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Effect of Code Coverage on Software Reliability
Measurement
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Abstract—Summary & Conclusions—EXxisting software relia- ¢;
bility-growth models often over-estimate the reliability of a given
program. Empirical studies suggest that the over-estimations exist .
because the models do not account for the nature of the testing. dz
Every testing technique has a limit to its ability to reveal faultsina ¢
given system. Thus, as testing continues in its region of saturation, d;
no more faults are discovered and inaccurate reliability-growth  6¢;
phenomena are predicted from the models. This paper presents a 5f;
technique intended to solve this Problem, using both time & code S
coverage measures for the prediction of software failures in opera-
tion. Coverage information collected during testing is used only to
consider the effective portion of the test data. Execution time be- ¥;
tween test cases, which neither increases code coverage nor causes’
a failure, is reduced by a parameterized factor. Experiments were
conducted to evaluate this technique, on a program created in a pi
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simulated environment with simulated faults, and on two industrial
systems that contained tenths of ordinary faults. Two well-known |
reliability models, Goel-Okumoto and Musa-Okumoto, were ap-
plied to both the raw data and to the data adjusted using this tech-
nigue. Results show that overestimation of reliability is properly
corrected in the cases studied. This new approach has potential, 1) All times are CPU time.

not only to achieve more accurate applications of software relia- 2y Times between failures aseindependent.

bility models, but to reveal effective ways of conducting software 3) Allinputs are generated using a pre-defined operational pro-

testing. i . S
g o _ file, for both testing and reliability measurement phases.
Index Terms—Coverage measures, software reliability estima- 4) No new faults are introduced during debugging

tion, software testing. L. . .
g 5) Faultrepairisinstantaneous: as soon as a failure is observed.
6) Each failure is caused by a single fault.

parallel (for vectors)

ASSUMPTIONS

ACRONYMS!
SRGM  software reliability growth model [. INTRODUCTION
G-O Goel-Okumoto NHPP model o . '
o . HE reliability of a program is often defined as the proba-
M-O Musa-Okumoto logarithmic Poisson model y brog P

bility that the program does not fail in a given environment,
during a specified exposure time interval [13]. Since the late
1960s, several analytic models have been proposed for software
)?'eliability estimation [16]. The time-domain models, also called

G-O¢ G-O using adjusted data
M-O¢ M-O using adjusted data
F random flow graph generated for the simulation e

penr_nen_t SRGM, have been the most popular as well as most widely

P application program studied for the past two decades. These models use the failure
history, obtained during testing, to predict the field behavior of

NOTATION the program, under the assumption that testing is performed in
T; test case accordance with a given operational profile [9]. However, there

are some fundamental difficulties with this approach, e.g., the
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be used, instead of test time, to overcome the difficulty of ol.. Coverage-Enhanced Data Processing Technique

taining an operational profile of the given program [12], [15], A T; is considered to be noneffective if: = ¢;_, and f; =

[18]. However, the relation between test-coverage and defegt- . i, other wordsZ; is noneffective if it neither increases

coverage (and consequently the improvement of software refiga coyerage nor causes the program to fail on execution. The
bility) can be very complex [1]. There is no formal description 1 ector describes the change in the number of failures with

in the literature regarding how coverage information should l?éspect to test-time regardless of coverage (it is a discrete partial
used in reliability measurement. differential of failures with respect to time), while th@ vector
This paper presents a technique that models the failure rgi&cribes the change in the number of failures with respect to
with respect to both code-coverage and test-time. The rationgigerage regardless of time (it is a discrete partial differential
behind this approach is given in this paragraph. When a prografifajlures with respect to coverage). We believe that both time
is tested successfully against a suite of test cases, the softwareoyerage are crucial factors in predicting failures; thus we
might continue test, using the same or similar test suite, witht§mbine them to extract the effective test efforts.
any failures. If the time between failures is the only consider- |t 7. js noneffective, thet; is reduced using;. Therefore,
ation in the reliability estimation process, then obviously, thye extracted execution time @, §¢; = p; - 6t;, is to be used
program reliability might be overestimated, since in practice thg, the SRGM. Appendix A derives;. The remainder of this
operational profile can differ from that implied by the test suitéyaragraph illustrates the approach. Uetepresent a noneffec-
To overcome this problem, our technique uses code coverag@ye test casd;: its execution has not increased either the cov-
adjust the failure rate before itis applied to an SRGM. The tim&age nor the number of failures observed. Let this triplet be pro-
intervals between failures are adjusted for any testing effort thatted onto the plane formed by the previghs. 1, ci—1, fi—1)
is redundant with respect to a chosen coverage criterion, eghd thev! | andv2 |. The two difference-vectors are orthog-
repeating the same test cases, or not increasing block coverggs) to each other and they indicate partial rates of change in
with new test cases. We applied this approach to G-O [7] afgiures with respect the two exposure parameters as they were
M-O [14] and observed an improvement in the accurate estimastimated after completion of test case 1. Together with the
tion for both models. test case — 1 triplet, they define a ‘no-coverage and no-failure
Section Il describes the technique. Section Il describes thRange’ plane at that instance of testing. For a noneffective test
experiments & results. Section IV discusses possible future giise;, the only actual change occurred in the direction of the
rections. time axis. Projecting this point onto the— 1 ‘no-coverage
no-failure’ plane gives an idea of how far in this space we would
have moved. Projecting this projected point onto the time axis
gives the new or reduced exposure time. The ratio between the
Il. METHODOLOGY new and the reduced time js the compression ratio.
The p; indicates the effective portion of the execution time
The relationship between coverage and software-reliabiligf 7;, if 7; is noneffective. This compression ratio differs from
has been studied by many researchers. Empirical studies sl compression factor, defined in [13], which is the ratio of
that fault-detectabilitys-correlates with code coverage [20]execution time required in the operational phase to execution
[21]. Consequently, software reliability can alsecorrelate time required in the test phase to cover the input space of the
with code coverage [5]. This experimental evidence strengthgsiggram.
our belief that code-coverage information should be consideredr-ig.1 depicts the geometrical interpretation of the projection,
in reliability estimation. SRGM rely on time-dependent failurgyhere: (ti_1,ci 1, fi-1) and (ti,¢; 1, fi_1) are test data,
data. As testing proceeds, and faults are revealed, the test cagey, ;) are the compressed data. The adjusted data
generated in the later phases are less likely to cause the program 1 .., can be used by the SRGM, whefé is the
to fail than those generated in the earlier phases. Therefore, #iusted execution time &f;.
time between failures increases, as do the reliability estimatesrhe computation op is: given:
made by the SRGM.
However, the reliability of the software usually increases t =11, Q)
when the number of faults in the software is reduced. There-
fore, the more redundant a testing effort is, the greater is tHen
chance that reliability will be overestimated. To reduce these L. .
overestimates, one needs to determine which test cases are re- ti = ti—1 + ot;, (2)
dundant and how much of the test effort is considered effective. 6ty = p; - 6t (€))
In our model, the coverage information is used to determine
the effectiveness of a given test effort. A test case that doiad given that
not ‘increase coverage of the program’ and does not ‘cause

a failure’ is considered noneffective. The execution time of bey = e, )
such a test case is reduced by using a compression ratio Wf‘{'hch

. S en

is based on both execution-time and code-coverage. Section

II-A describes the method that applies coverage-information to e = 4 G Cin1 ifc;—ci_1 #0 )
extract the effective portion of the test data. C T b otherwise
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Fig. 1. Coverage-enhanced data-processing technique. L . . . .
6) Compute reliability by simulating the executioniofvith

respect to the same profile used in step 3.

The projection process (Appendix A) yields:
End_Procedure

1 if T; is effective ig.2 shows the reliability estimates obtained by applying
if T; is effecti Fig.2 sh h liabili i btained b lyi

pi = §t2_ +6t2 -6ty otherwise the original data to the G-O & M-O models, and by applying
§t2 4 6c |+ (6t2 - 62 ) the extracted data to both models (G- M-O¢). The esti-

(6) mates were compared with the reliability computed in step 6
(labeledR). The results show that at 270 000 units of test-time
The value ofp; is computed frondt; & éc; as shown in (6). our technique reduces the overestimate of the G-O model from
In practice, the: andt parameter values are usually scaled to gét23 (33.7%) to 0.00 (0.0%), M-O model from 0.083 (12.17%)
their numerical values in the range of interest to be of roughly 0.004 (0.55%). Similarly, at test-time of 300 000 units, the
the same magnitude. This numerically stabilizes computatiomerestimate is reduced from 0.205 (29.3%) to 0.02 (2.86%),
of p. The coverage measure is usually scaled to the range taatl from 0.087 (12.4%) to 0.01 (1.43%), respectively, for the
is closest to the average execution time of one test case. ¥ and M-O models. The reliability overestimates made by
scaling can be adjusted at various phases of testing. The sc&e® & M-O can be appreciably reduced by considering the ef-
values oft; are used in computing;. In the reliability estima- fective testing efforts.
tion, the rawt values and the values are adjusted using the
compression ratios. Scaling of the execution time does not af-
fect the reliability estimation process. [Il. A PPLICATIONS

B. Simulation To demonstrate our technique in real applications, we con-

. . . . . ducted experiments on two progranasitopilot andore-
This section describes an experiment which was Conductg o P prog P

under the simulation environmentRSE [4]. M-O [13] & G-O
[7] are models for reliability estimation. The procedure used in

our study is listed here. A. autopilot  Project
Begin_Procedure The autopilot project was developed by multiple
1) Generate a program flow graghwith 1000 nodes. independent teams at the University of lowa and the Rock-

2) AnnotateF’ with faults by assigning fault infection prob-well/Collins Avionics Division [10]. The application program
ability and fault propagation probability to each node. is an ‘automatic flight control function for the landing of com-

3) TestF by using the random testing technique with respentercial airliners’ that has been implemented by the avionics
to a uniform profile. Faults causing failures are removeiddustry. It has five redundant yet independently developed

during the debugging. program versions for a total of 7000 lines of code (4200
4) Apply the data collected in step 3 to SRGM and obtaiexecutable statements) and 30 natural faults.
reliability estimates. 1) Testing and DebuggingFlight simulation testing cdu-

5) Use the coverage-enhanced technique to exclude nortefilot  represents various execution scenarios in a feed-back
fective testing efforts in step 3; then apply such extractédop, where different flight modes are entered & exercised. The
failure data to the models for reliability estimation. sequence of testing & debugging is:

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 08:04:01 UTC from IEEE Xplore. Restrictions apply.



168 IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 2, JUNE 2001
TABLE | reliability
RELIABILITY OBSERVED, AND RELIABILITY 050 b
ESTIMATES FROM THE G-O & M-O MODELS FORautopilot
Time | GO G-0° MO MO° R il o
5153.60 | 0.90 0.83 081  0.74 0.45 o0 F
5742.10 | 0.78 0.71 0.77 0.71 -
6001.10 | 0.75 0.69 0.76 0.70 - 075 I
6538.75 | 0.70 0.65 0.75 0.70 0.62
7066.65 | 0.76 0.74 0.78 0.73 - o7o F
7593.45 | 0.83 0.79 0.80 0.76 - 065 k
8025.10 | 0.77 0.72 0.78 0.74 0.81 ’
8553.05 | 0.82 0.75 0.80 0.75 - 0.60
9081.50 | 0.86 0.80 0.82 0.78 -
9688.35 | 0.86 0.78 0.82 0.77 - osst
10215.45 { 0.89 0.82 0.83 0.79 -
10563.15 | 0.87  0.79 0.83 0.79 - oso r
11169.60 | 0.86  0.77 083  0.79 - oas L
11697.50 0.89 0.80 0.84 0.80 - 5,000 8 (;oo 76.600 12’000 14'ooo 16 oTJo
12040.80 | 0.87 0.78 0.84 0.79 - ’ ’ ' ’ ’ )
1264825 086 076 084 079 - execution time
13171.55 | 0.88 0.79 0.85 0.80 -
13519.25 | 0.87  0.76 0.84 0.80 - Fig. 3. Reliability observed, and reliability estimates from the G-O & M-O
14047.30 | 0.88 0.79 0.85 0.81 - models forautopilot
14574.20 | 0.90 0.81 0.86 0.81 -
igégg:gg g:g? g:gg g:gg 8:23 ] Similarly, G-&* and M-O denote the reliability estimates ob-
tained from the G-O and the M-O models using the adjusted
data.
Sequence The R, measured as the ratio of the number of successful

1. Generate a test podl
2. Set the flagTEST_REPEATto false
3. If (TEST.REPEATis falsg
Then a. Select a test cagefrom X’ according to a
uniform distribution profile
Else b. Re-use the test cafesaved in 5d
End_If
4. Test the prograr® againstl’
5.1f (P fails onT)
Then a. Find the fault which is responsible for the failure
b. Remove the fault detected in 5a
c. Set the flagTEST_.REPEATto true
d. SaveT for re-use in 3b
Else Set the flagTEST.REPEATtO false
End._If
6.Goto3
End_Sequence

executions to the total number of executions, were computed
for the test-times of 5153.60, 6538.75, 8025.10 seconds. These
3 points represent 3 fault-correction activities in the 3 phases of
the test. To estimat&, the program was executed against inputs
based on the same operational profile as used in the test process.
The process of reliability measurement was repeated until the
reliability measure converged to a 95%onfidence interval.

In applying the coverage-enhanced technique, we used block
coverage measurement. To compute the compression ratio, the
coverage measure and the execution time were scaled by multi-
plying each of them by a constant factor. These constant scaling
factors were set, beginning at the test-time 5153.60 seconds, the
time when reliability measurement of our interest began.

For the G-0O, the differences between the reliability and its es-
timates ranged from0.04 to 0.45 (-4.9% to 100.0%); with the
coverage-enhanced technique, they ranged frénd9 to 0.38
(—11.1% to 84.4%). For the M-O, these differences ranged from
—0.03 t0 0.36 3.7% to 80.0%); with the coverage-enhanced

An important characteristic of this testing & debuggingechnique, they ranged from0.07 to 0.29 (-8.6% to 64.4%).

process is thaP can be executed against the sdfhmore than

This study shows that by adjusting the testing efforts using the

once. For example, let the first executionfbn 7 fail at time  coverage-enhanced technique, the reliability estimates made by
= t,. After the fault responsible for this failure is removedihe SRGM are much closer to the actual reliability. However, the

thenP is executed again ofi. Let it fail at time= 5 > t,. improvement of the two models is not as large as that obtained
Because the simulation is not yet complet®dis re-executed from the simulation experiment in Section 1I-B, because the re-
againstT after debugging. This process continues ufil liability was compared in the later phase of the testing while

succeeds off’. there were very few faults remaining in the program.

2) Reliability Estimation: Table | and Fig. 3 show the relia-
bility estimates obtained by applying the original data, collect
from the testing & debugging process in Section IlI-A1, and the The orecolo  program, was developed for the European
adjusted data, processed by using the coverage-enhanced t8place Agency, to provide a language-oriented user interface that
nigue, to the G-O & M-O models. The exposure time used allows the user to describe the configuration of an array of an-
the estimation process is the maximum flight time: 265 secondsnnas by using a high level language [2]. The application con-
The reliability estimates obtained from the G-O & M-O modelsists of about 10 000 lines of code (6 100 executable lines) and
using the original data are labeled G-O and M-O, respectiveB3 natural faults.

&% Theorecolo  Program
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TABLE I
RELIABILITY OBSERVED, AND RELIABILITY ESTIMATES OBTAINED FROM
THE G-O & M-O MODELS FORorecolo

Time | G-O G-O' M-O M-O R
132 { 1.00 089 096 0.89 | 0.89
156 | 099 093 096 0.90 | 0.92
230 1 1.00 095 0.98 094 | 0.94
599 1 1.00 0.99 0.99 0.98 | 0.97

reliability

1.00 =

0.99

0.98

0.97

0.96

0.9§

0.94

[ 1 1 1 i
200 300 400 500 600

test cases

Fig. 4. Reliability observed, and reliability estimates obtained from the G-
& M-O models for theorecolo project.

1) Testing and DebuggingTesting is performed by using

REMENT 169

TABLE I
RELIABILITY OVER-ESTIMATES OBTAINED FROM THE G-O & M-O
MODELS FORorecolo

Time G-O G-O MO MO
132 1 124% 0.0% 79% 0.0%
156 76% 11% 43% -2.2%
230 6.4% 1.1% 43% 0.0%
599 31% 21% 2.1% 1.0%

a better understanding of the software quality, and helps the de-
veloper conduct a more effective testing scheme. It indicates to
the tester when:

 a testing technique becomes ineffective and should be
switched to another one,
« to stop testing without overestimating the achieved relia-
bility.
Our experiments conducted by a simulated program and two
real-world projects suggest the advantages of this technique.
To investigate the relation between the ‘strength of the
coverage criteria used’ and the ‘improvement of the estimation
made by this technique’, we plan to apply stronger coverage
measurements like ‘branch, all-uses, and mutation coverage’,
for more empirical studies of this technique on industrial
projects. While reliabilities measured by SRGM are somewhat
insensitive to the fluctuations in the operational profiles, the
actual reliabilities are sensitive, and our technique captures
such a phenomenon. We plan to formulate this relationship
Quantitatively by a sensitivity study. We also hope to establish
the criteria that will meet a reliability threshold specified for an
ultra high reliable software system by applying this technique
to avoid redundant test efforts.

the input generatorCopia , which produces input test cases

based on a pre-defined operational profile. The output of t

he APPENDIX

faulty program is compared with the output of the correct ver- Assuming Plang is formed by
sion. If they differ, the debugging process proceeds and the cor-

responding faults are removed.
2) Reliability Estimation: The results obtained from this ex-

Point(t; 1,¢i 1, fi 1),
VectoKa, b, c)

periment are in Table Il and Fig.4. The execution unitis mea- = ;!  x 2 |
sured as the number of test cases, instead of the execution time, _ (=it 6t —Bts1 - 8 fimt 6tir - Sst)
due to the nature of the application program. Similarly, the ex- im0 Ly L Bl ChimL T O

posure time used in the estimation process is one test execution. = (=bci1, =bti 1,0t 1 - bcia),
The R were computed at the completion of 132, 156, 230, and v_; = (§t;_1,0,8fi_1),
599 test cases. viy = (0,68¢i-1,6fi-1),

Table 11l shows that, for G-O the differences between the re- §fi 1=1
liability and its estimates ranged from 3.1% to 12.4%; for the 7“7t~ *
coverage-enhanced technique, they ranged from 0.0% to 21%9 a0 (@ —tic) +b-(y—cimi) +c (2= fiza) =0
For M-O, the differences ranged from 2.1% to 7.9%; for the cov- (A-1)
erage-enhanced tgchnique, they ranggd fra2%100.0%. At | ot the projection of
the end of the testing process, overestimates made by G-O were
reduced from 3.1% to 2.1%, and those made by M-O were re- POINt(ti; ci, fi) = (i, ci—1, fi—1) on G be(xo, yo, 20).-
duced from 2.1% to 1.0%. The improvement of the estimatiorhen,
for orecolo was not as large as that fautopilot

9 P a-(zo—tic1) +b-(yo—ci1)+c- (20— fic1) =0;

(A-2)
IV. FUTURE PLANS (zo—t;, yo — cir 20— fi) || (@, b,c). (A-3)
Our technique measures test-coverage in the estimationGifen (A-3) , then
software reliability. This technique appears to improve the ap- To—t Yo—¢  z0—fi
plicability & accuracy of G-O & M-O. This should give the user . -, - (A-4)
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Given [12] Y.K.Malayia, N. Li, and J. Biemaat al., “The relationship between test
coverage and reliability,” ifProc. 5th Int'l. Symp. Software Reliability
Engineering 1994, pp. 186-195.
(tiv G, fz) = (tiv Ci—1, fifl) [13] J.D.Musa, A. lannino, and K. OkumotBpftware Reliability: Measure-
ment, Prediction, ApplicatiarMcGraw-Hill, 1987.
then [14] J. D. Musa and K. Okumoto, “A logarithmic Poisson execution-time
model for software reliability measurement,” Rroc. 7th Int'l. Conf.
Software Engineeringl984, pp. 230-238.
(A-5) [15] P. Piwowarski, M. Ohba, and J. Caruso, “Coverage measurement expe-
rience during function test,” ifProc. 15th Int’l. Conf. Software Engi-
neering 1993, pp. 287-300.
Given (A-2) & (A-5) then [16] C.V.Ramamoorthy and F. B. Bastani, “Software reliability—Status and
perspectives,JEEE Trans. Software Engineeringol. SE-8, no. 4, pp.
T — ti_1 b4+ 2 354-371, 1982.
= 3 5 (A-6) [17] N. F. Schneidewind, “Optimal selection of failure data for predicting
ti —tio1 o’ + 0% +c failure counts,” inProc. 4th Intl. Symp. Software Reliability Engi-
. . . neering 1993, pp. 142-149.
From (A-6), the compression ratio is computed: [18] M. A. Vouk, “Using reliability models during testing with nonopera-
9 9 9 tional profile,” in Proc. 2nd Bellcore/Purdue Symp. Issues in Software
) To — ti_1 oty | +06t; | - bci_4 Reliability Estimation 1993, pp. 103-110.
i = L = 2 2 2 2 [19] A. Wesslen, P. Runeson, and B. Regnell, “Assessing the sensitivity to
ti—tiog iy + ey + (&i—l ’ 6ci—1) usage profile changes in test planning,’Aroc. 11th Intl. Symp. Soft-
(A'7) ware Reliability Engineering2000, pp. 317-326.
[20] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test
set size and block coverage on fault detection effectiven&seg. 5th
IEEE Int'l. Symp. Software Reliability Engineerimgp. 230-238, Nov.

; ; it 1994.
The model proposed in this paper was |n|t|aIIy deveIOped[Zl] ——, “Effect of test set minimization on fault detection effectiveness,”

while Dr. Chen was a Ph.D. student at Purdure University under ~ software-Practice and Experienceol. 28, no. 4, pp. 347369, Apr.
the supervision of Dr. Mathur & Dr. Rego. The concept of using 1998.

coverage to enhance reliability measurement was originated

from these supervisors’ research. Due to the limitation on the

listed number of authors, we did not include them as coauthors.
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