliability and forecast  from Reliability and Statistical
future reliability. Consultants, 5 Jocelyn Rd.,
We believe the component  Richmond, Surrey TW9 2TJ
models from two reliability- UK
measurement tools — Statisti- The models these tools
cal Modeling and Estimation of ~ offer are
Reliability Functions for Soft- ¢ jelinski-Moranda (JM):
ware and Software Reliability One of the earliest models, it as-
Modeling Programs —are the .~ sumes failures occur purely ran-
most frequently used. domly and that all faults con-
SMERFS is the only tool tribute an equally to total
that allows multiple ime-do- ~ unreliability. When a failure oc-

main and interval-domain pa-

curs, it assumes that the fix is

perfect; thus, the program’s fail-
ure rate improves by the same
amount at each fix. (Z. Jelinski
and P. Moranda, “Software Re-
liability Research,” in Statistical
Computer Performance Evalua-
tion, W. Freiberger, Acadernic
Press, New York, 1972, pp.
465-484.) — SMERFS, SRMP

¢ Bayesian Jelinski-Moranda
(BJM): Essentially the same as
JM, this model uses a Bayesian
inference scheme rather than
maximum likelihood. (A.
Abdel-Ghaly, P. Chan, and B.
Litdewood, “Evaluation of
Competing Software Reliabil-
ity Predictions,” IEEE Trans.
Software Engineering, Sept.
1986, pp. 950-967.)
— SMERFS

& Schneidewind (SM): Sim-
ilar to JM, this model’s philoso-
phy is that the error-detection
process changes as testing pro-
gresses and that recent error

than earlier counts in predict-
ing future counts, (N.
Schneidewind, “Analysis of
Error Processes in Computer
Software,” SigPlan Notice, June
1975, pp. 337-346.)
— SMERFS

¢ Geometric (GM): A varia-
tion of JM, this model does not
assume a fixed, finite number of
program errors, nor does it as-
sume that errors are equally
likely to occur. (P. Moranda,
“Event-Altered Rate Models
for General Reliability Analy-
sis,” IEEE Trans. Reliability,
Dec. 1979, pp. 376-381.)
— SMERFS

¢ Generalized Poisson (PM):
Similar to JM, except within
the error-count framework. (R.
Schafer et al., “Validation of
Software Reliability Models,”
"Tech. Report RADC-TR-79-
147, Rome Air Development
Ctr., Rome, N.Y,, 1979.)
— SMERFS

counts are usually more useful

MODELING STRATEGY

To create a combination model for im- |

proving reliability measurement, we rec-
ommend the following procedure:

1. Idendfy a basic set of models (the
component models). If you know the proj-
ect testing environments, select models
whose assumptions are closest to the real
environments.

2. Select models whose prediction
biases tend to cancel out. A prediction bias
is either pessimistic or optimistic.

3. Separately apply each component
model to the failure data.

4. Apply certain criteria to weigh the
selected component models and form one
or more linear combination models for
final predictions. The weights can be ei-
ther static or dynamic.

In general, thisapproach isexpressed as
a mixed distribution:

i
fin=3 of fo
/=1
where 7 is the number of models, ﬁf(t) is
the predictive probability density function
of the jth component model, given that
you have made i — 1 observations of imes
between successive failures, and

> =1

i
for all 5s.

The linear combination model tends
to preserve the features inherited from its
component models. Also, because each
component model performs reliability

calculations independently, the combina- |
tion model remains fairly simple. The |

component models are plugged into the
combinatdon model only at the last stage
for final predictions.

Selecting appropriate component
models is, of course, important to the suc-
cess of the combination model. The pa-
rameter-estimation method you select to
implement the component models may,
to a certain extent, affect the combination
model’s predicton validity. We recom-
mend using component models from two
reliability-measurement tools: Statistical
Modeling and Estimation of Reliability
Functions for Software and Software Reli-
ability Modeling Programs. Contacts for
acquiring these tools and the reliability
models they include are given in the boxes
above and on the facing page.

We felt that the GO, MO, and IV

component models of these tools were the

best candidates for our linear combination |
models. We selected them because in our
recent investigations, we found that their
predictions were valid.? Other practition-
ers have also found that they perform well,
and they are widely used.’ Another reason
is that they represent different model cat-
egories. GO, which is similar to JM and
SM, represents the exponential-shape
NIIPP model, MO represents the loga-
rithmic-shape NHPP model, and LV rep-
resents the inverse-polynomial-shape

- Bayesian model. Finally, at least with the

data set we analyzed, the biases of these

i models tend to cancel out. GO tends to be

optimistic, LV tends to be pessimistic, and
MO might go either way.

COMBINATION MODELS

From the GO, MO, and LV compo-
nent models, we formed four combination |
models. The goal of each is to reduce the
risk of relying on a specific model, which
may produce grossly inaccurate predic-
dons, while retaining much of the simplic-
ity of using the component models:

& Equally Weighted Linear Combination.
"This model is the simplest combination to
form. Each component model has a con-

a4
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+ Goel-Okumoto (GO): Sim-
ilar to JM, except it assumes the
failure rate improves continu-
ously in time. (A. Goel and K.
Okumoto, “Time-Dependent
Error-Detection Rate Model
for Software Reliability and
Other Performance Measures,”
IEEE Trans. Reliability, Aug.
1979, pp. 206-211.)

— SMERFS, SRMP

& Musa-Okumoto (MO):
Similar to GO, except it at-
| temnpts to consider that later
fixes have less effect on pro-
gram reliability than earlier
ones. (J. Musa and K.
Okumoto, “A Logarithmic

they become familiar with the

when fixes take place. (D.
software at thestartof testing. ~ Miller, “Exponential Order Sta-
(S. Yamada, M. Ohba, and S. tistic Models of Software Reli-
Osaki, “S-Shaped Reliability ability Growth, IEEE Tians.
Growth Modeling for Software ~ Soffware Eng., Jan. 1986,

Error Detection,” IEEE Trans.  pp. 12-24.)— SRMP
Reliability, Dec. 1983, pp. 475- o Littlewood-Verrall (LV):
478.)— SMERFS Lets the size of failure-rate im-
¢ Littlewood (LM): Similar ~ provement at a fix vary ran-
to JM, except it assumes that domly, representing the uncer-
different faults have different tainty about fault size and the
sizes (contribute unequally to efficacy of the fix. (B. Little-
unreliability), which ismorere-  wood and J. Verrall, “A Bayes-
alistic. Larger faultstendtobe  ian Reliability Growth Model
removed earlier, causing a “law  for Computer Software,” 7.
of diminishing returns” in de- Royal Statistics Soc. C, Vol. 22,

bugging. (B. Littlewood, “Sto-
chastic Reliability Growth: A

pp. 332-346.) — SMERFS,
SRMP

¢ Brooks and Motley (BM):
The BM binomial and Poisson
models attempt to consider
that notall of a program is
tested equally during a testing
period and that only some por-
tions of the program may be
available for testing during its de-
velopment. (W. Brooksand R.
Motey, Analysis of Discrete
Software Reliability Models,
"Tech. Report RADC-TR-80-84,
Rome Air Development Ctr,
Rome, N.Y,, 1980.) — SMERFS

& Duane (DU): Developed
for hardware burn-in testing, in
which defective system compo-
nents are detected and replaced

Poisson Execution Time Model for Fault Removal in & Kedller-Littlewood (KL): in the early days of use. Once
Model for Software Reliability ~ Computer Programs and Hard-  Similar to theIV model buthas  again, the model assumes that
Measurement,” Proc. Int’l Conf.  ware Designs, ” IEEE Trans. a different mathematical form for ~ the failure rate changes contin-
Software Eng.,JEEE CS Press,  Reliability, Oct. 1981,pp. 313~ reliability growth. (P. Keiller et uously in time. (L. Crow, “Con-
Los Alamitos, Calif, 1984 pp.  320.)— SRMP al,, “Comparison of Software Re-  fidence Interval Procedures for
230-238.)— SMERFS, SRMP & Littlewood Nonbomoge- liability Predictions,” Proc. IEFE  Reliability Growth Analysis,”

& Yamada Delayed S-Shape  neous Poisson Process (LNHPP):  Int Symp. Faule-Tolerant Comput-  Tech. Report 197, US Army
(YM): Similar to GO, exceptit  Similar to LM but assumes a ing, IEEE CS Press, Los Al- Moateriel Systems Analysis Ac-
accounts for the learning pe- continuous change in failure amnitos, Calif,, 1983, pp. 128 tivity, Aberdeen, Md., 1977.)
riod that testers go throughas ~  rate, rather than discrete jumps,  134.)— SRMP — SMERFS, SRMP

stant, equal weight. The arithmedc aver- ULC = %O + %M + % p quantitatively define it; other measures

age of all component models’ predictions
is taken as the EL.C model predicton

ELC = %GO + %MO + %LV

These weightings remain constant and
unchanged throughout the modeling pro-
cess. This model follows a strategy similar
to that of a Delphi survey, in which au-
thorites working independently are asked
for an opinion on a subject, and an average
of the results is taken.

& Median-Oriented Linear Combination.
The MLC model does not rely on the arith-
metic mean for prediction as in ELC. In-
stead, it selects the component model whose
predicted value lies between optimistic and
pessimistic values. The justification for this
approach is that the median might be more
moderate than the mean in some cases, since
it can better tolerate an erroneous predicion
that is far away from the others.

tion. The ULC model is similar to the MLC
model except that optimistic and pessimistic
predictions contribute to the final predic-
tion. The prediction isnotdetermined solely
by the median value. Here we use

weightings similar to those in the Program

Evaluation and Review Technique:

where O represents an optimistic predic-
don, P, a pessimistic prediction, and M,
the median prediction.

& Dynamically Weighted Linear Combi-
nation. In the DLC model, we assume that
the applicability of any individual model to
the project data may change as testing pro-
gresses and therefore that the component
models” weights will change according to
changes in a model’s applicability. Here,
we use changes in prequential likelihood
— ameasure that denotes a model’s accu-
mulated accuracy — to assign weights to
the component models, which could be
taken over a few or many time frames. As a
baseline, we formed the simplest DLC
model by choosing an observation win-
dow of one time frame before each predic-
ton as the reference in assigning weights.

. SELECTING MODELS FOR COMPARISON
& Unequally Weighted Linear Combina- |

"To compare the combinaton models’
performance, we selected a subset of the
component models in SMERFS and
SRMP that ranked the highest in the fol-
lowing criteria:

& Model validity. We viewed this crite-

tend to be more subjective. We adopted
four measures to rate model validity:*

1. Accuracy. We defined accuracy as
the prequential likelihood measure, in
which the observed data is a sequence of
times between successive failures, denoted
by t1, 12, ... t;i-1. The objective is to use
the data to predict the future unobserved
T,— arandom variable to denote the ime
to the ith failure. Our goal is to geta good
estimate of F(t), which is the probability
that 7; is less than a specific time value .
We assume that the predictive distribu-
tion F{t) for T;based on t1, 1, ... £;_y will
have a probability density function of

A d n
ff”) T odr 11(7)

For such one-step-ahead predictions

of Ty, . T, the prequential likelihood is
/'\“ll
PL, =[] fii
=+l

Since this measure is usually very close
to zero, we take its logarithmic value for
comparison. The resuling number is al-
ways negative. (Given several models that
use the same data set, the model with the

. largest value gives the most accurate pre-
© rion as the most important because we can

diction.
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Voyager. The Voyager 1 and
2 spacecraft were developed
during the mid-1970s and
launched in mid-1977. Both
spacecraft flew past Jupiter and
Saturn. Voyager 2 continued
exploring the outer solar sys-
tem by flying past Uranus in
1986 and Neptune in 1989.

The Voyagers were one of
the first spacecraft in which
software provided a large part
of the functonality. This soft-
ware, approximately 14,000
lines of uncommented assem-
bly language, was divided
among three real-time em-
bedded subsystems — the
Attitude and Articulation
Control Subsystem, the
Command and Control Sub-
system, and the Flight Data
Subsystem.

The failure data we ana-
lyzed comes from spacecraft-
system testing, at which point
the AACS, CCS, and FDS had
been integrated into the space-
craft. Among the items re-
corded on the problem/failure
reports during system test are

time of failure, failure type, and

RECENT PROJECTS FROM THE JET PROPULSION LABORATORY

subsystem in which the failure
occurred. Roughly 9.5 faults

per thousand lines of code were

was nearly constant throughout
the two testing stages. In addi-
tion, the main functional areas

discovered during systemtest.  of the software received

Galileo. Launched in 1989, roughly the same amount of
Galileo was developed as a testing every calendar week.
Jupiter orbiter carrying an at- Thisinformation made the
mospheric probe. As with the failure data more accurate than
Voyagers, a large fraction of that for other projects. About
Galileo’s functionality was pro- 15,000 source lines of assembly
vided by software. Galileo con-  language were developed for the
tains an AACS and a Com- CDS. During integration testing,
mand and Data Subsystem. roughly 10.1 faults per thousand
Approximately 7,000 un- lines of code were discovered.
commented source lines of Magellon. A large portion of
HAL/S were implemented for the on-board software for the
the AACS. As with the Voyagers, Magellan Venus radar mapper
the failure data comes from is derived from Galileo’s soft-
spacecraft-system testing. Anesti-  ware. Like Galileo, Magellan
mated 10.2 faults per thousand has an AACS and a CDS — the
lines of code were detected. number of uncommented

Galileo (DS, Failuredatafor ~ source lines of code for each is
the Galileo Command and roughly the same as that for
Data Subsystem during one Galileo. As with Galileo and the
phase of subsystem-levelinte- ~ Voyagers, the failure data comes
gration testing was available for  from the spacecraft-system test
analysis. Because one of ushad  period. An estimated 8.0 faults
been involved in this testing ef-  per thousand lines of code were
fort, we could reconstructsome  detected during testing.
elements of the testing profile. Alaska SAR. The Alaska Syn-

For example, we knew that  thetic Aperture Radar facility,
the hours of testing per week installed on the Fairbanks cam-

pus of the University of Alaska,
is a facility for tracking and ac-
quiring data from Earth re-
sources satellites in high-incli-
nation orbits. Totaling about
103,000 uncommented source
lines of code, the software is
written in a mixture of C, For-
tran, Equel, and OSL. About
14,000 lines were reused from
previous efforts. We obtained
the failure data presented here
from the development organi-
zation’s anomaly reporting
system during software integra-
tion and test.

As with the other projects,
we assume the test time per unit
interval of calendar time was
relatively constant, and the test-
ing method remained constant,
since this information was not
systematically recorded.
Largely because of this lack of
information, we decided to
model the reliability of the facil-
ity as a whole, rather than at-
tempt to model the component
reliabilities. For the part of sys-
tem testing that we analyzed,
about 3.6 faults per thousand
lines of code were discovered.

2. Bias. This

measure

is the

ters 2 model requires and the difficulty in

Kolmogorov distance — the maximum
absolute vertical deviation — between the
perfect prediction line of slope 1 and a plot
of the following transformadon:
A
up=Ftp

which is the probability integral ransform
of the observed #; using the previously
calculated predictor F; based on
ty, ...
that the model tends to be optmistic; a
negative one means the model tends to
be pessimistic. To derive this measure, we
examine #s in the u-plot (Sarah
Brocklehurstand Bev Littlewood describe
the #-ploton p. 36) to see whether they are
above (optimistic) or below (pessimistic)
the line of unitslope through the origin. In
any case, the smaller the number’s abso-
lute value, the less the model is biased in
either direcdon.

3. Trend. Defined as the Kolmo-
gorov distance of the following sequence
of transformations:

t;.1. A positive number means

x; = =In(1 —up

i
2
Fl
Yi= o
DI
=l
where 7 is less than or equal to n. This
measure represents the consistency of the
model’s bias. A small value means that the
model is more adaptable to changes in the
data’s behavior, and hence it could achieve
a better performance.
4. Noise. Defined as
y i T
-

ricl

where 7; is the predicted failure rate 1/(T)).

Again, small values represent less noise in
the model’s prediction behavior, indicat-
ing more smoothness. A noise measure of
oo indicates that the model has predicted a
zero failure rate.

¢ Ease of measuring parameters. This
criterion concerns the number of parame-

estimating them. Easily measured param-
eters not only reduce measurement cost
but also tend to help reliability engineers
successfully interpret the model’s physical
significance, which can provide feedback
to software development.

& Quality of assumptions. The assump-
tions a model is based on should be as close
to real project testing and operation as
possible. If the assumption is testable, it
should be supported by data to validate it.
If it is not testable, it should be examined
for logical consistency.

& Capabiliry. This criterion refers to
the model’s ability to estdmate reliability-
related quantides for software systems, in-
cluding present reliability, expected date

~ of reaching a reliability objective, and cost

required to reach that objective.

& Applicability. Applicability refers to
the usefulness of the model in different
development environments, operational
environments, and life-cycle phases. It
should be evaluated in different size, struc-
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TABLE 1
MODEL COMPARISONS FOR MUSA DATA SET 3

Measure M ] MO DU M v ELC uLc MLC DLC
Accuracy  -811.1  -8112  -8ILI  -8143 8113  -8127 -8108  -810.8 8111  -809.1
@ % @ (10) ® ® @ @ @ M
Bias 0835 0761 0586 0994 0829  -0845 0640 0594 0586  .0649
® (6) ® (10) )] ©® @ 3 ey ®)
Trend 0623 0663 0487 0740 0602 0630 0467 0474 0480 0462
Q)] ® ® (10) © ® @ 3) @ @
Noise 5384 5200 4088 2426 6002 3714 4224 4196 4073 3.901
® ® ) M (10 @ 9 © @ €)
Rank © ® @ ® &) © @ 3 @ )

TABLE 2
MODEL COMPARISONS FOR THE GALILEO CDS SUBSYSTEM

P i _ o

‘ Measure M 60 MO DU M v ELC ULC MLC DLC
Accuracy 6430 6393 <6811 7285 6430 6123 6187 6269 6811 606
i ' ©) ) ®) (10) ©) Q) 3 ) ®) i
. Bias 1783 1783 1700 1748 A78%  -2581 1732 1599 1700 1845
“ (6) (6) ) %) ®) (10 “ (1 (@] .
| “Trend 3450 3408 4262 4282 3450 2426 2855 3072 4261 2618
) () ©) (10) (6) (1 ) “ ® &)
| Noise 4042 3.908 2.673 2.287 4,042 2564 2.853 2958 2.672 11.19
! @) %) ) ) @) @ (5) () 3) (10)
Rk T TTT® @@ ®) o m W e )

tural, functional, and application domains.

& Simplicity. Simplicity is generally a de-
sirable feature for most mathematical mod-
els. The simpler the model, the easier itis to
gather project-specific data, select generic
parameters from a database, and understand
and interpret the modeling results.

+ Insensitivity to noise. Reliability data
generally contains information that is ir-
relevant to the modeling process. A model
is appealing if it can make accurate mea-
surements even when failure data is in-
complete or contains uncertainties.

After applying the seven evaluation cri-
teria,? we found that JM, GO, MO, DU,
LM, and LV ranked high enough to war-
rant further study. We used these six com-
ponent models plus our four combination
models to evaluate prediction validity.

EVALUATING MODEL PERFORMANCE

To assess the prediction validity of our
combination models, we evaluated their
performance, plus the performance of the
six component models we selected, using
first three data sets from John Musa’s reli-
ability data compiled in 1980° and then
data from recent projectsat the Jet Propul-

sion Laboratory. We then evaluated the
models in terms of all the data.

To compare models, we first deter-
mined each model’s rank for each mea-
sure. We then equally weighed the ranks
by summing them. The models with a
lower overall sum were better than those
with a higher sum. Of course, others
might apply different weights to each
measure, and there can always be a “wild”
measure that might totally disqualify a
model. Nevertheless, we used this simple
ranking algorithm without expanding the
details of each measure, since such elabo-
rations might involve subjective judg-
ments that could themselves be biased.

Musa data sets. Table [ shows the results
from Musa’s data set 3, which contains 207
data points. We began predictions at data
point 60 so that we would have a small but
reasonable set of data points (1-59) for pa-
rameter estimation.

The numbers in each row represent
the computed measure under each crite-
rion; the ranks are in parentheses. We ar-
rived at the values in Rank (the last row) by
summing them.

As the table shows, the combination

models performed relatively well com-
pared with the six component models. We
obtained similar results for Musa’s other
data sets.

JPL data sets. We collected failure data
from recent JPL projects, which are de-
scribed in the box on the facing page. The
data we collected was based mainly on cal-
endar times. The following information,
which would have been useful, was not
available because it was not routinely re-
corded:

¢ Execution times between successive
failures or comparable information, such
as the total time spent testing during a
calendar interval.

¢ Operational profile information
(like functional area being tested), refer-
enced to requirements or design docu-
mentation, the subsystem being tested,
and the pointsat which the testing method
may have changed.

In general, data based on calendar time
tends to be noisy and might not comply
with most of the reliability models’ as-
sumptions. We present it to show circum-
stances typical of actual practice.

Table 2 shows comparisons when we

IEEE SOFTWARE
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TABLE 3

SUMMARY OF MOGDEL RANKING FOR EACH DATA SET USING ALL FOUR VALIDITY MEASURES

Dofa M 60 MO DU M v ELC uLc MLC DLC
Musa data set 1 10) ©) o) ©) ® © @ @ 3) ®
Musa data set 2 ® (10) ©) @) ®) (1 @ O @ @
Musa data set 3 ©) ® @ © ©) (© @ ?) @ M
Voyager 10 M © @ ) @ @ ® ®) M
Galileo ®) @ (10) ©) ® @ M ©) ® @
Galileo CDS ® ©) © ® 0 M ) M @ ®
Magellan ® ©) ® () ® (10) M ® @ &)
Alaska SAR ® ®) M ® € (10) ® ™ A Q)
Sum of rank 54 57 42 53 65 40 25 30 31 25
Handicap +22 +25 +10 +21 +33 +8 -7 -2 -1 -7
Total rank ® O © ™ 10) ® M ® @ Q)

TABLE 4
SUMMARY OF MODEL RANKING FOR EACH DATA SET USING ACCURACY MEASURE ONLY

Date M 60
Musa data set 1 (10) (9
Musa data set 2 (7) (C)
Musa data set 3 (€5 @)
Vovager (1) 7
Cialileo (3) 7
Calileo CDS (6) ()
Magellan (6) (6)
Alaska SAR 2) (6)
Sumofrank 50 56
I landicap s +24
Clowlrank @ )

applied the four measurements of the
model validity criterion for the Galileo
Command and Data Subsystem’s flight
software, which is a representative data set.
(Results from all the data sets would take
too much space.) The data contains 358
points, and the starting pointis 152. As the
table shows, the ELC and ULC models
ranked the highest.

Combined data sets. Tables 3 and 4 list the
performance comparisons for all eight
data sets we investigated. In Table 3, we
used the four model validity measures; in
Table 4, we used only the accuracy mea-
sure, since we thought it was the most im-
portant and would give a more detailed
breakdown of performance.

We considered a model satisfactory if
and only if its ranking was 4 or better. We
arrived at the values in Handicap by sub-

MO DU M v ELC UiC MLC DLC
2) ¥ ©) @) &) # 3 n
@ (10) %) M ) * () &
C)) (10 8) ) ) (2) -h (1)
(6) (8 ) ) 3 (C)] ™ (N
) (10) (€] (G @ (3 ®) ()
®) (10) 6) ) 3) “h ) (M
() ) (6) 5 3 C)] (6) (hH
@ (10) 2) )] )] N 2) (h
Y 68 49 39 0 32 39 9
9 836 17 +7 22 0 7
) 3y @ )

© any O

tracting 4 (the par rank) from the rank of a
model for each data set before we added
up its rankings in the overall evaluation
(another way is to subtract 32 from Sum of
rank). A negative handicap means that the
model’s overall performance was satisfac-
tory for the eight data sets.

These tables illustrate several impor-
tant points:

¢ In general, the combination models
perform better than the component mod-
els. In Table 3 (all criteria), the only ac-
ceptable models (those with a negative
handicap) are the combination models. In
Table 4 (accuracy criterion alone), the
three acceptable models are also combina-
tion models. The handicap values of the
combination models usually beat those of
the component models by a significant
margin.

¢ When the predictions from GO,

MO, and LV are weighted or averaged,
the combinational models are less sensi-
tive to potential data noise than compo-
nent models. This is true with data based
on both execution and calendar time.
Across all project data for the four accu-
racy criteria, the combination models
sometimes outperform all their compo-
nent models and never perform worse
than the worst component model.

® The DLC and ELC models per-
form more consistently than the other
models. Most other models seem to per-
form well for a few data sets but poorly for
other data sets — and the fluctuation is
significant. The ELC model’s perfor-
mance is due to its equal weighting, which
preserves GO’s, MO’s, and LV’s good
properties. On the other hand, since the
DLC model is allowed to change its
weightings dynamically, according to the
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outcome of the accuracy measure, it can
consistently produce the best accuracy
measure for almost every data set. This
consistency suggests that if you use what-
ever accuracy measures you deem the
most important as the weighting criterion
in forming the DLC model, you will get
the best results.

EXTENSIONS AND ALTERNATIVES

You can extend or alter our basic ap-
proach in the following ways:

¢ Extend the DLC model by increas-
ing the size of the observation window
from one time frame to N time frames.
The DLC model consistently produces
the best accuracy measure, but with only
one observation window, it might fail to
note a global measurement trend. Thus, a
natural extension is to enlarge the window.

¢ Tiy to apply models other than GO,
MO, and LV as component models. If
some models perform well in a particular
data set, they should be the candidate
component models to form a combination
model.

¢ Use more than three models as com-
ponent models. We believe that the more
component models you apply, the better
the prediction. However, more computa-
tons are required, and the returns may
diminish as more models are added.

¢ Apply alternative weighting
schemes that are based on project criteria
and engineering judgments. Our ap-
proach is flexible enough that you can de-
cide how you want to form a combination
model.

¢ Use the combination models them-
selves as component models to form an-
other combination model.

¢ As the original assumptions behind
each model become lost through the lay-
ers of linear combinations, a distribution-
free (nonparametric) modeling technique
may emerge.

In our investigation, the most promis-
ing approach was to extend the DLC
model. We considered a DLC model with
a fixed N window, DLC/F, and a DLC
model with a sliding N window, DLC/S.
Figure 1 shows how the two models differ.

In the DLC/F window, the weight as-

w, computation ., ; computation W, , omputation
wreforence | wreference | w,,reference "
window | window | window !

o -
l !
. I BN B B |
Time
(A)
W, fe(erence ‘
window 142
w. , reference
1 L
" Window wf“‘;
w, reference .
window i :
P l
- 1 * b
L »
Time
(B)

Figure 1. (4) The DLC model with a fixed-size
shiding-size observation window.

signments for each model are based on
changes in the accuracy measure over the
last N observations. The weight assign-
ment for each model remains fixed for the
next N predictions. At the end of that time,
the weights are recomputed according to
the changes in accuracy over the last N
observadons. To compute the weight of a
component model, you first determine the
amount of change in component model
A’s accuracy measure over the last N ob-
servatons. You then identify component
model B, the component model whose ac-
curacy measure changed the most. The
unnormalized weight for A is simply the
ratio of the change in its accuracy measure
to the change in B’s accuracy measure.

In the DLC/S model, you recompute
the weight assignments for each model at
each data point, using changes in the accu-
racy measure over the last N observations
as the basis for determining each model’s
weight. To compute weights for compo-
nent models, the procedure is the same as
thatin the DLC/F model.

Figure 2 summarizes the accuracy
measure of the DLC/F and DLC/S type
models, normalized with respect to the
number of measured points in each data
set before being summed up for the eight
data sets.

As Figure 2 shows, the DLC/S model
is generally superior to the DLC/F model.
This result is not surprising, since DLC/S
allows the observing window to advance
dynamically as step-by-step prediction

observation window and (B) the DLC model with a

| moves ahead. In general, the accuracy of
the DLC/F model deteriorates when the
window becomes larger. The DLC/S
model’s performance, on the other hand,
improves when the window becomes
larger, but only slightly larger. We found
that a window size of three to four time
frames is optimal.

Of course, the best window size de-
pends on your development environment,
testing scheme, and operational profile,
but, in general, the window size should be
fewer than five time frames, since the
model is then able to catch fast shifts in
model applicability among the compo-
nent models.

The accuracy measure in Figure 2 is

DLC/F
-410

-40.9
-408:

407 o

uracy measure

A
&
=S

405

4 e

01234567 81910
No. of fime frames

e —

Figure 2. Summary of the DLC/F and DLC/S
models for windows up to 10 time frames.
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TABLE 5
SUMMARY OF MODEL RANKING FOR LONG-TERM PREDICTIONS

USING MEAN SQUARE ERROR

Data 60 MO v ELC DLC
Musa data set 1 2,117:(5) - 6874 (&)  567.7(3) - 2667(Q2)  169.7(1)
Musa data set 2 L4SSG)  LLE 24610 93050 95T0) | well in making
Musa data set 3 48002y  2532(1)  2,067(5) ' 745.5() . T198(% step-by-step predictions — in which you
Voyager 1,089 4  7829(2) 5,283(5 130.1(1)  876.7(3) can adjust the model’s parameters for each
Galileo 4368(4)  4370(5) 5393(L)  217103)  1,791(Q2) prediction — but we also wanted to deter-
Galileo CDS 4726)  30736)  4318()  1322) 1,141y | | mine how they performed in making
ong-term predictions, sa u
Magellan 347 3248()  2195(1)  1684G)  1354Q) || pooq g b evaluation, e selected the
Alaska SAR 6022(3)  6012(1) 10445(5) 6844(4) 60.15(2) ELC and DLC models and compared
Sum of MSEs 17,528.5 13,8966 13,3450 73173 7,128.3 them with the GO, MO, and LV compo-
Sum of rank 32 25 5 20 18 nent models. Figure 3 shows the predic-
Overallrank 5 @ 6 ) o tion curve for each model for the Galileo
CDS data.
We used the first 152 data points in the
project, or up to 777 cumulative test hours
Cumulative falures asindicated by the dashed line, to estimate
g each model’s parameters. Immediately
following this estimation stage is the pre-
diction stage. For the Galileo CDS, these
two stages follow the project’s natural
400 breakdown into two testing stages.
For the DLC model, we computed
model preferences and weights in the esti-
300 mation phase, and fixed the weightassign-
ments in the prediction phase.
LV’s prediction curve is too pessimis-
tdc,and GO’s and MO’s are too optimistic.
0 - In fact, all three curves for the component
152 ---- models are out of the actual project data
‘ curve (the line labeled Actual). ELC and
100- DLC, on the other hand, compensate
w these extremes and make rather reason-
/ 1 able long-term predictions.
0 ! L To show quantitative comparisons of
0777 . long-term predictions, we use mean
0 04 08 11 1.6 ? 24 28 | square error instead of prequendal likeli-

Cumulative test hours {thousands)

Figure 3. Long-term predictions for JPL’s Galileo Command and Data Subsystem.

~ hood. Prequential likelihood is more ap-

propriate for comparing step-by-step pre-
dictions, while the mean square error
provides a more widely understood mea-
sure of the distance between actual and
predicted values. The mean square error is

the prequential likelihood, butotheraccu- | model’s assumptions about the physical = defined as

racy measures, such as the Akaike infor- | process. It then becomes harder to get in- A
mation criterion — a criterion to denote | sight into the process of reliability engi- > ‘}’i —yilk
how close a prediction is to the actual data’ | neering. Most reliability models view soft- MSE = =1

— or mean square error, are also feasible.
The main strength of the DLC models is
that they combine component models in a
way that lets the output be fed back for
model adjustment.

The fundamental approach of the lin-
ear combination models is simple. How-
ever, by applying more complicated pro-

cedures, we risk losing the individual

ware as a black box, from which to observe
failure data and make predictions. In that
context, our combination models do not
degrade any properties assumed in current
reliability-modeling practices.

LONG-TERM PREDICTIONS

Our results showed that the combina-

N
where N is the total number of pre(/i\icted
points in the prediction phase, and y; and
y; are the predicted and actual number of
failures, respectively.

Table 5 shows the summary of long-
term predictions. The values under Sum
of MSEs and Sum of ranks show that the
ELC and DLC models generally perform
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better than component models. Even B R B
though the component models make a To screen, printe, ot disk
better prediction than the ELC and DLC i
models on several occasions, they also per- ‘
form significantly worse on others. The X . . /—-——~\1
ELC and DLC models, on the other i Editng | Summary staistc
hand, never make the worst long-term i = :ﬁ:ﬁﬁl =
predictions. ; | L—/J
//J\’ i i . Bios ()
AUTOMATING RELIABILITY MEASUREMENT - i 1 Trend {y,}
| Filvedsta | L) Models > odel et
Selecting component models to form (interfailure times, . evaluation | «—g Sensitvty -
combination models can be tedious and  aiure frequencies) f d Execution ‘ 10 noise

computation intensive. We are in Phase 1 w | cantrol _ A 1 PL AIC

of a three-phase effort to develop a tool, B — 1

called Computer-Aided Software Reli- _ Model ,‘

ability Estimation, which will automate o~ Smoothing  —e e combinafion - 1

most reliability-measurement tasks. Model l
Figure 4 shows CA.SRE’S amhitsecture. &= Data transformation ! . \ srolotor ’

You can find many of its functions in cur- /—’—‘L q

rent reliability-measurement tools, but no o =T} Ploting -

other tool lets you combine the results of - - = TE'E‘;;((”;)]

several models in addition to executing Component models, ' )

one model. Feedback from model evalua- weighting schemes To screen, printer, o disk

don helps you identify a model or combi-
nation of models best suited to the failure
data being analyzed. Also, CASRE’s /O
facility, the user interface, and the mea-
surement procedures are greatly enhanced
over those in existing tools. Displays a new copy of the groph on screen . Press to invoke Displays content of graphical

Figures 5 and 6, two screen dumps from help system . display in tabular form
CASRE, show that you have many choices '

model. PL is prequential likelibood; AIC is Akaike Information Criterion.

Graphical display of failure data shown in worksheet

of models and evaluation criteria, yet the se- (=) CASRE Main Menu Ny [=]0]
lection operation remains fairly simple. [Settings L _Help_] ut

CASRE’s major functions are al — ST G

¢ Data modification. CASRE lets you 'Ia'v!er;'sj N;m‘}]berof Test Inter- 0] ‘Academic_Data Failure Cou 0

- . f umber | Failures g =
create new failure-data files, modify exist- Elalustions TABLE
ing files, and perform global operations on )
files. You can also select appropriate £ X = sotualdate
. . E
smoothing techniques or apply data trans- =
. . . £ 20 x
formations to the failure data being ana- 2 x
. . @ 15 x x X
lyzed. You can plot the modified input | 3| [T = < % X x
o LT 10
data, use it as input to a reliability model, £ < *
or write it to a new file for later use. 3 x
. ; . N

¢ Fuailure-data analysis. You can display P A O A

the failure data’s summary statistics, includ- < Testing Time [,

ing the data’s mean, median, and variance
and 25- and 75-percentile cutoffs.

& Modeling and measurement. CASRE
has two modeling functions: As Figure 4 \
shows, you can execute either single compo-
nent models on a data set or several models
and combine their results. Through model
evaluation, you can determine how well a

,sﬁeetlie d!sploy of ;;ilure dao
Iconified display of statistics summarizing failure data;
comes up in iconified form o minimize screen dutter
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(] CASRE Main Menu o |0

File ][ Edit ] [Filter Settings ][ Help ][ Qut
Individusl L I
O] _Acedemic DetaWosheet [a]CIH  Combination E

Number of
Failures

7
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Test Inter-
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m

Failure Counts

caling

Stat]
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Eval
Param:
Confids
Predic!
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COPY |[TABLE |

Bayesian Jelinski-Morandsa
Dusne Model

Geometric Model
Gioel-Okumoto NHP P
Jelinski-Moranda Model
KeillerLittlewood Model
Litel Model
Littlewood NHP P Model
Littlewood-Yerrall Model
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Figure 6. Selecting the best models with CASRE. To specify the criteria by which you will judge a model to be
the best, move the slide bars on the Selection Criteria panel (lower right corner) to set the relative weights of
four criteria.
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& Results display. CASRE graphically
displays model results of interfailure
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posed show promising results com-
pared with traditonal single models. Our
approach is also flexible, letting you select
models that best suit the failure data.
CASRE automates significant portions of
the work, making software-reliability
measurement even simpler. For instance,
CASRE will let users run the combination
models we have described just by selecting
them from a menu.

Users can also form their own combi-
nadon models, save them as part of the
tool’s configuration, and run them in cur-
rent or subsequent sessions.

We recognize that much more work
needs to be done to gain confidence that
the combination models consistently out-
perform component models. We urge you
to apply different data sets to these models
and to compare resulting predictions
across a variety of projects.

We have not addressed how models
can more accurately describe software de-
velopment and testing, although we real-
ize that this area is of increasing concern.
Because the detailed information we
would require for such an investigation is
not available, we decided our work was
better confined to evaluating how to use
existing models more effectvely.

We hope someday to address how to
develop models that can more accurately
describe software development. *
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