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Abstract

A novel neural network technique for nonnegative independent component analysis is proposed in this letter. Compared with other

algorithms, this method can work efficiently even when the source signals are not well grounded. Moreover, this method is insensitive to

the particular underlying distribution of the source data. Experimental results demonstrate the advantages of our approach in achieving

satisfactory results regardless of whether the source data are well grounded or not.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Independent component analysis (ICA); Nonnegative approach; Mutual information; Neural network
1. Introduction

The task of nonnegative independent component analy-
sis (ICA) is to estimate the source vector s ¼ ðs1; . . . ; snÞ

T

and mixing matrix A in the linear generative model x ¼ As

given an observation vector x ¼ ðx1; . . . ; xnÞ
T, where the

sources are nonnegative, i.e., Prðsio0Þ ¼ 0, and indepen-
dent, i.e., pðsisjÞ ¼ pðsiÞpðsjÞ if iaj, here PrðdÞ is probability
function and pðdÞ is probabilistic density function (pdf).
Several authors have introduced some algorithms for
nonnegative ICA [7–10], yet these algorithms are all based
on the assumption that the sources si are well grounded

except for independence and nonnegativity. We call a
source si well grounded if PrðsioeÞ40 for any e40, i.e., si

has nonzero probabilistic density function all the way
down to zero [8]. However, in practical applications, many
real-world nonnegative sources are not well grounded, e.g.,
e front matter r 2005 Elsevier B.V. All rights reserved.
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images. In this letter, we propose a new algorithm for
nonnegative ICA even in the case that the sources are not
well grounded. Essentially, our algorithm is one based on
minimizing mutual information.

2. Algorithm for Nonnegative ICA

2.1. Algorithm architecture
Lemma 1. Let s ¼ ðs1; . . . ; snÞ
T be an n-dimensional random

vector of real-valued independent sources which have non-

Gaussian distributions, A and B be nonsingular n� n real

matrices, x ¼ As be a linear mixing model of s, and y ¼

Bx ¼ BAs ¼ Rs be a linear unmixing model of x. Then the

mutual information IðyÞ ¼
P

iHðyiÞ �HðyÞ is minimized if

and only if R ¼ KP, where

HðyiÞ ¼ �

Z
pðyiÞ log pðyiÞ dyi (1)

denotes Shannon’s differential entropy [3,6]. HðyÞ is the

differential entropy of a multidimensional random variable y,
K and P are diagonal and permutation matrices, respectively.
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Proof. In the case where R ¼ KP, y is simply a permuta-
tion of the independent source vector s with just sign and
scale ambiguity, and the mutual information IðyÞ is zero.
The proof of the converse is relatively complicated, but
interested readers can refer to the literature [3] or chapter
10 in the literature [6].

According to the theory given above, the unmixing
system of nonnegative ICA can be constructed as shown in
Fig. 1, where B is the unmixing matrix in ICA, yi are the
extracted independent components, and ciðui; yiÞ are some
nonlinear mappings, ui is the parameters contained in
ciðui; yiÞ.

Assume that each function ciðui; yiÞ is the cumulative
probability function (CPF) of the corresponding compo-
nent yi, i.e.

zi ¼ ciðui; yiÞ ¼

Z
pðyiÞ dyi (2)

then

pðziÞ ¼
pðyiÞ

jqzi=qyij
¼

pðyiÞ

pðyiÞ
¼ 1. (3)

That is to say, zi are uniformly distributed in [0, 1],
Consequently, HðziÞ ¼ 0 [2]. Moreover, because ciðui; yiÞ

are all continuous and monotonic increasing transforma-
tions (thus also invertible), then it can be easily shown that
IðzÞ ¼ IðyÞ [1]. Consequently, we can obtain

IðyÞ ¼ IðzÞ ¼
X

i

HðziÞ �HðzÞ ¼ �HðzÞ. (4)

Therefore, maximizing HðzÞ is equivalent to minimizing
IðyÞ.

It has been proved in the literature [1] that, given the
constraints placed on ciðui; yiÞ, then zi is bounded to [0, 1],
and given that ciðui; yiÞ is also constrained to be a
continuous increasing function, then maximizing HðzÞ will
lead ciðui; yiÞ to become the estimates of the CPFs of yi.

Based on the above analysis, we can minimize IðyÞ by
maximizing HðzÞ with appropriate constraints placed on
x1

x2

xn

y1

y2

yn

Z1
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 ψ n

ψ

Fig. 1. Structure of nonnegative ICA unmixing system proposed in this

letter.
ciðui; yiÞ (see Section 2.2). As a result, R ¼ BA ¼ KP

(according to Lemma 1). Without loss of generality, we
shall assume R to be a diagonal matrix, i.e.

rija0 if i ¼ j;

rij ¼ 0 if iaj;
(5)

then we have yi ¼ riisi. So yi is a duplicate of si with just
sign and scale ambiguity. Moreover, by considering the
sources si to be nonnegative in this letter, we will see that yi

is either nonnegative or nonpositive, corresponding respec-
tively to a positive rii or a negative one. Consequently, we
can eliminate the sign ambiguity by taking absolute value
of yi, i.e., jyij, as the recovered signals.
Now, the fundamental problem that we have to solve is

to optimize the network by maximizing HðzÞ.

2.2. Learning algorithm

With respect to the separation structure of our interest,
the joint probabilistic density function of z can be
calculated as [2]:

pðzÞ ¼
pðxÞ

j detðBÞj
Qn

i¼1 jc
0
iðui; yiÞj

(6)

where c0iðui; yiÞ is the derivative of ciðui; yiÞ with respect to
yi. From Eq. (6), we can immediately obtain the following
expression:

HðzÞ ¼ HðxÞ þ log jdetðBÞj þ
Xn

i¼1

Eðlog jc0iðui; yiÞjÞ. (7)

Minimizing IðyÞ, which is equivalent to maximizing HðzÞ

here, requires the computation of its gradient with respect
to the separation structure parameters B and u.
Since HðxÞ does not depend on B and u, we thus have

the following gradient expressions:

qHðzÞ

qB
¼

q log j detðBÞj
qB

þ
q
Pn

i¼1Eðlog jc
0
iðui; yiÞjÞ

� �
qB

, (8)

qHðzÞ

quk

¼ E
q log jc0kðuk; ykÞj

quk

� �
. (9)

Of course, the above computation depends on the structure
of the parametric nonlinear mapping function ciðui; yiÞ.
In this letter, we use multilayer perceptrons (MLP) [4]

with a single hidden layer to model the nonlinear
parametric functions ckðuk; ykÞ, thus they can be written as

ckðuk; ykÞ ¼ ckðak; bk;lk; ykÞ ¼
XMk

j¼1

ak
j tðb

k
j yk � mk

j Þ, (10)

where a and b are the weight matrices of the input layer
and the output layer, respectively, l is the hidden unit’s
bias term, and tðdÞ the activation function of the hidden
layer.
From Eqs. (8)–(10), we can easily calculate the gradients

of HðzÞ with respect to each parameter, and then optimize
the network accordingly.
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The explanation we give for our method improving
efficiency of the algorithm is that the momentum and
adaptive step sizes with error control have been employed.
In addition, in this letter, there are four neurons used in the
hidden layer of ciðui; yiÞ blocks. Finally, to implement the
constraints on ciðui; yiÞ, which are increasing functions
with values in a finite interval, the arctangent sigmoids of
the hidden units of ciðui; yiÞ blocks were chosen as
increasing functions, and the vector of weights leading
from the hidden units to the output units was normalized
at the end of each epoch. All the weights in each ciðui; yiÞ

block were initialized to positive values, resulting in an
increasing function. Furthermore, the interval of zi was
chosen as [�1, 1] instead of [0, 1], which still maintains the
fact that the maximum of HðzÞ corresponds to the
minimum of IðyÞ. On the other hand, it allows the use of
bipolar sigmoids in hidden units. Consequently, faster
training results [1].
Fig. 2. The three set of signals (l ¼ 0:2). (a) Source signals. (b) Recovered

signals using the method proposed in this letter. (c) Recovered signals

using the method proposed in the literature [10].
3. Experimental results and discussions

3.1. Simulating data

In this experiment, we generated three artificial non-
negative signals as the original signals, which can be
expressed as

S ¼

s1

s2

s3

2
664

3
775

¼

ðsinð600pt=10000þ 6 cosð120pt=10000ÞÞ þ 1Þ þ l

ðsinðpt=10Þ þ 1Þ þ l

ððremðt; 23Þ � 11Þ=9Þ5 þ 2:8Þ=2þ l

2
664

3
775,

ð11Þ

where l is a nonnegative constant used to control the well
grounded degree of the source signals, the function
remðu; vÞ represents the remainder of u divided by v. The
third one, s3, is a supergaussian signal and the other two, s1
and s2, are supergaussian signals. Fig. 2 (a) shows the
three source signals in the case of l ¼ 0:2. Clearly, they are
all nonnegative and not well grounded. Yet they approx-
imate well grounded when l ¼ 0. In this experiment, three
source signals (l ¼ 0:2) are mixed by using a 3� 3 mixing
matrix:

A ¼

0:4452 0:4511 �0:1234

�0:2061 0:8013 0:3241

0:3113 �0:2314 0:7125

2
64

3
75. (12)

Fig. 2 (b) shows the unmixed three signals, while the
correlations between these three recovered signals and the
three original signals are reported in Table 1. In addition,
the source-to-output matrix R ¼ BA was

R ¼

�1:1742 �0:0094 0:0013

0:0021 1:3977 �0:0012

0:0149 0:0014 �1:7060

2
64

3
75. (13)

From Fig. 2 (b) and matrix R we can see that the unmixed
signals are all nonnegative and they are very similar to the
original signals shown in Fig. 2 (a).
Further, for comparison, we also used another non-

negative ICA algorithm proposed in the literature [10] to
conduct the same experiment. Fig. 2 (c) shows the
recovered signals. The correlations between the recovered
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Table 1

Correlations between the recovered signals and the original signals

Method in this letter Method in the literature [10]

y1 y2 y3 y1 y2 y3

l ¼ 0:0 s1 1.0000 �0.0590 0.0223 0.9999 �0.0166 0.0044

s2 �0.0520 1.0000 0.0020 �0.0425 0.9991 0.0059

s3 0.0317 0.0025 1.0000 0.0267 0.0012 0.9996

l ¼ 0:2 s1 1.0000 �0.0575 0.0186 �0.1397 0.9807 0.1367

s2 �0.0512 1.0000 0.0056 0.1372 �0.1765 0.9747

s3 0.0304 0.0054 0.9999 0.9779 0.1847 �0.0981

Fig. 3. (a) The original source images and their histograms. (b) The mixed

images and their histograms.

Fig. 4. The recovered images and their histograms.
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signals and the original signals are also reported in Table 1.
The results of the experiment when l ¼ 0 are shown in
Table 1 too. From Fig. 2 and Table 1, it can be seen that if
the source signals were not well grounded, our method
would become significantly better than the other ones.
Furthermore, the experimental results also show that our
approach can achieve satisfactory results regardless of
whether the source data are well grounded or not.

3.2. Image data

In order to further verify the efficacy of the proposed
scheme, we finally applied the algorithm to unmix image
data. In this experiment, two image patches of size 240�
240 were selected from a set of images of natural scenes [5],
and down-sampled by a factor of 4 in both directions to
yield 60� 60 images. The third image is an artificial one
containing only noisy signals. Each of the images was
treated as one source with its pixel values representing 60�
60 ¼ 3600 samples. Three sources are then mixed using a
randomly chosen mixing matrix

A ¼

0:8412 0:2513 0:3234

0:3864 �0:8015 0:2241

�0:3123 0:7314 0:3234

2
64

3
75. (14)

Fig. 3 shows the original and mixed images as well as their
histograms. No special pre-processing was performed on the
mixed image data, other than dividing them by a constant,
so these data can be appropriately analyzed with our
network (The values of x are roughly between �2 and 2).
The recovered images and their histograms are shown in

Fig. 4, while the correlations between these three recovered
images and the three original images are reported in
Table 2. In addition, the source-to-output matrix R ¼ BA

was

R ¼

0:0000 �0:0000 1:0108

�0:0335 �1:0084 �0:0074

1:0250 0:0300 0:0168

2
64

3
75. (15)
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Table 2

Correlations between the recovered images and the original images

Method in this letter Method in the literature [10]

y1 y2 y3 y1 y2 y3

s1 �0.0107 �0.0154 0.9994 0.9963 0.0517 �0.0693

s2 �0.0038 0.9994 �0.0194 0.0214 �0.0099 0.9991

s3 1.0000 0.0032 0.0056 �0.0620 0.9980 0.0075

Fig. 5. The recovered images and their histograms using the method

proposed in the literature [10].

C.-H. Zheng et al. / Neurocomputing 69 (2006) 878–883882
Clearly, our proposed algorithm is able to separate the
images reasonably well.

Further, Fig. 5 shows the recovered images and their
histograms using the method proposed in the literature
[10]. The correlations between the recovered images and
the original sources are also reported in Table 2. From
Figs. 4, 5 and Table 2, it can be seen that the separated
images using the method proposed in this letter is more
similar to the original images than the other ones. In
addition, it can be found that the distinction between the
two experimental results is not too great. The reason for
this phenomenon is that the source images were approxi-
mately well grounded.

4. Conclusions

A novel algorithm based on minimizing mutual informa-
tion for the nonnegative ICA was proposed in this letter.
This approach is shown to be effective and feasible even
when the source signals are not well grounded. Finally,
experimental results supporting the evidence of our
approach are provided.
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