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Time series prediction, especially financial time series prediction, is a challenging task in machine
learning. In this issue, the data are usually non-stationary and volatile in nature. Because of its good
generalization power, the support vector regression (SVR) has been widely applied in this application.
The standard SVR employs a fixed e-tube to tolerate noise and adopts the ¢,-norm (p = 1 or 2) to model
the functional complexity of the whole data set. One problem of the standard SVR is that it considers
data in a global fashion only. Therefore it may lack the flexibility to capture the local trend of data; this
is a critical aspect of volatile data, especially financial time series data. Aiming to attack this issue, we
propose the localized support vector regression (LSVR) model. This novel model is demonstrated to
provide a systematic and automatic scheme to adapt the margin locally and flexibly; while the margin
in the standard SVR is fixed globally. Therefore, the LSVR can tolerate noise adaptively. The proposed
LSVR is promising in the sense that it not only captures the local information in data, but more
importantly, it establishes connection with several models. More specifically: (1) it can be regarded as
the regression extension of a recently proposed promising classification model, the Maxi-Min Margin
Machine; (2) it incorporates the standard SVR as a special case under certain mild assumptions. We
provide both theoretical justifications and empirical evaluations for this novel model. The experimental

results on synthetic data and real financial data demonstrate its advantages over the standard SVR.

Crown Copyright © 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

Time series analysis is a significant active research topic in
machine learning and data engineering [30,33,29,21,34]. We
consider the regression or prediction problem for financial time
series data in this paper. The objective is to learn a model from a
given financial time series data set, {(X1,¥7),--.,(Xn,Yy)}, Where
x; e 24 and y; € R, and then use the learned model to make
accurate predictions of y’s for future values of Xx’s.

The support vector regression (SVR), a successful method in
dealing with this problem, is well suited for generalization
[25,31,32]. The standard SVR adopts the ¢,-norm (p =1 or 2) to
control the functional complexity and chooses an &-insensitive
loss function with a fixed tube (margin) to measure the empirical
risk. By introducing the £,-norm, the optimization problem in SVR
can be transformed to a tractable programming problem, in
particular a quadratic programming problem when p=2.
Furthermore, the &-tube has the ability to tolerate noise in data,
while fixing the tube confers the advantage of simplicity.
Although these settings are effective in common applications,
they are designed in a global fashion and lack the flexibility to
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capture the local trend in some applications, in particular in stock
markets data or financial time series. In the context of financial
time series prediction, the data are usually highly volatile and the
associated variance of noise varies over time. In such domains,
fixing the tube cannot capture the local trend of data and cannot
tolerate noise adaptively.

One typical illustration can be seen in Fig. 1. In this figure, the
data become more noisy as the x value of the data increases. As
shown in Fig. 1(a), with a fixed &-margin (set to 0.04 in this
example), SVR considers the data globally and equally: the derived
approximating function in SVR deviates from the actual data
trend. On the other hand, as illustrated in Fig. 1(b), if we address
the local volatility of the data by adaptively and automatically
setting a small margin in low-volatile regions and a large
margin in high-volatile regions, the resulting approximating
function (the blue solid line in Fig. 1(b)) is more appropriate and
reasonable.

In order to address this issue, in this paper, we propose the
localized support vector regression (LSVR) model [11]. We will
show that, by taking the local data trend into consideration, our
model provides a systematic and automatic scheme to adapt the
margin locally and flexibly. Moreover, we will demonstrate that
this novel LSVR model has extensive connections with other
models. Specifically, this model can be seen as an extension of a
recently proposed general large margin classifier, the Maxi-Min
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Fig. 1. Illustration of the ¢-insensitive loss function with fixed and non-fixed
margins in the feature space. In (b) a non-fixed margin setting is more reasonable.
It can moderate the effect of the noise by enlarging (shrinking) the margin width in
the local area, where contains large (small) variance of noise.

Margin Machine (M*) [9,13], for regression tasks; it can also yield
a special case, which will be proven to be equivalent with the
standard SVR under certain mild assumptions. One critical feature
of our model is that the associated optimization of LSVR can be
relaxed as a second order cone programming (SOCP) problem. This
problem can attain global optimal solution and be solved
efficiently in polynomial time [19,17,22]. Another appealing
feature is that kernelization [5,24] is also applicable to the LSVR
model. Therefore, the proposed LSVR can generate non-linear
approximating functions and hence can be applied to more
general regression tasks, e.g., time series prediction. Specifically,
the tube here is adapted directly according to the functional
complexity and the local trend of the data. This provides
a systematic and rigorous way to moderate the margin
automatically.

Currently, there are several other directions to set the ¢ value.
In [23], the standard ¢-SVR is transformed to the v-SVR, where the
¢ parameter is replaced by a new parameter, v. It is stated that v is
in the range of [0 1] and it is easier to control the number of errors
than ¢. However, this parameter v is still global for the whole data

set and it does not capture the local change of the data. In [29], the
¢ is set in a descending order, putting more weights on the recent
data. In [33,34], the ¢ is set by capturing the local variance of the
data. Fernandez et al. propose to predict financial time series by
using a fixed number of neighbor points close to the input sample
[6]. This method is similar to the K-nearest neighbor method [4]
and easy to implement. However, all the training samples need to
be stored beforehand, and a new regression model needs to be
trained again in order to make predictions for a new sample. In
[15], the ¢ in a least square support vector machine is set by three
different fuzzy membership functions. However, as shown in the
experiments, our proposed LSVR generally performs better than
the least square method in the used financial data sets.

The rest of this paper is organized as follows. In Section 2, we
review the standard SVR. The linear LSVR model, including its
model definition, appealing features, and optimization method, is
described in Section 3. In Section 4, we demonstrate how the LSVR
model can be linked with other models including M# and SVR. The
kernelized LSVR is tackled in Section 5 by using Mercer’s kernel. In
Section 6, we present the result of experiments using both
synthetic and real financial data. Finally, we set out the conclusion
and propose future work in Section 7.

2. Support vector regression

We define a training data set Z = {(X1,Y1),-- -, (Xn.Yn)}, Where
X; € 2, y; € R, N is the number of training data points, and %
denotes the space of the input samples R". The aim of regression
is to find a function which cannot only approximate these data
well, but also can predict the value of y for future data x
accurately.

In general, the approximating function in SVR takes the
following linear form:

fx)=w'x+b, (1)

where w € R" and b € R. Furthermore, the above linear regression
model can be extended into the non-linear one by using Mercer’s
kernel [5,24].

Now the question is to determine w and b from the training
data by minimizing the regression risk, Ry (f), which is defined as

N
Rieg(f) = QIf1 + CZ T'(f(x) —yp, (2)
i=1

where Q[f] is the structure risk used to control the smoothness or
complexity of the function, I'(:) is a loss function that measures
the empirical risk, and C is a pre-specified trade-off value.
Generally, in SVR, Q[f] takes the form of ||w|; in ¢;-SVR or
1w™w in £,-SVR. The empirical loss function adopts the form of an
e-insensitive loss function [25,32], which is defined as follows:

0 if ly—f(x .,
F(f(X)—y)={ iy =/l (3)

ly —f(X)| — ¢ otherwise.

In this function, when the data points are in the range of +¢, they
do not contribute to the empirical error.

The complete optimization of SVR (or more precisely, the
optimization of ¢;-SVR) can be written as follows:

N
min w|;+C i+ & 4
Jin, Wiy ;(él &) (4)
sty —W'x+b<e+ ¢, (5)
(W'X; +b) —y;i<e+ &, (6)
&=0, &=0, i=1,...,N, (7)
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where ¢; and & are the corresponding positive and negative errors
at the i-th point, respectively.

The above optimization problem can be solved by the linear
programming method [2]. When the structure risk term Q[f] takes
the form of Jw'w (as in ¢£,-SVR), the optimization becomes a
quadratic programming problem [1,32].

In the above optimization problem, the standard SVR fixes the
margin ¢ globally for all data points. Although this simple setting
achieves great success in many tasks, it lacks the flexibility to
capture the data’s volatility, which is a typical feature of financial
time series data. In order to address this problem, we therefore
develop the novel LSVR model.

3. LSVR model

In this section, we first present the definition of the LSVR
model. We then detail its interpretation and its appealing
characteristics. After that, we state its corresponding optimization
method.

3.1. Model definition

The objective of the LSVR model is to learn the linear
approximating function in £ by making the function locally as
involatile as possible while keeping the error as small as possible.
We formulate this objective as follows:

. 1¢ N
min_ &> VWIZW+CY G+ &) (8)
i=1 i=1

w.b.&.&f
st yi— (WX + b)<ey/WIZw + &,

(W'X; + b) — y;<evV/WIZw + &,
£=0, &=0, i=1,... N, (9)

where &, &, and ¢ are defined as in the previous section. Z; is the
covariance matrix formed by the i-th data point and those data
points close to it.

3.2. Model interpretations

In this section, we interpret our novel LSVR model. First, we
discuss the physical meaning of the term w’X;w.

Suppose y; = w'x; + b and j; = w'X; 4+ b (X; denotes the mean
of x; and a certain number of points closest to it). We have the
variance around the i-th data point as

1 k 5
Ai = mj;(%q-j )

1 .
= Srg 1 2 W (ki = X))
j=—k

= TZiW,

where 2k is the number of data points closest to the i-th data
point. Therefore, 4; = w’X;w actually captures the volatility in the
local region around the i-th data point. In addition, 4; can also
measure the complexity of the function around the i-th data point,
since it reflects the smoothness in the corresponding local region.

By using the first interpretation of A4; = w'X;w (representing
the local volatility), LSVR can systematically and automatically
vary the margin: If the i-th data point lies in an area with a larger
variance of noise, it will contribute to a larger &,/w'2;w or a
larger local margin, resulting in a reduction of the impact of the
noise around the point. On the other hand, if the i-th data point is
in the region with a smaller variance of noise, the local margin,
ey/WTX;w, will be smaller; in this case, the corresponding point

will contribute more in the fitting process. By contrast, the
standard SVR adopts a fixed margin, which treats each point
equally and therefore lacks the ability to tolerate variation of
noise.

By applying the second interpretation of 4; = w'X;w, namely,
a measure describing the local functional complexity, LSVR
controls the overall smoothness of the approximating function
by minimizing the average of 4;, as seen in (8). In contrast, the
standard SVR globally minimizes a complexity term, i.e., ||w|; or
1wTw, which is insensitive to local changes in the complexity of
the function.

3.3. Optimization

In order to solve the optimization problem of (8), we introduce
auxiliary variables, ti,...,ty, and transform the problem as

follows:
] 1N N X
w,t??,}g,g; N; ti+ C;(éi +&7)
sty — (WX + b)<eVWTZw + &, (10)
(W'X; + b) — y;<eVWTZw + &,
VWIZw<t;,
t;=0, ¢&>0, &>0,i=1,...,N. (11)

It is clear that (10) and (11) are non-convex constraints. This
may present difficulties in optimizing the LSVR problem. In the
following, we relax the optimization to an SOCP problem [17] by
replacing /w'X;w with its upper bound t;:

N N

LI SLRES SERE (12)
st yi— (WX +by<et; + &, (13)
(W'X; + b) — y;<et; + &, (14)
VWIZw<t;, (15)

=0, &=0, &=0,i=1,..,N. (16)

Since t; is closely related to /w!X;w, weighting the margin
width with t; will achieve the original objective, i.e., adapting the
margin flexibly. Furthermore, the relaxed form is a linear
programming problem under quadratic cone constraints, or more
specifically it is an SOCP problem. Therefore, this problem can be
solved in polynomial time by using many general optimization
packages, e.g., Sedumi [27,28]. Another advantage is that the
relaxation also enables the application of kernelization, which can
yield more general non-linear approximating functions. This will
be demonstrated in Section 5.

We now analyze the time complexity of LSVR. As indicated in
[17], if the SOCP is solved based on interior-point methods, it
contains a worst-case complexity of O(n?). Adding the cost of
forming the system matrix (constraint matrix), which is O(Nn?),
the total complexity would be O((N + 1)n?), which is in the same
order as the M* and can be solved in polynomial time. Note that
for time series prediction, we do not need to use sorting methods
to find the closest points for each data sample, since the series
itself provides the order information. For example, 2k points
closest to the i-th point are simply those data with time values
i—ki—-k+1,...,i—1,i+1,...,i+ k. Therefore no further com-
putation is involved.

4. Theoretical connections

In this section, we establish various connections from our
novel model to other models. We first show that the LSVR can be
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considered as the extension of the M* to regression tasks. We then
demonstrate how the standard SVR can be incorporated as a
special case of LSVR.

4.1. Connection with M*

The LSVR model can also be considered as an extension of the
general large margin classifier, the M# [9]. Within the framework
of binary classification, which consists of two classes of data,
X and Y, the M* model is formulated as follows:

pwiop P (17)
(WTX; + b) .
st. ———==>p, i=1,2,...,Ny, 18
WS P X (18)
—wW'v. + b
M> i=1,2,....Ny, (19)

N
where Xy and Xy refer to the covariance matrices of the X and
the Y data, respectively. The M* model seeks to maximize the
margin defined as the minimum Mahalanobis distance for all
training samples,! while simultaneously classifying all the data
correctly. This model has been shown to contain the support
vector machine, the minimax probability machine [16,8,12,10],
and the Fisher discriminant analysis [7] as special cases.
Furthermore, it can be linked with the minimum error minimax
probability machine known as a worst-case distribution-free
classifier [14].

Within the framework of classifications, M* considers
different data trends for different classes, i.e., it adopts the
covariance information of two classes of data, Xx and ZXy.
Analogously, in the novel LSVR model, we allow different data
trends for different regions, which is more suitable for a
regression application.

4.2. Connection with SVR

We now analyze the connection of the LSVR model with the
standard SVR model. By considering the data trend globally and
equally, i.e., setting 2; = X, fori=1,...,N, we can transform the
optimization of (8) as follows:

w.b.&i &}

N
min = VWIIW+C) (& + &)

iz
sty — (W'X; + b)<evwTZw + &,

W'X; + b) — y;<evwiZw + &,
&=0, &=0,i=1,...,N. (20)

Further, if 2 = I, we obtain

min
w.b.&.&

N
Wiy +C> (& + &) (21)
i=1

st yi— WX + b)< w16+ &,
WX + b) — y;<lIWll & + &,
&=0, &20,i=1,...,N. (22)

The above optimization problem is very similar to the ¢;-norm
SVR, except that it has a margin related to the complexity term. In
the following, we will prove that the above optimization is
actually equivalent to the ¢;-norm SVR in the sense that, if one of
the models for a given value of the parameter ¢ produces a
solution {w,b}, then the other method can derive the same
solution by adapting its corresponding parameter .

! This also inspired the name of this model.

Lemma 1. The LSVR model with setting 2; =1 is equivalent to the
t1-norm SVR in the sense that: (1) Assuming a unique & exists for
making ¢;-norm SVR optimal,? if for & the ¢;-norm SVR achieves a
solution {w3, b7} = SVR(¢g}), then the LSVR can produce the same
solution by setting the parameter &= &%/||w%|;, ie., LSVR(g}/
lw; 1) = SVR(€}). (2) Assuming a unique & exists for making the
special case of LSVR optimal? if for & the special case of LSVR
achieves a solution {w3,b5} = LSVR(g5), then the ¢1-norm SVR can
produce the same solution by setting the parameter & = & ||w3||4, i.e.,
SVR(e3 W3 1) = LSVR(&).

Proof. Since (1) and (2) are very similar statements, we only
prove (1). When ¢ is set to &;/|wjll; in the special case of
LSVR, the value of the objective function of LSVR will always be
smaller than the one obtained by setting {w, b} = {w3,b]}, since
{wj, by} is easily verified to satisfy the constraints of LSVR.
Namely,

Fisvr ( ) <fswr(&}), (23)

&
lwilly
where we use fgr(e) (fisyr(és)) to denote the value of the
SVR (LSVR) objective function when ¢ is set to a specific value &;.

We assume the solution to be {wy, b} when ¢ is set to &5 /| w7}l
in the special case of LSVR. Similarly, by setting & = &% ||wy||/[|W7 ||
in SVR, we have

X ||W2||1> ( & )
I < — ). 24
fSVR< VW frsv AT (24)
Combining (23) and (24), we have
*||W2||l) < 2 ) .
€ < — ) < er). 25
fSVR< VWi, fisve THE fsvr(eD) (25)

Since & is the unique ¢ that achieves the objective of minimizing
SVR, (25) implies that |w;||; = ||w%|l;. This further implies that w,
is equal to wj, since, with |wa|; = |wj]|;, the optimization of
LSVR is exactly the same as that of SVR. This will naturally lead to
the same solution. O

In addition, if in LSVR we use the item of w'Xw instead
of its square root form as the structure risk or complexity risk, a
similar proof can also be developed showing that the ¢;,-norm SVR
is equivalent to the special case of LSVR with X; = X. In summary,
we can see that the LSVR model actually contains the standard
SVR model as its special case.

5. Kernelization

In the above discussion, the approximating function derived
from LSVR is provided in a linear configuration. In the following,
we show that kernelization is also applicable to the relaxed LSVR
model. This can therefore generate non-linear approximating
functions.

Kernelization [24] is a technique that maps n-dimensional data
points into a high-dimensional feature space R’, where a linear
function corresponds to a non-linear function in the original
space. The kernel mapping can be formulated as: x; — @(X;),
where i=1,...,N, and ¢ : R" — R is a mapping function. The
corresponding linear approximating function in R’ is wlpX) =b,
where w, @(X) € R, and b e R.

2 This means that setting ¢ to ¢} will minimize the objective function of SVR.
3 This means that setting ¢ to &5 will minimize the objective function of LSVR.
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The optimization of the relaxed LSVR in the feature space can
be written as

. 1 N N
N+ C e 26
o0, N;,+ ;(éﬂré) (26)
sty — Wlox) + b)<st; + &, (27)

WTox;) + b) — y;<st; + &, (28)

VWIZfw<t;, (29)

ti=0, >0, &0, i=1,...,N.

However, to apply the kernelization, we need to represent the
optimization and the final approximating function in a kernel
form, K(x;, Xj) = (p(xi)T(p(xj), namely, an inner product form of the
mapping data points.

5.1. Basis of kernelization for LSVR

In the following, we demonstrate that kernelization indeed
works in LSVR, provided that suitable estimates of means and
covariance matrices are applied therein.

Theorem 2. If the corresponding local covariance Zf’ can be
estimated by the mapped training data, i.e., p;, X7 can be written as

1 & . N
= mj;<(§0(xi+j) — P(PXiy) — P, (30)
o 1 &
with (pi = m Z ([)(X,'Jrj), (31)
=k

where we just consider 2k data points which are the closest to the i-th
data, then the optimal w lies in the span of the mapped training data.

Proof. Suppose w = w,, + W,, where w, is the projection of w in
the span of the mapped training data, w, is the orthogonal
component to the span. Since wl¢(x;) =0 fori =1,...,N, we can
easily know that

wipx) = Wyp(x,),

w'zfw =wy > w,.

Therefore, we can omit w, since it disappears in the optimization.
We then set it to 0 and obtain w = w,, i.e., the optimal w lies in
the span of the mapped training data. O

According to Theorem 2, we can write w as a linear combination
of training data points:

N
w= Zuigo(xi), (32)

i=1

where the coefficients y; e R, i=1,...,N.
5.2. The kernelization result

Before we present the main Kkernelization result, we first
introduce the notation. The element of the Gram matrix K in the
position of (i,j) is defined as K;; = go(x,»)Tgo(xj) fori,j=1,2,...,N.
We further define K; as the i-th column of the Gram matrix.
Namely,

Ki=[Ky , Koo Ky,]".
We define the block of the Gram matrix Kj;_i.iixn; as follows:

Ki_i1 Ki_in

Kii_ivin=

Ki k1 Ki kN

Furthermore, the matrix L; is denoted as

1 T
L; \/Tﬁ(l([pk:wk,w] — Lol

In the above, the t-th element ofliT is defined as (liT)t =(1/2k+ 1)
Z}‘?k K(Xij, X¢), and 15,4 is a column vector of dimension 2k + 1
with each element equal to 1.

We present the kernelization result as the following theorem.

Theorem 3 (Kernelization theorem of LSVR). Finding the optimal
approximating hyperplane for LSVR involves solving the following
optimization problem:

. 1 .
min N;n+€;(gi+g,~)

bt & 8
sty — WK +by<et; + &,
(WK + b) —y;<et; + &,

\/ ,U,TL}-L“u <t

t;=0, &=0, &=0,i=1,...,N.

Proof. By using Theorem 2, we write w as ZIN: 1 Hjp(X;) and
substitute it into (27)-(29). By rewriting (27)-(29) in the kernel
form using a kernel function K(x;, X;) = (p(x,»)Tq)(xj) and conducting
some simple manipulations, we then obtain

N
wiom) =Y KX, ) = p'K;,
j=1
w'EZfw = p'LiLp
If we simply substitute the above into the optimization of LSVR,
we obtain the kernelized optimization form. O

Hence, the kernelized LSVR is transformed into an SOCP
problem which is a convex programming problem [17,3].

Note that, in the above, the matrix L; is not necessarily a square
matrix, and hence it is not necessarily positive definite. Instead,
LL; is guaranteed to be at least positive semi-definite. This can be
clearly observed and verified since LTL; describes the covariance
around the i-th data point in the feature space. In practice, we still
need to make this matrix positive definite. This can be achieved by
adding a small positive regularization term in the diagonal
elements of L]L;.

6. Experiments

In this section, we compare the three algorithms, our LSVR
model, the ¢-SVR, and the regularized least squares fuzzy SVR
(RLFSVR) [15], on both the synthetic Sinc data and the real world
financial time series data. The experiments are performed on a PC
with a 2.13 GHz Intel Core 2 CPU and 1G RAM.

The SOCP problem associated with our LSVR model is solved
using a general software package, Sedumi [27,28]. The SVR
algorithm is performed by the toolbox, Spider.* The RLFSVR is
implemented in Matlab 7.1.

6.1. Evaluations on synthetic Sinc data

The synthetic data are tested in the function approximation
scheme to examine the performance of different models. Fifty
examples (x;, y;) are generated from a Sinc function [23], where x;’s
are drawn uniformly from [-3.0,3.0], and y; = sin(nx;)/(7x;) + Tj,
with t; being drawn from a Gaussian with zero mean and variance 2.

4 http://www.kyb.tuebingen.mpg.de/bs/people/spider/


http://www.kyb.tuebingen.mpg.de/bs/people/spider/

2664 H. Yang et al. / Neurocomputing 72 (2009) 2659-2669

Two cases are evaluated. In the first case, the standard deviation
(STD) is set to zero, i.e., ¢ = 0.0; in the second case, the STD of the
data is symmetric with respect to the origin, while increasing
linearly from 0.1 at x = 0.0 to 0.5 at x = 3.0. Hence, in this case, the
variance of noise is different in different regions. We use the
default parameters C=100.0 and the RBF Kkernel
K(u,v) = exp(—|lu — v|?).

We first compare the performance between the ¢-SVR and the
LSVR with respect to different ¢’s in order to investigate their
difference clearly. Since the fuzzy parameters in the RLFSVR are
not directly related to the ¢ parameter in the ¢-SVR and the LSVR,
it might be confusing to include the results of RLFSVR in Table 1.
For this reason, we intentionally report the results of SVRs
(including &-SVR and LSVR) and RLFSVR in separate tables. We
then further report the best results given by these three
algorithms in Table 3.

Table 1 reports the results in terms of the mean square error
(MSE) and the associated STD of the LSVR and the ¢-SVR against
different ¢ values in the abovementioned two cases. All the results
are averaged over 100 random trails. For both cases, the MSE
incurred by the &-SVR generally increases as ¢ increases (the only
exception occurs in the case of ¢ =0.2 for the Sinc data with
varying o). Moreover, in the first case (with zero noise), when the
¢ value is too large, there are no support vectors in the &-SVR and
the MSE reaches a maximum. In contrast, the MSE incurred by the
LSVR always maintains small even if the margin width ¢ increases
to 2.0. In the second case (with a varying o), the LSVR model also
outputs smaller MSEs and smaller STDs than the &-SVR for all ¢’s.
This result shows how the proposed LSVR can improve the
performance of the standard &-SVR.

Table 2 reports the results of the RLFSVR with the effect of
fuzzy parameter values. Here, we show the results of the RLFSVR
on different values, ranging from O to 1, in the linear membership
function. Since the RLFSVR requires the positive definite of the
membership matrix, the first value we set is 1e—6 which is close
to 0. We can see that for non-noise Sinc data, the RLFSVR achieves
the best result when the parameter value is 1; while for the
noise Sinc data, the best result is obtained when the parameter
value is 0.4.

Table 3 reports the best results of the ¢-SVR, the LSVR and the
RLFSVR. In the first test case, i.e., 6 = 0, the RLFSVR model cannot
exactly fit the data because of the fuzzy membership. That is, the
MSE given by the RLFSVR model is approximating to 0, but not
exactly equal to 0. In contrast, in this case, both the ¢-SVR and the
LSVR can exactly generate the same curve as the true Sinc
function, provided that a good ¢ is set. In the second test case
(with varying o), the LSVR model also demonstrates the best
performance. It has the smallest MSEs. Moreover, the associated
STDs are also significantly smaller than those of the other two
algorithms.

Table 1
Experimental results of the LSVR model and the &-SVR algorithm on the Sinc data
with different ¢ values.

& Case I: 0 = 0.0 (MSE) Case II: varying ¢ (MSE =+ STD)
LSVR SVR LSVR SVR

0.0 0 0 0.0742 + 0.0281 0.0909 =+ 0.0293
0.2 0.0004 0.0160 0.0384 +0.0184 0.0852 £ 0.0265
0.4 0.0016 0.0722 0.0281+0.0114 0.1008 -+ 0.0206
0.6 0.0044 0.1695 0.0263 =+ 0.0096 0.1471 + 0.0264
0.8 0.0082 0.1748 0.0262 + 0.0125 0.2204 +0.0330
1.0 0.0125 0.1748 0.0250+0.0116 0.2619 + 0.0266
2.0 0.0452 0.1748 0.0240+0.0113 0.2670 = 0.0330

Table 2
Experimental results of RLFSVR model on the Sinc data with different fuzzy
parameter values.

Parameters Case I: ¢ = 0.0 (MSE) Case II: varying ¢ (MSE + STD)
le-6 9.2e-4 0.0415 £ 0.0172

0.2 3.7e-5 0.0398 £ 0.0174

0.4 8.2e-6 0.0397 £0.0170

0.6 3.3e-6 0.0400 + 0.0169

0.8 1.8e-6 0.0402 £ 0.0170

1.0 1.3e-6 0.0406 + 0.0170

Table 3

Comparison of the best results given by the &-SVR, the LSVR, and the RLFSVR
algorithm on the Sinc data.

Algorithms Case I: non-noise (MSE) Case II: noise (MSE + STD)
SVR 0 0.0852 + 0.0265
LSVR 0 0.0240 +£0.0113
RLFSVR 1.3e-6 0.0397 £ 0.0170

The disadvantage of the LSVR is its training computational
time. In the first case, the average training time is 0.5611, 0.0035,
and 0.0050 s for the LSVR, the ¢-SVR, and the RLFSVR, respectively.
In the second case, the training time is 0.5342, 0.0029, and
0.0022 s for the LSVR, the ¢-SVR, and the RLFSVR, respectively. All
the report computational times are the average values when the
best results are achieved for each algorithm. How to reduce the
time complexity of the LSVR is an interesting and important open
problem. We will leave this as future work.

To visually examine the performance of the three algorithms,
we plot in Fig. 2 the approximation results with ¢ = 0.2 for the
&-SVR and the LSVR model® and the best curve given by the
RLFSVR. Fig. 2(a) shows the curves in the first test case. In this
case, compared with the &-SVR, the LSVR model can adjust the
margin automatically to fit the data with a smaller MSE. However,
since it uses a fixed margin, the ¢-SVR algorithm models the data
poorly when an unsuitable margin is chosen. Moreover, the curve
of the LSVR and the RLFSVR can almost perfectly (nearly) fit the
Sinc function when there is no noise. Fig. 2(b) shows the fitting
curves of three algorithms in the noisy case with varying o. We
can see that the resulting approximating function in the LSVR is
smoother than that in the ¢-SVR, also in the RLFSVR. More
specifically, although & = 0.2 is not the best parameter value for
the margin of the LSVR, the associated MSE is still smaller than
that of the best fitting of the RLFSVR.

Finally, we also evaluate in Fig. 3 how the parameter k affects
the performance of the LSVR in the noisy case. We vary k from 1 to
N/2, where N = 50 in this case. It can be clearly observed that the
LSVR achieves the best MSE when k = 1. As k increases, the MSE is
generally getting larger and larger, though the maximum MSE is
achieved when k is set to around 14. Note that k = N/2 means that
our proposed LSVR reduces to the standard SVR, which considers
the data trend only globally. The curve shows that it is worthwhile
considering the data trend locally as addressed by the LSVR.

6.2. Evaluations on real financial data

We evaluate our model on financial time series data which are
highly volatile in nature and compare the performance of the

5 We intentionally show the results of the ¢-SVR and the LSVR with ¢ = 0.2
(not the best parameter for the LSVR) in order to see how our proposed LSVR can
adapt the margin against the noise especially for the first test case.
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Fig. 2. Experimental results on synthetic Sinc data with ¢ = 0.2. (a) ¢ = 0.0, (b)
varying o.
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Fig. 3. Experimental results of the LSVR model on Sinc data with ¢ from 0.0 to 2.0
and k for 1 to N/2, where N = 50.

LSVR model against the ¢-SVR and the RLFSVR. The experimental
data used are drawn from three major indices from the period of
January 2, 2004 to April 30, 2004: (1) the Dow Jones Industrial
Average (DJIA), (2) the NASDAQ, and (3) the Standard & Poor 500
index (S&P500).

Data preprocessing: The daily closing prices (d;) of the above
three indices are converted to continuously compounded returns
as 1 = log(ds,1/dy) first, and then they are normalized by
R¢ = (rr — Mean(r;))/STD(r¢), where the means and STDs are
computed for each individual index in the training period. The
statistical properties of these data are reported in Table 4. One
may note that the data in this period for three indices contain
substantially different skewness. In the evaluation, the ratio of the
number of the training return series to the number of test return
series is set to 5:1. Therefore, we obtain the training and test
periods and the number of data as reported in Table 5.

Model selection: The predicted system is modeled as R; = f(x;),
where X; takes the previous p days’ normalized returns as
indicators, i.e., Xt = (Rr_p, . .., Rc_1), where the parameter p, called
lag, is picked from 1 to 6 as [30]. The trade-off parameter C and the
parameter 8 of the RBF kernel (K(u,v)= exp(—p|u—v|?)) are
obtained by 10-fold cross validation on the following paired
points: [27°,274,...,219x [27°,274,...,219). Since when £>2.0,
there are no support vectors in the SVR, we just restrict the &
values in the range of 0.0,0.2,...,1.0 to 2.0 for both the LSVR
model and the &-SVR algorithm. For the parameter k in the LSVR,
we test it from 1 to 20. The fuzzy parameters used in the RLFSVR
are also obtained by 10-fold cross validation.

Results analysis: Similar to the Sinc example, we first compare
the performances of the proposed LSVR with the &-SVR against
different &’s in order to have a closer examination on the LSVR.
Then, we report the best results obtained by the &-SVR, the LSVR,
and the RLFSVR.

We apply the obtained function f to test the performance by
one-step ahead prediction. Tables 6, 7 and 8 report the
corresponding MSEs in the DJIA index, NASDAQ index, and
S&P500 index for the LSVR and the &-SVR, respectively. In these
tables, we list the results as well as the optimal parameters
against the different ¢’s, ranging from 0.0 to 2.0; these parameters
are the lag p and k for the LSVR model, and the lag for the &-SVR
algorithm. From these tables, the LSVR usually demonstrates
better performance than the &-SVR when an ¢ is specified. The
LSVR is only slightly worse than the SVR in very few cases. These
observations once again validate that considering data in a local
fashion can indeed boost the prediction performance.

Table 4
Summary of statistics of normalized returns of DJIA, NASDAQ and S&P500 in the
experiments.

Moments  DJIA NASDAQ S&P500

Train Test Train Test Train Test
Mean 0.0000 -0.2850 —0.0000 -0.4819 0.0000 -0.3858
SD 1.0000 0.9957 1.0000 1.1312 1.0000 1.1298
Skew —0.0678 0.1684 0.0928 03256 -0.1298 -0.0102
Kurt 2.5437 2.7706 2.6600 1.8631 2.5308 24124
Table 5
Periods and number of the financial data.
Item Total Training Test
Period January 2-April 30 January 2-April 12 April 13-30

# 82 69 13
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Table 6
Experimental results (MSE) of the LSVR model and the &-SVR algorithm on the DJIA
index with different ¢ values.

€ LSVR k SVR
Error Lag Error Lag

0.0 0.9086 1 1 0.9199 1
0.2 0.9177 1 10 0.9199 1
0.4 0.8982 1 1 0.8695 1
0.6 0.8690 1 9 0.9096 1
0.8 0.8501 1 3 0.9353 1
1.0 0.8471 1 1 0.9347 1
2.0 0.8388 1 2 0.9018 1
Table 7

Experimental results (MSE) of the LSVR model and the &-SVR algorithm on the
NASDAQ index with different ¢ values.

& LSVR k SVR
Error Lag Error Lag

0.0 1.3105 1 1 1.2683 1
0.2 1.2959 1 4 1.2998 1
0.4 1.3229 1 9 13100 1
0.6 1.2720 1 1 1.3109 1
0.8 1.2315 1 1 13344 1
1.0 1.2232 1 1 1.3448 1
2.0 12115 1 1 1.2758 1
Table 8

Experimental results (MSE) of the LSVR model and the &-SVR algorithm on the
S&P500 index with different ¢ values.

€ LSVR k SVR
Error Lag Error Lag

0.0 1.2184 6 1 1.2247 6
0.2 0.9534 2 1 1.2394 6
0.4 0.9234 2 8 1.2194 2
0.6 0.9544 2 12 1.1593 2
0.8 0.9657 2 6 1.0624 1
1.0 1.0232 2 5 1.0077 1
2.0 11589 2 1 1.1601 1
Table 9

Experimental results (MSE) of the RLFSVR algorithm on the financial indices with
different lags.

Lag 1 2 3 4 5) 6

DJIA 0.8530 0.9205 1.0527 1.3363 1.4766 1.3716
NASDAQ 1.2768 1.6566 1.5781 1.6781 1.7630 1.5434
S&P500 1.0838 11293 1.2255 1.4155 1.6014 1.2248

In Table 9, we report the best results achieved by the RLFSVR
with different lags. To make it clear, we plot the best results given
by the &-SVR, the LSVR, and the RLFSVR in Fig. 4. Again,
the proposed LSVR demonstrates the smallest MSEs in all the
three indices. More specifically, the smallest MSEs of the LSVR
are 0.8388 in DJIA, 1.2115 in NASDAQ, and 0.9234 in S&P500, while
the smallest MSEs of the ¢-SVR are 0.8695, 1.2758, and 1.0077, and
the smallest MSEs of the RLFSVR are 0.8530, 1.2768 and 1.0838,
respectively. A paired t-test [18] performed on the best results of
three models show that the LSVR model outperforms the &-SVR
and the RLFSVR with the o« = 5% significance level for a one-tailed

test, while the RLFSVR algorithm is slightly better than the &-SVR
algorithm in the DJIA index, but worse in the NASDAQ index and
S&P500 index.

As mentioned before, the disadvantage of the proposed LSVR
is its relatively long training time, since it needs to solve an
SOCP problem which is conducted by using the general-purpose
optimization package Sedumi in our implementation. In Table 10,
we list the training time when the best MSE is achieved in the
three indices. Although the LSVR costs less than 1s in training,
it spends much longer time than the other two algorithms.
The RLFSVR needs to solve a linear equation system only, while
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=
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Fig. 4. MSE comparison among the LSVR, the &-SVR, and the RLFSVR.

Table 10
Training time (second) for the LSVR, the &-SVR, and the RLFSVR on the three
indices.

Methods LSVR &-SVR RLFSVR
DJIA 0.8839 0.0021 0.0024
NASDAQ 0.8639 0.0009 0.0023
S&P500 0.9624 0.0095 0.0024
Results according to k on three indices
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Fig. 5. Results of LSVR model with different k values on the best results of lag and ¢
in the three indices.
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the ¢-SVR can reduce the training time by exploiting the
sequential minimal optimization technique [20]. It is very
interesting to investigate whether some decomposable algorithms
can be used in the LSVR in order to reduce its time complexity. We
leave this topic as future work.

How parameters affect the performance of LSVR? In this section,
we discuss how the parameters involved in the LSVR influence its
prediction performance.

We first examine how the parameter k affects the prediction
performance. From Tables 6-8, we notice that the best values for
k’s are usually relatively small. In more detail, in DJIA, the largest k
among all the best MSEs is 13 when ¢ = 0.8; in NASDAQ, the
largest k among the best MSEs is 9 when ¢ = 0.4, while most
of the k’s associated with other ¢&’s are optimal at 1; in S&P500,
the largest optimal k is 12 with ¢ = 0.6. To clearly see the influence
of k, we plot in Fig. 5 the MSE against different k’s when the
best results are attained (i.e., other parameters except k are fixed
to the values associated with the best results given by LSVR in the
three indices). It is evident that a smaller k generally achieves
better performance in NASDAQ, while the best k is 2 and 8 for
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DJIA and S&P500, respectively. When k is set to some large value
(say a value larger than 14), the MSEs in the three financial data
sets are usually relatively large. Note that the LSVR tends to use
the global variance and will perform similar to the &-SVR as k
increases. This shows that appropriately considering the data
trend in the local way as emphasized in the LSVR can usually
outperform the &-SVR model with the global setting.

We next analyze the influence of the lag parameter on the
prediction performance. From Tables 6-9, one can observe that
the best results for the LSVR model in the DJIA and NASDAQ
indices and the best results for the ¢-SVR and RLFSVR algorithms
in the three indices are obtained when the lag is selected as 1,
while the best result of the LSVR model on the S&P500 is obtained
when the lag is 2. Although the best lag might be possibly data-
dependent, for these three data sets, it seems that we have more
chances to get better results if the lag is equal to 1.

Finally, we investigate how the cost parameter C influences
the performance of the proposed algorithm. We plot the MSEs of
the &-SVR, the RLFSVR, and the LSVR against C in Fig. 6, when the
best results for the three algorithms are achieved (i.e., other
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Fig. 6. The influence of C on the performance. (a) DJIA, (b) NASDAQ, (c) S&P500.
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parameters except C are, respectively, fixed to the values
associated with the best results given by the three algorithms in
the three indices).

Two observations deserve our attentions. First, for the &-SVR
and the RLFSVR, the best C is generally data-dependent. Moreover,
the performance of the ¢-SVR is very sensitive to the choice of Cin
these high-volatile data, while the RLFSVR generates a relatively
flatter curve than the &-SVR. This shows that the RLFSVR might
also be able to mitigate the influence caused by the high volatility.

Second, it is surprising that the performance of the LSVR
almost remains unchanged against different C's. If one looks back
into the optimization problem (12)-(15) in the LSVR, the margin &
is weighted by the upper bound t; around each data point x;. The
non-fixed margin would “absorb” the influence caused by the
noise points. Namely, when the points are located in a noisy area,
the margin will be flexibly expanded so as to reduce the impact
caused by the noise points. In comparison, in the &-SVR, the
impact caused by the noisy points are only mitigated by the slack
variable ¢&;. In other words, one can regard that each ¢&;, associated
with ¢, is also able to adapt the margin around each x; slightly. In
this sense, the non-fixed adaptive margin functions similar to the
slack variable ¢ in the &-SVR. In fact, as we find from the
implementation of the LSVR, ¢ just fine-tunes the margin,
while the approximating function is mainly decided by the
adaptive margin introduced by et;. It should be noticed that this
phenomenon actually makes our model more appealing: we can
even remove the term C)_; ¢; from (12). Meanwhile, the varying
margin in our LSVR model benefits for removing the effect of
outliers.

7. Conclusion and future work

In this paper, we have proposed the localized support vector
regression (LSVR) model in order to improve the performance of
the standard support vector regression (SVR) model for time
series prediction. In contrast to the standard SVR model, our novel
model offers a systematic and automatic scheme to adapt the
margin locally and flexibly. Therefore, it can tolerate noise
adaptively. We have demonstrated that this promising model
not only captures the local information of data in approximating
functions, but also incorporates the standard SVR as a special case.
Moreover, kernelization can also be applied to this novel model.
Therefore it can generate non-linear approximating functions and
can be applied to general regression tasks. The experiments
conducted on synthetic Sinc data and three series from real
financial time series indices show that our model outperforms the
standard SVR and the RLFSVR in modeling the data.

Four main issues need to be investigated in future work. First,
we have relaxed the difficult non-convex optimization of LSVR to
the tractable SOCP problem. Although this relaxation is acceptable
both theoretically and empirically, two interesting questions arise.
First, can some new technique be used to solve the optimization of
LSVR directly or to establish how well the relaxed LSVR performs
relative to the unrelaxed one? Second, although it is polynomial,
the time complexity of LSVR may cause difficulties in very large
data regression tasks. In particular, LSVRs time complexity of
O((N + 1)n?) is larger than that of O(n® + Nn?) involved in solving
the quadratic programs of the standard SVR. To solve this problem,
one possible direction is to exploit novel techniques to decompose
the Gram matrix and to develop some specialized optimization
procedures for LSVR.

Second, we have shown how the associated parameters of the
proposed LSVR affect its prediction performance empirically. The
results show that, to generate better performance, k needs to be
chosen carefully, and the performance of LSVR is actually

insensitive to the trade-off parameter C. Nevertheless, how to
automatically set the best parameters may still be data-dependent
and it remains to be a highly challenging yet interesting topic.

Third, although it is specially designed for highly volatile data,
i.e., the time series financial data, the proposed LSVR can still be
applicable for regular function approximation tasks. We need to
perform extensive investigations on our method in the regular
function approximation tasks. Specifically, we would like to
examine whether the possible accuracy improvement is worth-
while especially when we take into account the long training time
incurred by LSVR. We leave this as future work.

Finally, as the regression counterpart of the Maxi-Min Margin
Machine (M*), LSVR may contain further connections with those
regression models that are directly extended from special cases of
M?*. In particular, it is worth investigating whether LSVR can be
linked with the minimax probability machine regression [26].
Exploring these connections is therefore one of our intended
research topics in the future.
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