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Abstract—The challenging task of medical diagnosis based on
machine learning techniques requires an inherent bias, i.e., the di-
agnosis should favor the “ill” class over the “healthy” class, since
misdiagnosing a patient as a healthy person may delay the therapy
and aggravate the illness. Therefore, the objective in this task is
not to improve the overall accuracy of the classification, but to
focus on improving the sensitivity (the accuracy of the “ill” class)
while maintaining an acceptable specificity (the accuracy of the
“healthy” class). Some current methods adopt roundabout ways
to impose a certain bias toward the important class, i.e., they try
to utilize some intermediate factors to influence the classification.
However, it remains uncertain whether these methods can improve
the classification performance systematically. In this paper, by en-
gaging a novel learning tool, the biased minimax probability ma-
chine (BMPM), we deal with the issue in a more elegant way and di-
rectly achieve the objective of appropriate medical diagnosis. More
specifically, the BMPM directly controls the worst case accuracies
to incorporate a bias toward the “ill” class. Moreover, in a distri-
bution-free way, the BMPM derives the decision rule in such a way
as to maximize the worst case sensitivity while maintaining an ac-
ceptable worst case specificity. By directly controlling the accura-
cies, the BMPM provides a more rigorous way to handle medical
diagnosis; by deriving a distribution-free decision rule, the BMPM
distinguishes itself from a large family of classifiers, namely, the
generative classifiers, where an assumption on the data distribution
is necessary. We evaluate the performance of the model and com-
pare it with three traditional classifiers: the -nearest neighbor,
the naive Bayesian, and the C4.5. The test results on two medical
datasets, the breast-cancer dataset and the heart disease dataset,
show that the BMPM outperforms the other three models.

Index Terms—Biased classification, medical diagnosis, minimax
probability machine, worst case accuracy.

I. INTRODUCTION

APPLYING machine learning techniques to medical diag-
nosis tasks has the advantages of saving time and reducing

cost. The challenge is, based on data from previous medical
cases, to construct a rule which can be used to discriminate
between healthy subjects and patients. The decision rule, called
the classifier, is trained by using a number of observations with
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known class labels. This approach is also known as “supervised
learning.” In the simplest medical context, only two classes,
i.e., the “healthy” class and the “ill” class, are considered.
Moreover, with these two kinds of data, one is more significant
than the other. The “ill” class is obviously more important than
the “healthy” class since misdiagnosing a patient as a healthy
person may delay the therapy and aggravate the illness. There-
fore, the objective in medical diagnosis is inherently biased,
i.e., instead of improving the overall accuracy, we should focus
on improving the accuracy of the “ill” class, called sensitivity,
while maintaining the accuracy of the “healthy” class, called
specificity, at an acceptable level [9].

In the machine learning literature, many different techniques
can be applied to medical diagnosis [18], [34], including the
naive Bayesian (NB) method [21], the logistic regression [16],
the -nearest neighbor ( -NN) method [1], and the decision tree
C4.5 [30]. However, these standard learning tools, originally de-
signed for seeking an accurate performance over a full range of
data, need to be modified to favor the more important class, i.e.,
the “ill” class, over the less important class, i.e., the “healthy”
class. Currently, techniques such as the methods of sampling [7],
[19], [22], the methods of adapting the thresholds [25], [28], and
the methods of adjusting cost matrices [6], [25] can be used to
incorporate a certain bias into the learning methods.1 However,
all these methods have shortcomings. For example, the sampling
methods favor the more important class by down-sampling (re-
moving) some instances of the less important class or up-sam-
pling (duplicating) some instances of the more important class.
Either approach seems to be problematical: down-sampling will
lose information while up-sampling may introduce noise. Ac-
cording to [28], one open question is whether simply varying the
skewness of the data distribution can improve predictive perfor-
mance systematically. In the case of the methods of adjusting
cost matrices or adapting weights, it is usually hard to build di-
rect quantitative connections between the intermediate factors,
i.e., the costs or the weights, and the biased classification per-
formance. These methods, therefore, fail to provide a rigorous
approach to the task of medical diagnosis.

In summary, the problems seem to root from the fact that these
standard learning tools were not originally designed to achieve
the medical diagnosis goal, i.e., the biased configuration, but
to maximize the overall accuracy. Either preprocessing the data
(in the methods of sampling and the methods of weighting each
class) [7], [19], [22] or postprocessing the tools themselves (in
the methods of adapting thresholds) [25], [28] and then forcing

1These methods were originally used to deal with the classification of skewed
data, where one class contains far fewer data than the other class. However, in
terms of imposing a bias on one class, this task is similar to the medical diagnosis
task. Therefore, these techniques are appropriate for the latter task.
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these standard tools into the application of medical diagnosis
is rather a patchwork approach and, thus, they fail to provide
rigorous and systematic treatment of biased classification tasks.

Therefore, in this paper, directly aiming to achieve the goal
of solving the medical diagnosis problem, we present a novel
learning tool named the biased minimax probability machine
(BMPM) [14] to deal with medical diagnosis in a more elegant
way. As a significant extension of the minimax probability ma-
chine (MPM) [20], the BMPM approach contains several ad-
vantages over traditional methods. First, in contrast to the pre-
processing and postprocessing methods, the BMPM approaches
the medical diagnosis problem directly. As shown later in this
paper, the BMPM constructs the decision rule by maximizing
the worst case sensitivity under all possible distributions with
given mean and covariance matrices, while keeping the speci-
ficity acceptable. More importantly, when certain distributions,
in particular a Gaussian distribution, are assumed for the data,
our model is able to maximize the real sensitivity with respect
to future data. The direct control of the accuracies rather than of
intermediate factors provides a more rigorous way to handle the
biased classification task. Second, by deriving the worst case
decision rule under all possible distributions with given mean
and covariance matrices, the BMPM becomes distribution-inde-
pendent. This distinguishes the BMPM from a large family of
learning methods, namely, the generative classifiers [11], [12],
[15] including the NB classifier and the logistical regression,
which have to make specific assumptions about the data dis-
tribution and, hence, lack general validity in real tasks. Third,
although the BMPM contains the above advantages, it does not
sacrifice efficiency for them. The optimization of this model can
in practice be transformed to a concave-convex fractional pro-
gramming (FP) [31] problem or a pseudoconcave problem and,
therefore, can be solved efficiently.

The paper is organized as follows. In Section II, we review
the MPM briefly. In Section III, we present the linear BMPM
(BMPML), showing how to achieve the objective of the med-
ical diagnosis directly. In Section IV, we then kernelize the
BMPML to attack nonlinear classification tasks. In Section V,
we discuss the evaluation criteria and propose to modify those
traditional machine learning approaches for medical diagnosis.
In Section VI, we first illustrate our model with a synthetic
dataset. We then apply it to real-world medical diagnosis
datasets and compare its performance with three traditional
classifiers. In Section VII, we make some observations about
the BMPM model. Finally, our conclusions are set out in
Section VIII.

II. REVIEW OF MPM

The notation in this paper will largely follow that of [20].
Suppose two random -dimensional vectors and represent
two classes of data, where belongs to the family of distribu-
tions with a given mean and a covariance , denoted as

; similarly, belongs to the family of distribu-
tions with a given mean and a covariance , denoted as

. Here, , , , , and , .
In this paper, class represents the “ill” class and represents
the “healthy” class.

The MPM attempts to determine the hyperplane
, , , and superscript denotes

the transpose) which can separate two classes of data with the
maximal probability. The formulation for the MPM model is
written as follows:

where represents the lower bound of the accuracy for fu-
ture data, namely, the worst case accuracy. Future points for
which are then classified as the class ; otherwise
they are judged as the class . This derived decision hyper-
plane is claimed to minimize the worst case probability of mis-
classification, or the error rate, of future data. Furthermore, this
problem can be transformed to a convex optimization problem,
or more specifically, a second-order cone programming problem
[23], [27].

As observed from the above formulation, this model actually
assumes that two classes have the same importance. Hence, it
makes the worst case accuracies for two classes the same. How-
ever, in real applications, especially in medical diagnosis, two
classes of data are usually biased, i.e., the disease class is often
more important than the healthy class. Therefore, it is more ap-
propriate to take the inherit bias nature into account in this con-
text. In the following, we develop an extension of MPM, i.e., the
BMPM, which is more appropriate for medical diagnosis.

III. BMPML FOR MEDICAL DIAGNOSIS

In this section, we present the linear biased minimax frame-
work, designed to achieve the goal of the medical diagnosis di-
rectly. We first introduce the model definition and then propose
methods to solve the optimization. Following that, we analyze
the case in which a certain distribution is assumed for the data.

A decision hyperplane , where
and , is constructed such that, for an ill case, ,
and for a healthy case, . Similar to MPM, we aim to
achieve a decision hyperplane in the worst case scenario, i.e., we
separate the two classes of cases by maximizing the worst case
(minimal) probability that an “ill” case is correctly classified
into the “ill” class with respect to all distributions with these
means and covariance matrices, while maintaining acceptable
the worst case (minimal) probability that a healthy case is also
correctly diagnosed. These probabilities can also be considered
as the corresponding accuracies, namely, the sensitivity and the
specificity. This is formulated as follows:

(1)

(2)

(3)

Here, means the lower bound of the probability (accuracy) for
the classification of future cases of the class ; in other words,
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is the worst case sensitivity. Similarly, is the lower bound
of the accuracy of the class , i.e., the worst case specificity.

In our extension, we not only maximize the worst case sen-
sitivity, but also maintain the worst case specificity at a preset
acceptable level given by . This is more appropriate in bi-
ased classifications. Note that the BMPM only makes assump-
tions on the mean and covariances and does not assume specific
distributions over data. This presents one of the major distinc-
tions between our model and other generative models, whose as-
sumption on data distribution does not always coincide with the
real situation. More importantly, as shown shortly in this paper,
when a particular distribution (e.g., Gaussianity) is assumed for
the data, maximizing the worst case sensitivity results in maxi-
mization of the actual sensitivity.

A. Optimization Method

In the following, we discuss the optimization procedure for
the BMPM model. We first define two optimization problems
as follows.

Definition 1: Optimization problem I is defined as follows:

(4)

(5)

(6)

(7)

where , .
Definition 2: Optimization problem II is defined as the fol-

lowing typical linear constrained FP problem2 :

(8)

where , .
Lemma 1: The following statements are true: a) Optimization

problem I is equivalent to the optimization of BMPM. b) Opti-
mization problem I is equivalent to Optimization problem II.

See the Appendix for the detailed proof.
In the following, we further show that the FP problem of (8)

is solvable.
Lemma 2: The above FP problem (8) is a strictly quasicon-

cave problem and is, thus, solvable.
Proof: It is easy to see that the domain is a convex set

on , and and are differentiable on . Moreover,
although in theory and can only be guaranteed as positive
semi-definite matrices, in practice they can be made positive
definite matrices by adding a small positive turbulence in their
diagonal elements [20]. Therefore, is a concave function
on and is a convex function on . Then is
a concave-convex FP or a pseudoconcave problem. Hence, it is
strictly quasiconcave on according to [31].3

Therefore, every local maximum is a global maximum [31].
In other words, this FP problem is solvable.

2A linear constrained FP problem can be informally defined as a family of
optimization problems, where the optimization objective is in a fractional form
and the constraints are in linear forms.

3A function g(x) is quasiconcave if we have g(�x + (1 � �)x ) �
minfg(x ); g(x )g, where 0 � � � 1.

Many methods can be used to solve this problem. For ex-
ample, a conjugate gradient method can solve this problem in at
most (the data dimension) steps if the initial point is suitably
assigned [3]. In each step, the computational cost to calculate
the conjugate gradient is . Thus, this method will have a
worst case time complexity of . Adding the time cost to
estimate , , , , the total cost is , where
is the number of the data points. This computational cost is in
the same order as the MPM [20] and the quadratic program in
solving the linear support vector machine [32].

In this paper, we use the Rosen gradient projection method [3]
to find the solution of this concave-convex FP problem, which
is proved to converge to a local maximum with a linear conver-
gence rate in the worst case. Moreover, the local maximum will
be exactly the global maximum in this problem.

With reference to the proof of Lemma 1 in the Appendix, the
optimal , denoted by , is obtained by

where is the optimal solution of the FP problem in (8).4

B. Assuming Specific Distributions

Although the BMPM model assumes no specific distribution
for the data, it is interesting to explore the properties of BMPM
when some specific distribution is assumed. In the following, we
show that when certain distributions, in particular a Gaussian
distribution, are assumed for the data, maximizing the worst
case sensitivity strictly leads to maximizing the real sensitivity
with respect to future data.

Assuming and are two sets of data with Gaussian distri-
butions and , respectively, (1) becomes

(9)

where is the cumulative distribution function for the stan-
dard Gaussian distribution

Due to the monotonic nature of , we can further write (9)
as

4The inequalities of (17) in the Appendix will become equalities at the max-
imum point.
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(2) can be reformulated in a similar fashion. The optimization
of the BMPM model is then changed to

(10)

(11)

(12)

The above optimization is nearly the same as (4) subjected to
the constraints of (5)–(7), except that is equal to ,
instead of . Thus, it can be similarly solved based
on the proposed FP method. From the proof of Lemma 1 (in
which (17) will change to an equality), we can know (10) and
(11) will eventually become equalities. Traced back to (9), the
equalities imply that and will have achieved their upper
bounds. This means that the worst case accuracy (sensitivity)
eventually changes to the real accuracy.

It is interesting to make an analysis of BMPM when other
general distributions are assumed. By analogy with the Gaussian
case, assuming , , where means
a specific distribution, we have

We note that the random variable contains the mean
and the variance . Thus, the normalized random variable

will have the mean 0 and the vari-
ance 1. If the distribution of the normalized random variable

, denoted as , is independent of ,
as the case in Gaussian distribution, a formulation similar to that
in the Gaussian case can be easily derived, except that is
changed to . Otherwise, it may not be easy
to incorporate the distributional information into the optimiza-
tion of BMPM. Further exploration on this topic is deserved. In
summary, we incorporate the above analysis into Lemma 3.

Lemma 3: Assuming the data are under a specific distribu-
tion , if the distribution of the normalized random variable

, denoted as , is independent of ,
the BMPM model optimization maximizes the real sensitivity
with respect to future data.

Another interesting finding is that, given an -dimensional
random variable , a linear combination of its component vari-
able , , namely tends toward a Gaussian dis-
tribution, as grows. This shows that, when the dimension
grows and the data distribution is unknown, it may be suitable
to use , the inverse function of the normal cumulative
distribution, instead of , to perform the optimiza-
tion of BMPM.

IV. KERNELIZED BMPM

The classifier derived above from the BMPM is given in a
linear configuration. To handle more general cases, namely non-
linear classification tasks, we need to develop methods to extend
the BMPML. Therefore, in this section, we first seek to use the
kernelization trick to map the -dimensional data points into

a high-dimensional feature space , in which a linear classi-
fier corresponds to a nonlinear hyperplane in the original space.
Then, we propose a feasible algorithm to solve the kernelized
optimization problem.

A. Kernelizing the BMPM

Let and represent the training data for the
class and the class , respectively, and be mapped as

, and ,
where is a mapping function. The corresponding
linear classifier in is , where

, , and . Likewise, the transformed
FP optimization of BMPM can be written as

(13)
To make the kernelization trick work, we need to represent the
optimization and the final decision hyperplane into a kernel
form, , i.e., an inner product form of
the mapping data points.

We reformulate the optimization and the decision hyperplane
in the kernelized form as follows.

Let , where is the projection of in the
space spanned by all the training data, i.e., and

and is the orthogonal component of in this
span space. The component vanishes in the optimization (13)
by using and . This implies that the
optimal is in the space spanned by all the training data and,
thus, can be written as a linear combination of the training data.
We write this linear combination as follows:

(14)

where , , , and are
coefficients. Moreover, four plug-in estimated parameters for
the mean and covariance matrices can be written as:

Substituting (14) and the above four plug-in estimated param-
eters into the optimization problem (13), we can obtain a kernel-
ized version

(15)
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In the above, and
with

where for and for
. is given by

where is an -dimension ( -dimension) column
vector with the values of all elements equal to one. and
are the matrices formed by the first rows and the last
rows of the Gram matrix , respectively, which is defined as

.
Similarly, the optimal in the kernelized version, represented

by , can be obtained as

where , , and are the optimum values given by the
above optimization procedure. The kernelized decision hyper-
plane can be written as:

B. Solving the Kernelized BMPM

In this section, we present a parametric method to solve the
FP problem [31] involved in the kernelized BMPM. When com-
pared with Gradient methods, this approach is relatively slow,
but it need not calculate the gradient in each step and, hence,
may avoid accumulated errors. Moreover, for brevity, we still
use the unkernelized version to present the algorithm since (16)
has a form similar to the unkernelized version of (8).

According to the parametric method, the fractional function,
can be iteratively optimized in two steps:

Step 1) Find by maximizing in the domain
, where is the newly introduced parameter.

Step 2) Update by setting it to .
According to [31], the maximum of , namely, the maximum so-
lution of the FP problem, is guaranteed to converge when these
steps are iterated.

In the following, we propose to solve the maximization
problem in Step 1. Replacing and , we expand the
optimization problem as

(16)

Equation (16) is equivalent to
under the same constraint. By writing ,

where and is an or-
thogonal matrix whose columns span the subspace of vectors
orthogonal to , an equivalent form without the constraint
can be obtained

The above optimization can further be transformed as follows:

This optimization form is very similar to the one in the MPM
[20] and can also be solved by using an iterative least-squares
approach [3], [20].

V. MODIFYING LEARNING ALGORITHMS FOR

MEDICAL DIAGNOSIS

In this section, we first discuss two practical performance
metrics in order to evaluate the performance of the BMPM
model against other traditional learning algorithms. These
traditional algorithms are the -NN method, the NB classifier,
and the C4.5 method in this paper. Next, we propose to tailor
the BMPM and those traditional learning models to these two
metrics.

A. Practical Performance Metrics

In real applications, the objective of medical diagnosis is to
maximize the sensitivity while maintaining the specificity at a
prespecified level set by experts. However, when there are no
experts at hand, we have to plot a series of sensitivities against
the corresponding specificities in order to evaluate the biased
learning. This performance metric is well-known as the receiver
operating characteristic (ROC) analysis [29], [33]. More pre-
cisely, the ROC curve plots a series of sensitivities (true posi-
tive rates) against the corresponding one minus specificities (the
false positive rates). Fig. 1 illustrates an artificially generated
ROC curve. As discussed in [25], if the ROC curves are gener-
ated with good shapes evenly distributed along their length, they
can be used to evaluate biased learning models by using the area
under the curve. The larger the area under the curves, the higher
the sensitivity for a given specificity, and, hence, the better the
model’s performance.

We can also use another metric to perform evaluations,
namely the criterion of maximum sum (MS). Instead of using
the area as the metric in the ROC curve analysis, this criterion
uses a typical point that achieves the largest sum of the sensi-
tivity and the specificity (or the maximum difference between
the true positive rate and the false positive rate) [2], [9]. As
seen in Fig. 1, the filled red point in the ROC curve represents
the one that achieves the largest sum of the sensitivity and the
specificity. This criterion is originally designed to evaluate
the performance for imbalanced data. In this context, the data
associated with one class are far fewer than those associated
with the other class. If using the traditional metric, i.e., the
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Fig. 1. Artificially generated ROC curve. Either the area under this curve or the
critical point (the filled square point) achieving the highest difference between
the true positive rate and the false positive rate can be used as the performance
metric to evaluate the biased performance.

metric of maximizing the overall accuracy of data, the learning
algorithms tend to classify all the data into the majority yet less
important class; such cases can be avoided by using the MS
criterion. Note that, in medical diagnosis there also exist cases
in which the number of the disease data is far smaller than the
number of the healthy data (e.g., for certain peculiar diseases
that occur rarely).

B. Modifications

In this section, in order to generate the test models’ true and
false positive rates for both metrics, we need to modify the
models. For the BMPM model, it is very convenient to obtain
the true positive rates and false positive rates pairs by shifting
from 0.0 to 1.0. For other traditional models, i.e., the NB clas-
sifier, the -NN, and C4.5, we follow the methods proposed in
[25], i.e., we adopt selective sampling, adjust the cost matrices,
or adapt weights to modify them to generate the ROC curves.
We introduce the modification procedures in the following.

The -NN is one of the most common classifiers. For an input
vector, the -NN calculates the closest vectors in the test set
by using a distance measure, and labels the input vector as the
most frequent class among the NNs. Similar to [25], we use an
altered distance as follows

where is the closest point from the class ( or ), and
is the Euclidean distance from to . By changing

from 0.0 to 1.0, a series of true positive rates and false positive
rates can be generated.

In the NB classifier, a new point is classified into the class
when the posterior probability ; otherwise, it

is judged as the class . Here, we introduce a new parameter
, where and change the decision criterion to

. By scanning from 0.0 to 1.0, we can obtain a
set of true and false positive rates.

C4.5 is a kind of decision tree, introduced by Quinlan [30].
We train the C4.5 by changing the prior probability to favor the
corresponding class. The method is similar to [25].

It is again observed that, by trying to utilize intermediate
factors such as the prior distributions, the thresholds, and the
weights rather than controlling the accuracy directly to impose
a bias, these traditional methods lack a rigorous treatment of bi-
ased classifications and, thus, it remains uncertain whether they
can deal with the medical diagnosis problem systematically.

Remark: According to [5] and [24], a connection has been
established among the distribution of the training data, the prior
probability of each class, the costs of misclassification of each
class, and the setup of the decision threshold. Changing one of
these factors is equivalent to changing other factors. Thus, in the
above, it is sufficient that we tailor the above traditional machine
learning methods to unbalanced classifications by only using
one of the approaches.

VI. EXPERIMENTS

In this section, we first illustrate our model with a synthetic
toy dataset. Then we apply the BMPM to two real-world med-
ical diagnosis datasets, the breast-cancer dataset and the heart
disease dataset, and compare the performance with other tradi-
tional learning models, the -Nearest Neighbor method, the NB
classifier, and the decision tree, C4.5.

A. Model Illustration With a Synthetic Toy Dataset

A synthetic toy dataset is generated by the two-dimensional
Gamma distribution. Two classes of data are generated under the
same Gamma distribution with the shape and scale parameter

for the first dimension and for the second dimen-
sion. To illustrate the algorithm clearly, we transform the data
by displacement and rotation to distinguish the two classes as il-
lustrated in Fig. 2. We assume that the class , which is the more
important class, is represented by filled ’s (training points)
and o’s (test points). The other class , which is the less impor-
tant class, is represented by ’s (training points) and ’s (test
points). The acceptance level is set to 90%. As a performance
baseline, we also implement the MPM on this dataset. Several
observations from Fig. 2 are noteworthy. First, the solid line/
curve (the decision hyperplane of BMPM for linear/Gaussian
kernel) is further from the important class than the corre-
sponding dashed line/curve (the decision hyperplane of MPM
for linear/Gaussian kernel). This demonstrates that a bias is im-
posed in favor of the class . More specifically, as shown in
Table I, the accuracies of the class , i.e., both the worst case
and real sensitivities (the test-set accuracies ), are signif-
icantly increased in BMPM when compared to those of MPM.
Second, the test-set accuracies for the less important class ,

, i.e., the specificities, remain at an acceptable level, i.e.,
91.1% and 93.3%, for linear and Gaussian kernel, respectively,
with the lower bound set to 90.0%. Third, the worst case accura-
cies given by , , and are all smaller than the real test-set
accuracies. This clearly demonstrates how the worst case proba-
bility can quantitatively control the classification accuracy with
respect to future data and rigorously incorporate a bias in the
medical diagnosis. Fourth, as seen in Table I, the overall test-set
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TABLE I
LOWER BOUND � AND TEST-SET ACCURACY WITH BMPM AND MPM ON THE SYNTHETIC DATASET

TABLE II
COMPARISON OF MODEL PERFORMANCE BASED ON THE MS CRITERION ON THE BREAST-CANCER DATASET

Fig. 2. Example to illustrate the BMPM. The solid red line is the decision
hyperplane for the BMOML while the dashed line is the decision hyperplane
for the linear MPM. The solid black curve is the decision hyperplane for the
Gaussian kernel BMPM, while the dashed curve is the decision hyperplane for
the Gaussian kernel MPM. Training points are indicated with filled ’s for the
class x and +’s for the class y. Test points are indicated with o’s for the class
x and�’s for the class y. The parameter � for the Gaussian kernel is found by
cross validation. The solid line and the solid curve are pushed away from the
favored class x. The results show a qualitative accuracy indicator � = 94:9%

and � = 96:9% for the BMPM.

accuracies, i.e., TSA, of BMPM are not necessarily lower than
those of MPM. An interesting interpretation can be seen in [13].

B. Evaluation on Real Medical Datasets

After demonstrating the BMPM algorithm with linear and
Gaussian kernels on synthetic data, we apply it to two real med-
ical datasets. Two medical datasets, the breast-cancer dataset

and the heart disease dataset, obtained from the UCI ma-
chine learning repository [4], are used in this experiment. The
breast-cancer dataset consists of 458 instances of the benign
class and 241 instances of the malignant class. Each instance
is described by 9 attributes. The heart disease dataset includes
120 instances with heart disease and 150 instances without
heart disease. Each instance is described by 13 attributes. Since
handling the missing attribute values is out of the scope of this
paper, we simply remove any instances with missing attribute
values in the datasets. For these two datasets, the preferred
class is the malignant class and the heart disease class,
respectively. Therefore, the sensitivity, or the true positive rate,
corresponds to the accuracy of the class , and the specificity
is the accuracy of the class .

We use tenfold cross validation [17] to evaluate the per-
formance of different learning algorithms. We compare our
BMPM including the BMPML and the Gaussian kernel BMPM
(BMPMG), with three other approaches: NB, C4.5, and

-NN. In the BMPMG, the parameter in Gaussian kernel,
, is obtained by cross validation. In the -NN,

is set to an odd number from 1 to 19; only the best three results
are shown for brevity.

1) MS Analysis: We first evaluate the BMPM approach
against other algorithms based on the MS criterion. The results
of breast-cancer dataset are shown in Table II. It can be seen
that the BMPML, BMPMG, NB, and 5-NN achieves the best
performance. Although NB is slightly higher than the BMPM,
a significance analysis according to the traditional analysis
of variance (ANOVA) shows that difference of the means of
BMPML, BMPMG, NB, and -NN, for are insignificant

. In addition, a further ANOVA analysis shows that
the means of BMPML, BMPMG, C4.5, 3-NN, and 7-NN are
significantly different .

The results of the heart disease dataset are shown in Table III.
In this dataset, the BMPM model demonstrates a superiority to
the other three models. The BMPML and BMPMG achieves
the best results of 0.851 and 0.838. They are both greater than
0.826, the best result of other learning algorithms given by NB.
Furthermore, the ANOVA test shows that the difference of the
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TABLE III
COMPARISON OF MODEL PERFORMANCE BASED ON THE MS CRITERION ON THE HEART DISEASE DATASET

Fig. 3. ROC curves on the breast-cancer dataset. The ROC curves of the BMPML and the BMPMG are higher than those of other models and the BMPML yields
the largest area under the ROC curve.

BMPML, BMPMG, and the other algorithms is significant
.

In summary, in terms of the MS criterion, our BMPM model
demonstrates better performance when compared with other al-
gorithms in both the breast cancer and heart disease datasets.

2) ROC Curve Analysis: We now compare our BMPM model
with the NB, -NN, and C4.5 in terms of the ROC curve anal-
ysis. We generate the ROC curves as illustrated in Fig. 3(a) and
Fig. 4(a). It is observed that the BMPML and BMPMG per-
form better than other classifiers for both datasets, since at most
points, the BMPM curves are above those of other methods.
More specifically, we calculate the areas under the ROC curves
as illustrated in Table IV. For the breast-cancer dataset, it pro-
duces a curve with an area of 0.994 in the linear setting and a
curve with an area of 0.992 in the Gaussian kernel, whereas the
NB forms a curve with a smaller area equal to 0.983, the best
result from the other models. For the heart disease dataset, the
BMPM shows a curve with an area of 0.893 in the linear set-
ting and a curve with an area of 0.906 in the Gaussian kernel
setting. These two areas are both greater than those of the other
methods.

In addition, usually not all the portions of the ROC curve are
of great interest [26]. Generally, those with a small false positive
rate and a high true positive rate are most important [35]. In
Fig. 3(b) and Fig. 4(b) we show the critical portion of Figs. 3(a)
and 4(a), respectively, when the false positive rate is in the range

of 0.0 to 0.3 and the true positive rate is in the range of 0.7 to
1.0. In this critical region, most parts of the ROC curves of the
BMPM are above the corresponding curves of other models in
both datasets, which again demonstrates the superiority of the
BMPM model.

To judge whether these results are significant, we follow [25]
and conduct an analysis using LabMRMC [8]. This uses the
Jackknife method [10] to account for case-sample variance and
then applies traditional ANOVA to determine significance. This
analysis shows that the means of BMPM, C4.5, NB, -NN, for

, are significantly different .
Remark: Note that we do not compare BMPM and MPM in

the above. Due to the balanced nature of MPM, it cannot easily
generate an ROC curve. Moreover, the sensitivity and specificity
output by the MPM model has been incorporated in the ROC
curve: Its result corresponds to a certain point in the ROC curve,
where the worst case sensitivity and the worst case specificity is
equal. Therefore, the BMPM will usually be better than MPM.

VII. OPEN PROBLEMS AND FUTURE WORK

Two main problems related to the BMPM are worth discus-
sion. First, although we propose efficient algorithms to solve
the BMPM optimization problems, one interesting question for
both MPM and BMPM is whether any techniques can be used
to speed up the training process, especially for the kernelized
models. More specifically, can some decomposable techniques
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Fig. 4. ROC curves on the heart disease dataset. The ROC curves of the BMPML and the BMPMG are higher than those of other models and the BMPMG yields
the largest area under the ROC curve.

TABLE IV
COMPARISON OF MODEL PERFORMANCE BASED ON THE ROC ANALYSIS

be applied in the kernel matrix and, thus, speed up the least-
squares training? Another problem in training BMPM with ker-
nels, e.g., the Gaussian kernel, is that the parameter, , has to be
determined via time-consuming cross validation. Speeding up
these processes remains one of the open problems for both the
MPM and the BMPM models.

Second, to assure a tight lower bound of the accuracy, both
MPM and BMPM require that the mean and covariance matrices
estimated from the dataset can reliably represent the true mean
and covariance matrices. It has been empirically verified that
direct plug-in estimation achieves satisfactory performance in
many real classification tasks [13]. However, there exist cases,
where the estimation will be inaccurate and cause problems, i.e.,
the worst case accuracy does not represent the lower limit of the
real test-set accuracy [13]. To attack this problem, some robust
estimation techniques need to be applied. For example, a spe-
cific uncertainty model is proposed in [20] to correct the plug-in
estimations. However, seeking more robust estimation based on
general uncertainty models remains an open problem and is,
therefore, one of our planned research topics for the future.

VIII. CONCLUSION

In this paper, we address the problem of biased classification
needed with the medical data and present a novel learning tool,

the BMPM, for the medical diagnosis. In contrast to the tradi-
tional methods, the BMPM does not adopt an indirect approach,
but directly controls the worst case classification accuracy in
order to impose a certain bias in favor of the important class.
This provides a more elegant way to handle biased classifica-
tions. Specifically, the BMPM is able to maximize the worst
case sensitivity while maintaining the specificity within a lower
bound. Importantly, when certain distributions, e.g., a Gaussian
distribution, are assumed for the data, the BMPM maximizes
the real sensitivity, which is the goal of medical diagnosis. We
evaluate the performance of the BMPM based on the ROC anal-
ysis and the MS criterion and compare it with three traditional
classifiers: the -Nearest Neighbor, the NB, and the C4.5. The
results on two medical datasets, the breast-cancer dataset and the
heart disease dataset, both show that the BMPM outperforms the
other three models.

APPENDIX

We append the proof of Lemma 1 in this section. First, we
present the following corollary obtained from [20].

Corollary 1: Given , such that and
, the condition
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holds if and only if with
.

Proof of Lemma 1: Lemma 1(1) can easily be proved by
using Corollary 1 directly. We now prove Lemma 1(2). From
(5) and (6), we get

(17)

If we eliminate from this inequality, we obtain

(18)

We observe that the magnitude of will not influence the solu-
tion of (18). Without loss of generality, we can set

. In addition, since increases monotonically with , max-
imizing is equivalent to maximizing . Thus, the problem
can further be modified to

(19)

(20)

(21)

where (21) is equivalent to (7) due to the monotonic property of
the function.

In the above, the maximum value of under the con-
straints of (19)–(21) is achieved when the right-hand side of
(19) is strictly equal to 1; otherwise, assuming the maximum
is achieved when , a new
solution constructed by increasing with a small positive
amount and maintaining and unchanged will satisfy the
constraints and will be a better solution.

Moreover, and can be assumed as positive defi-
nite matrices; otherwise, we can always add a small positive
amount to the diagonal elements of these two matrices
and make them positive definite. Therefore, we obtain

. Obviously, this
optimization function is a linear function with respect to
and is a positive term; therefore, this optimization
function is maximized when is set to its lower bound

. Finally, the optimization problem is easily verified to be
the FP problem.
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