Chapter

Software Reliability
Modeling Survey

William Farr
Naval Surface Warfare Center

3.1 Introduction

With the ever-increasing role that software is playing in our systems,
concern has steadily grown over the quality of the software component.
Since the most important facet of quality is reliability, software reli-
ability engineering (SRE) has generated quite a bit of interest and
research in the software community. One particular aspect of SRE that
has received the most attention is software reliability modeling. This
chapter will present some of the more important models that have
appeared in the recent literature, from both a historical and applica-
tions perspective. Not all of the models are considered because of space
limitation (e.g., only time series models are considered). For additional
models and further elaboration on the models considered in this chap-
ter, you are referred to some other books on the subject of software reli-
ability modeling [Musa87, Xie91al.

For each model that we do consider, we’ll provide some motivation for
it, present its assumptions and data required for implementation,
show the model form and the resulting estimates, and conclude with
some general comments about the model’s implementation and provide
an example in some cases of the estimation process. The derived esti-
mates will be based upon the maximum likelihood procedure. In some
cases, least-squares estimation will also be considered if the likelihood
function is difficult to solve analytically. Other estimation procedures
are also applicable (e.g., method-of-moments), but in this chapter we’ll
primarily concentrate on maximum likelihood estimates because of
their many desirable properties, (e.g., asymptotic normality, asymp-
totic efficiency, and invariance).

ra

72 Technical Foundations

Before considering the models we'll first provide a historical per-
spective of the development of this field and some needed theoretical
results from reliability theory, which we'll use in each model develop-
ment. We'll then go into the models. We'll first consider the exponential
class of models, as that is the most important. Other distributional
forms for the failure data, including Weibull and gamma, will then be
considered. We'll also discuss some models based upon a Bayesian per-
spective and compare and contrast this approach with the more tradi-
tional one. The models that are presented were selected based upon a
number of criteria. Important models in the historical development of
this field were considered. In addition, the models that have been
applied the most, based upon a literature review, were included.
Another consideration was to select a model that was fairly typical of
the class that it represents. Some important models may still have
been left out in this review, but you are provided an extensive reference
list for additional readings. Finally, we present some current research
in generalizing the models and in extending them to the early phases
of the life cycle.

This chapter will only consider models for reliability based on the
time domain, i.e., models using either the elapsed time between soft-
ware failures or the number of failures occurring over a specified time
period. '

3.2 Historical Perspective
and Implementation

3.2.1 Historical background

Software reliability modeling has, surprisingly to many, been around
since the early 1970s, with pioneering works by [Mora72, Mora5a,
Shoo72, Shoo73, Shoo76, Shoo77a, Shoo77b, Cout73]. The basic
approach is to model past failure data to predict future behavior. This
approach employs either the observed number of failures discovered
per time period or the observed time (actual wall clock or some mea-
sures of computer execution time) between failures of the software. The
models therefore fall into two basic classes, depending upon the types
of data the model uses:

1. Failures per time period

2. Time between failures

These classes are, however, not mutually disjoint. There are models
that can handle either data type. Moreover, many of the models for one
data type can still be applied even if the user has data of the other type,
as explained by the two data transformation procedures in Chap. 1.

Software Reliability Modeling Survey 73

Either of these data transformation procedures requires that you test
the applied model to determine the adequacy of the resulting fit. In the
following sections the models will be introduced with the data class in
which they first appeared in the literature.

These classes can themselves be considered part of the larger time
domain approach to software reliability modeling, in contrast to the
error seeding and tagging approach and the date domain approach.
You are referred to [Farr83] and [Xie91al, among others, where these
alternative approaches are described.

Since the development of these models was based upon concepts
adapted from hardware reliability theory, you may want to review
some reliability functions and concepts that show the relationships
among these different functions. This is provided in App. B, Sec. B.2. We
will make extensive use of these relationships in the development of
the models throughout this chapter.

3.2.2 Model classification scheme

To aid in our development of the models in the ensuing sections, we’ll
need to discuss a model classification scheme that was proposed by
Musa and Okumoto [Musa83]. It allows relationships to be established
for models within the same classification groups and shows where
model development has occurred. For this scheme Musa and Okumoto
classified models in terms of five different attributes. They are:

1. Time domain. Wall clock versus execution time.

2. Category. The total number of failures that can be experienced in
infinite time. This is either finite or infinite, the two subgroups.

3. Type. The distribution of the number of the failures experienced by
time ¢. Two important types that we will consider are the Poisson
and binomial.

4. Class. (Finite failure category only.) Functional form of the failure
intensity expressed in terms of time.

5. Family. (Infinite failure category only.) Functional form of the fail-
ure intensity function expressed in terms of the expected number of
failures experienced.

We will be especially concerned in the following sections with the
category and type groupings. For the category group, suppose we let
M(¢) be the random number of failures (faults) that are experienced by
time ¢ with mean value function u(¢), i.e., p@t) = E[M()]. If lim, . u@#) <
= (i.e., is finite), we have a finite failure model; otherwise we have a
model of the infinite failure subgroup. In Secs. 3.3 and 3.4, we'll deal

74 Technical Foundations

with the former group (finite failure models), while in Sec. 3.5 we’ll
specifically look at the latter group. Note that in this chapter we do not
distinguish faults and failures exclusively. We assume there is a one-to-
one relationship between them.

For the type consideration we will now relate some important prop-
erties of the Poisson and binomial groups. We will make use of these
relationships for specific classes of models in subsequent sections.

First for the Poisson type, we consider that we have a Poisson process

over time. By this we mean that ifwe let £,=0,¢1,...,6i-1,%,..., 8, =¢
be a partition of our time interval 0 to ¢ and u(z2) is as defined as above,
then we have a Poisson process if each f,,i =1, ..., n (the number of

faults detected in the ith interval, ¢, _ to ¢;), are independent Poisson
random variables with means, E[f] = u(¢,) — u(z; _1). Thus for each of the
random variables fs,i =1, . . ., n, the probability density function is:

P(f; = x) = e 26D [(u(t,) — plt; 1)) /x! forx=0,1,...

Note: If u(¢) is a linear function of time, i.e., p(¢) = ot for some constant
o > 0, we say the Poisson process, M(¢), is a homogeneous Poisson pro-
cess (HPP). If, however, it is nonlinear we refer to the process as being
a nonhomogeneous Poisson process (NHPP).

If we have a Poisson process model, we can show a relationship
between the failure intensity function and the reliability function
(hence the hazard rate and the probability density function using the
relationships established in App. B, Sec. B.2). Suppose we denote
R(t + At | t) as the conditional reliability function that the software will
still operate after ¢ + At given that it has not failed after time ¢. Let u(¢)
be the mean value function for the cumulative number of failures and
AM#) be the failure intensity function, then

R(t + At|t) = P(f,= 0|t) where f; is a Poisson random variable over the
interval t to t + At

= exp(=(u(t + Af) — p(6)))

= exp(—Mt)AL), t’' is a point in the interval ¢ to ¢ + At and
using the definition of A(¢)

= exp(- f :+At A(x) dx) using the mean value theorem of inte-
grals

The relationship between the failure intensity function and the haz-
ard rate for a Poisson process can also be derived. It can be shown (see
Prob. 3.1) that

Z(At l L 1) = h(ti—l + At) (31)

" e - ————

Software Reliability Modeling Survey 75

where ¢, _, is the time of the (i — 1)st failure and At is any point such
that ¢, | <¢;,_;+ At <. This shows that the conditional hazard rate and
the failure intensity function are the same if the failure intensity func-
tion is evaluated at the current time ¢, _; + At.

Another relationship that one can establish for the Poisson type of
models is [Musa87]

W) = aF() (3.2)

where o is some constant and F,(¢) is the cumulative distribution func-
tion of the time to failure of an individual fault a. From this, if we con-
sider also distributions that belong to the finite failure category (i.e.,
lim,_,.. W#) < =), we have that lim, , . u@) = o, since lim,_,. F,(#) = 1.
Thus o represents the eventual number of faults detected in the system
if it could have been observed over an infinite amount of time. Using Eq.
(3.2) and the relationship between the mean value function and the fail-
ure intensity function, we have also for the Poisson type of models

M) = nw'(t) = of () (3.3)

where f,(¢) is the probability density function of the time to failure of
the individual fault a.
For the binomial type of models, we have the following assumptions:

1. There is a fixed number of faults (V) in the software at the beginning
of the time in which the software is observed.

2. When a fault is detected it is removed immediately.

3. Using the notation of [Musa87], if T, is the random variable denot-
ing the time to failure of fault a, then the T,’s,a =1, . . ., n are inde-
pendently and identically distributed random variables as F.(¢) for
all remaining faults.

The cumulative distribution function, F,(¢), density function, f,(¢),
and hazard rate function, z,(#), are the same for all faults for this class.
Moreover, for this class no new faults are introduced into the software
in the fault detection/correction process. [Musa87] shows for this class
that the failure intensity function is obtained from the probability den-
sity function for a single fault as:

Me) = Nf (1) (3.4)

The mean value function is in turn related to the cumulative distribu-
tion function, F,(¢), as

() = NF, () (3.5)

76 Technical Foundations

Notice the similarity between Eqs. (3.4) and (3.3) as well as between
(3.5) and (3.2). For the binomial we have a fixed number of faults at
start, N, while for the Poisson type, a is the eventual number of faults
that could be discovered over an infinite amount of time.

3.2.3 Model limitations and
implementation issues

In fitting any model to a given data set, you are cautioned about some
limitations for this type of analysis. First, you must be aware of a given
model’s assumptions. For example, if a selected model makes the
assumption that the time intervals over which the software is observed
or tested are all of the same magnitude (e.g., Schneidewind’s model),
don’t attempt to use this model if this is not the case for your data.
There are other assumptions that may not hold, but the model may be
fairly robust with respect to viclations. One such assumption is the dis-
tributional one about the number of failures per unit time or the time
between failures. One can still do a credible job in fitting the data for a
selected model even if its distributional assumption is violated. The
only way to tell is to ask just how well the model is doing in tracking
and predicting the data. The procedures discussed in Chap. 4 will help
considerably in answering this question.

A second model limitation and implementation issue concerns future
predictions. If the environment in which the software is being tested or
observed changes considerably from the one in which the data have been
collected, you can’t expect to do well in predicting future behavior. If the
software is being operated in a different manner (i.e., new capabilities
are being exercised that were not used before, or a different testing
methodology is employed), the failure history of the past will not reflect
these changes, and poor predictions may result. Too many times model
users tend to extrapolate either too far into the future or make reliabil-
ity predictions for an environment in which little if any data have been
gathered. Developing operational profiles is very important if one wants
to predict future reliability in the user’s environment (see Chap. 5).

For both violations of assumptions and considerations for predic-
tions, one option that may be available to the practitioner is to use the
most recent data if sufficient current data are available. Recent data
may be more representative of the environment in which the software
is employed than data collected in the distant past. This same reason-
ing applies to violations of assumptions. Current data may be more sta-
ble and reflective of the assumptions than past data. This is the basic
idea behind Schneidewind’s model 2 (see Sec. 3.3.3). It appears to us
that there is nothing to preclude this approach on other models. Model
validation should be the final word.

Software Reliability Modeling Survey 77

A final comment on implementation: this modeling approach is pri-
marily applicable from integrated testing onward. The software must
have matured to the point that extensive changes are not being rou-
tinely made. The models can’t have a credible performance if the soft-
ware is changing so fast that gathering data on one day is not the same
as gathering data on another day. Different approaches and models
need to be considered if that is the case. At the conclusion of this chap-
ter some approaches for the earlier phases are presented.

3.3 Exponential Failure Time
Class of Models

In the literature on software reliability, this class has the most articles
written on it. Using Musa and Okumoto’s classification scheme, this
group consists of all finite failure models with the functional form of
the failure intensity function being exponential. The binomial types in
this class are all characterized by a per-fault constant hazard rate (i.e.,
2(t) = ¢); the hazard rate function before the ith fault that has been
detected is a function of the remaining number of faults (ie,N-(i -
1)); and the failure intensity function is exponential in form (i.e., A(¥) =
N¢ exp(—¢t)). The Poisson types in this class are all characterized by a
per-fault constant hazard rate (i.e., z(¢) = ¢) and an exponential time to
failure of an individual fault Gi.e., fix) = ¢ exp(—¢x)). Since we have
either a homogeneous or nonhomogeneous Poisson process, the number
of faults that occur over any fixed period of time is a Poisson random
variable. For the time-between-failures models, the distribution is
exponential.

3.3.1 Jelinski-Moranda
de-eutrophication model

3.3.1.1 Overview of the model. One of the earliest models proposed,
which is still being applied today, is the de-eutrophication model devel-
oped by dJelinski and Moranda [Mora72], while working on some Navy
projects for McDonnell Douglas. The elapsed time between failures is
taken to follow an exponential distribution with a parameter that is
proportional to the number of remaining faults in the software, i.e., the
mean time between failures at time ¢ is 1/9(N — (; — 1)). Here ¢ is any
point in time between the occurrence of the (; — 1)st and the ith fault
occurrence. The quantity ¢ is the proportionality constant and N is the
total number of faults in the software from the initial point in time at
which the software is observed. Figure 3.1 illustrates the impact that
finding a fault has on the hazard rate. One can see as each fault is dis-
covered that the hazard rate is reduced by the proportionality constant

78 Technical Foundations

. This indicates that the impact of each fault removal is the same. In
Musa and Okumoto’s classification scheme, this is a binomial type
model.

3.3.1.2 Assumptions and data requirements. The basic assumptions are:

1. The rate of fault detection is proportional to the current fault con-
tent of the software.

9 The fault detection rate remains constant over the intervals
between fault occurrence.

3. A fault is corrected instantaneously without introducing new faults
into the software.

4. The software is operated in a similar manner as that in which reli-
ability predictions are to be made.

5. Every fault has the same chance of being encountered within a
severity class as any other fault in that class.

6. The failures, when the faults are detected, are independent.

Note: The numbered assumptions 4 through 6 are fairly standard as
we consider other models in this chapter. Assumption 4 is to ensure
that the model estimates that are derived using data collected in one
particular environment are applicable to the environment in which the
reliability projections are to be made. The fifth assumption is to ensure
that the various failures all have the same distributional properties.
One severity class might have a different failure rate than the others,
requiring a separate reliability analysis be done. The last assumption
allows simplicity in deriving the maximum likelihood estimates. Since
assumptions 4 through 6 will appear often in the models that follow,
we'll refer to them as the Standard Assumptions for reliability model-
ing rather than repeat them in each model development.

The data requirements to implement this model are: the elapsed time

between failures x;, %o, . . ., x, or the actual times that the software
failed ¢, ¢s,. .., t,, wherex;=¢, —t;_1,i=1,. .., n with £, =0.
Z(t)

<)

<
for

Time Between Failures

Figure 3.1 De-eutrophication process.

Software Reliability Modeling Survey 79

3.3.1.3 Model form. From the overview of the model and the assump-
tions from the previous section, we can determine that if the time-
between-failure occurrences are X;=T,~T,_,,i=1,. .., n, then the X/’s
are independent exponentially distributed random variables with
mean = 1/Q(N — (@ — 1)) = 1/2(X; | T;_,). That is

X | Ti) =2 | T, - Yexp(—2(X; | T; - 1)X))

= 0[N - (i — Dlexp(-¢[V - ¢ — DIX)
Since this exponential model belongs to the binomial type, using Egs.
(3.2) and (3.3), we have specifically:

u(t) = N(1 — exp(—dt)) and Alt) = Noexp(—dt)

for the mean value function and the failure intensity function. It is
clearly a finite failures type model as lim,_ . u(#) = lim,_. (N(1 -
exp(—t))) = N.

3.3.1.4 Model estimation and reliability prediction. The maximum likeli-
hood estimates, MLEs, calculated from the joint density of the X/’s, are
the solutions to the following equations:

n

v S Xi)—i(i—l)Xi
=1/

i=1

(T)z

and

n 1 ~ n
i; N-G-1

-y 3 5 0o

i=1

The second equation is solved by numerical techniques for the MLE of
N, and then the solution is put into the first equation to find the MLE
of ¢. Using the MLEs, various reliability measures can then be derived
by replacing the quantities NV and ¢ in the reliability function of inter-
est by the corresponding MLEs N and ¢. An example is the estimated
MTTF after n faults have been detected. The expression for this is
MTTF for the (n + Dst fault = 1/2(x,.,|¢,), so the MLE is MTTF =
V2(x, .1 |t,) = VON —n).

Example 3.1 To illustrate the above results, suppose we have observed the fol-
lowing elapsed-time-between-failure occurrences as

%= 7,20 = 11,33 = 8,x, = 10,x5 = 15,x5 = 22,7 = 20,14 = 25, %, = 28, and x,, = 35

20 Technical Foundations

Using the SMERFS reliability program (see [Farr93a, Farr93b] and App. A), the
MLE estimates for N and ¢ are respectively N = 11.6 and b = 0.0096. Thus the
estimated MTTF to the next failure is

MTTF = 1/%N - n) = 1/0.0096(11.6 — 10) = 65.1.

3.3.1.5 Comments. Much has been written in the literature on this
model and many variations of it have been proposed. Farr {Farr83] has
in his survey a discussion of many of these variations as well as alter-
native ways of deriving estimates of the reliability measures, e.g., least-
squares estimation. This model, however, has largely been replaced by
some of the more recent models that will be discussed. Its importance is
largely in setting the framework for future work in this modeling area.

3.3.2 Nonhomogeneous Poisson process
(NHPP) model

3.3.2.1 Overview of the model. The nonhomogeneous Poisson process
(NHPP) model is a Poisson type model that takes the number of faults
per unit of time as independent Poisson random variables. The model
was first proposed in 1979 by Amrit Goel and Kazu Okumoto [Goel79]
and has formed the basis for the models using the observed number of
faults per unit time group. A number of others are spin-offs from it, e.g.,
the S-shaped model of Yamada, [Yama83] which we’ll consider later
(see Sec. 3.4.2).

3.3.2.2 Assumptions and data requirements. Including the Standard
Assumptions (see Sec. 3.3.1.2), the basic assumptions are:

1. The cumulative number of failures by time ¢, M(¢), follows a Poisson
process with mean value function p(z). The mean value function is
such that the expected number of fault occurrences for any time ¢ to
t + At is proportional to the expected number of undetected faults at
time ¢. It is also assumed to be a bounded, nondecreasing function of
time with lim, _, ., u(¢) = N < =, that is, it is a finite failure model.

2. The number of faults (£, 12, . . ., f,) detected in each of the respective
intervals [({,=0, ty), (¢1, t2), . ,(ti_l, t), ..., -1, t)] is independent
for any finite collection of tlmes, bi<ty<---<t,.

The data requirements to implement this fault count model are:

1. The fault counts in each of the testing intervals, i.e., the f/s.

2. The completion time of each period that the software is under obser-
vation, i.e., the ¢/s.

Software Reliability Modeling Survey 81

3.3.2.3 Model form. From the assumptions it can be shown [Goel79]
that the mean value function must be of the form

W) = N(1 — e

for some constants b > 0 and N > 0. N is the expected total number of
faults to be eventually detected. (Note: N is not required to be an inte-
ger since it is the expected number of faults that will eventually be
detected.) Since the failure intensity function is the derivative of u(t)
we have, therefore

A(t) = Nbe™

Notice that the failure intensity function is strictly decreasing for # > 0.
Because it belongs to the exponential class, we have the distribution of
a single individual fault, X:

flx) = be™
We thus have for the failure intensity function
At) = Nbe™® = Nf(t)

which shows the relationship between the failure intensity function
and probability density function for a single fault.

From the assumptions, we also have that each f;, the fault count in
the ith interval, is an independent Poisson random variable with mean
= W(¢;) — Wi - 1). Therefore the joint density of the fi’s,1 =1, ..., n, is

ﬁ [udt;) — e - DVexplu(e) — p; 1))
i= fil

3.3.2.4 Model estimation and reliability prediction. Using the joint den-
sity given above, the maximum likelihood estimates (MLEs) of N and b
can be obtained as the solutions for the following pair of equations:

-6
N z f t e i Z f;’ }C‘(t e—btl —t e—th 1)
N=—=1%— and Z =
(1 — e btn) (1— ~btn) o bli_1 _ gbt

i=1

The second equation is solved for b by numerical methods, and the solu-
tion is then substituted into the first equation to find N. MLEs are then
obtained for other reliability measures by substituting the MLEs for N

82 Technical Foundations

and b in the expressions of the measures of interest. For example, the
MLESs of the mean value function and the failure intensity function are

f)=N1-eP and @)= Nbe™

The MLE of the expected number of faults to be detected in the (n + 1)st
observation period is similarly determined as

Estimated expected number of faults in (n + 1)st = Nie ™t — g binr1)

3.3.2.5 Comments. Goel and Okumoto [Goel79] have also adapted this
model to use the time of fault occurrences instead of the fault counts.
Within this framework, [Okum80] have also determined an optimal
release time for a software system. If the desired reliability is R for a
specified operational time of O, then to achieve the desired result, the
required amount of time that the software must be observed is

Required time = -El)—[ln(a(l —e0)) - (m(m(%)))]

In the paper [Okums80], they also determine the optimal release time
based upon cost (cost of testing and of finding and fixing a fault in the
testing environment versus the operational). You are referred to that
article for the details or to [Farr83].

This model is equivalent to the model considered in Sec. 3.3.3 (type 1
model) if each of the periods that the software is observed are all of the
same length, that is, t, = iL, i = 1, ..., n for some constant L > 0 and
N = o/p where o and P are the parameters of Schneidewind’s model.

3.3.3 Schneidewind’s model

3.3.3.1 Overview of the model. The idea behind Schneidewind’s model
[Schn75] is that the current fault rate might be a better predicator of
the future behavior than the observed rates in the distant past. The
failure rate process may be changing over time so the current data may
better model the present reliability. To reflect this idea, Schneidewind
has three forms of the model that reflect the analyst’s view of the
importance of the data as functions of time. The data used are the num-
ber of faults per unit of time where all the time periods are of
the same length. Suppose there are n units of time, all of some fixed
length; then the three forms of the model are:

Model 1 Utilize all of the fault counts from the n periods. This
reflects the view that all of the data points are of equal
importance.

g o s e i s

Software Reliability Modeling Survey 83

Model 2 Ignore the fault counts completely from the first through the
s — 1 time periods, i.e., only use the data from periods s
through n. This reflects the view that the early time periods
contribute little if anything in predicting future behavior.
For example, one can eliminate a learning curve effect by
ignoring the first few time periods.

Model 3 Use the cumulative fault counts from the intervals 1tos -1
as the first data point and the individual fault counts for
periods s through n as the additional data points. This is an
approach, intermediate between the other two, that reflects
the belief that a combination of the first s — 1 period is
indicative of the failure rate process during the later stages.

Schneidewind [Schn93a, Schn93b, Schn93c¢, Schn93d] has recently

developed criteria for the optimal selection of the s value. (We note that
if s = 1, then models 2 and 3 become model 1.) This will be discussed
further in Sec. 3.3.3.4.

3.3.3.2 Assumptions and data requirements. Including the Standard
Assumptions (see Sec. 3.3.1.2), the basic assumptions are:

1.

The cumulative number of failures by time ¢, M(¢), follows a Poisson
process with mean value function u(#). The mean value function is
such that the expected number of fault occurrences for any time
period is proportional to the expected number of undetected faults at
that time. It is also assumed to be a bounded, nondecreasing func-
tion of time with lim,_,.. u(#) = o/p < «; for some constants o, f > 0
(i.e., it is a finite failure model).

. The failure intensity function is assumed to be an exponentially

decreasing function of time. The failure intensity function A(t) is
taken to be of the form A(¢) = o exp(—3¢). Therefore, large B implies a
small failure rate, small B implies a large one. Moreover, we see o is
the initial failure rate at time ¢ = 0.

. The number of faults (f;) detected in each of the respective intervals

are independent.

. The fault correction rate is proportional to the number of faults to be

corrected.

. The intervals over which the software is observed are all taken to be

of the same length, that is, ¢, =i/, fori =1,..., n and [being some
positive constant. (Note, without loss of generality, we can take [=1
so that ¢, =1i.)

The data requirements to implement this fault count model are: the

fault counts in each of the testing intervals, i.e.,thefifori=1,..., n.

84 Technical Foundations

3.3.3.3 Model form. From the assumptions, the cumulative mean
number of faults by the ith time period is

D, =) = %[1 — exp(~Bi)l.

Thus the expected number of faults in the ith period is

o . :
m;=D;,-D,_;=u{t;) - Wit;_1) = E exp(—B(— 1)) — exp(—PBi)]
Using the assumptions again pertaining to the f’s being independent
nonhomogeneous Poisson random variables and incorporating the con-

cept of the different model types, we have the joint density

M SFi‘ll exp(-M, ;) ﬁ exp(—m)
Fs -1 I =s

where s is some integer value chosen in the range 1 to n, M,_, is the
cumulative mean number of faults in the intervalsuptos - 1,and F, ,
is the cumulative number of faults detected up through interval s — 1

3.3.3.4 Model estimation and reliability prediction. [Schn75] derived the
MLEs for o and B. They can also be found in [Farr83], [Geph78], and the
ATAA Recommended Practice for Software Reliability [AIAA93]. Three
different sets of equations are derived for each of the three models.

Model 1 estimates
B F, = and } - S
1 — exp(-pn) exp(p) -1 exp(Bn) - Pl

0=
where F, = X7_, f; and the f’s are the fault counts in intervals 1 to n.

Model 2 estimates

1 - exp(-f(n —s + 1)) and

O =

1 n—s+1 nSE A
expP)-1 exp(Pn-s+1)-1" 2k

where F,, = X}_, [Notice if we let s = 1, model 2 estimates become
equivalent to model 1.

Software Reliability Modeling Survey 85

Model 3 estimates

PF,
1- exp(—f}n,)

o= and

(S,._ 1)Fs—1 + F:s,n _ nFn
exp(Bs—1)-1 exp()-1 expPn)-1

= S s+h-Dfos
k=0

where F, ; =3;.1f;- We note again that if s = 1 is substituted into the
above equations we obtain the equivalent estimates for model 1.

Recent work by [Schn93a, Schn93b, Schn93c] has been identifying
the optimal s in model types 2 and 3. Three criteria have been devel-
oped, (1) the weighted least-squares criterion, (2) the mean square cri-
terion for time to next failure(s), and (3) the mean square error
criterion for cumulative failures. Each criterion is handled the same
for the selection of s. The analyst seeks the value of s that minimizes
the respective criterion. The procedure is as follows. For a given value
of s and a selected model type (2 or 3) the corresponding MLEs of 0. and
B are derived, and then the criterion is evaluated. This is done over a
range of s values. The optimal s is the one that globally minimizes the
chosen criterion. Schneidewind has proposed that if the global mini-
mum of the criteria cannot be determined because of the computa-
tional complexity involved, the analyst can use the first value of s,
starting from s = 1, in which the selection criteria have achieved a local
minimum. This is illustrated in the example that follows. The formulas
for these criteria are, respectively:

Weighted least-squares criterion

n

> exp(Bk —s + 1)o/Blexp(—P(k — s + 1))exp(B) — 1) — £1
WLS = %=

(n-s+1)

Mean square criterion for time to next faiture(s)

J-1 2
> [Noglod(o = BFor +) /P — (B —s + D] - (j — k)]
—k=s
MSE; (s) = T
for % > (Fs,k +f:i|k)

where f; |, = number of faults detected during time interval j since k; k
is the index variable and j is the next interval index beyond £ (that is,
J > k) for which f; > 0 and o/ is the maximum j <n such that f; |, > 0.

86 Technical Foundations

Mean square error criterion for cumulative failures

> [o/(B(1 - exp(-B(k —s + 1)) — F,]
MSEg(s) = #=2

n-s+1

The MSE; and the MSE; are the preferred criteria. MSE; looks at
the squared error difference between the predicted number of periods
required to generate a specified number of fault detections and the
actual number it took. MSEr compares the squared error difference
between the predicted model cumulative fault counts and the actual
values observed. The later is preferred if a failure count prediction is to
be made, the former if a time to next failure prediction is of interest.

Example 3.2 To illustrate this model, suppose we have the following number of
faults detected per unit of time (day, week, ete.): f; = 20, f2 = 18, f; = 25, f, = 30,
fs=385,f¢ =36, f =31 and f; = 32, fo = 29, fi, = 26, fii=24,f1.=21,f15=18, fi, =
20. From the first few data points it appears that a learning curve effect may
be present, so a model 2 might be appropriate with candidate s values of 4, 5,
or 6. Using SMERFS, Table 3.1 was generated for model 2 to determine the opti-
mal s.

The WLS and the MSE; indicate an s = 6 may be appropriate. The MSEq indi-
cates the optimal s has not yet been reached. Since two of the three criteria indi-
cate an s of 6 is appropriate, this was the model tried. Using the data points from
6 on, the MLEs are obtained as:

BFs1e __0.08305 x 237
1—exp(—p(14-6+1)) 1-exp(-0.08305x9)

B=0.08305 and &= =37.37
From this, various estimates of reliability measures can be calculated, such as

Estimated total number of faults = 5 =450

'co>| Q)

3.3.3.5 Comments. As was previously stated in the NHPP model,
Schneidewind’s model 1 is a special case of the NHPP model if all the

TABLE 3.1 SMERFS OQutput for the Optimal “s”

S BETA ALPHA WLS MSE-F MSE-T

1 0.12061E-01 0.28334F+02 0.36602E+02 0.15082E+03 0.22780E+00
2 0.23640E-01 0.30825E+02 0.33908E+02 0.10539E+03 0.14059E+00
3 0.43698E-01 0.35016E+02 0.19540E+02 0.42996E+02 0.51981E-01
4 0.61054E-01 0.37698E+02 0.96338E+01 0.13589E+02 0.14931E-01
5 0.76042E-01 0.38840E+02 0.35426E+01 0.24855E+01 0.34200E-02
6 0.83051E-01 0.37390E+02 0.27012E+01 0.10740E+01 0.20634E--02
7 0.82575E-01 0.34331E+02 0.27868E+01 0.12602E+01 0.18962E-02

Software Reliability Modeling Survey 87

observation periods are the same length and we let o/ =N and B =b be
the correspondence between the parameters of the two models.

This model has been used extensively on IBM’s Flight Control soft-
ware for the Space Shuttle [Schn92b] with very good success, especially
employing the procedure for determining the optimal s to obtain better
fits to the data. This model is also one of the four selected models to
start an initial attempt at model fitting as proposed in the AIAA’s Rec-
ommended Practice for Software Reliability [AIAA93].

3.3.4 Musa’s basic execution time model

3.3.4.1 Overview of the model. This model has had the widest distri-
bution among the software reliability models and was developed by
John Musa of AT&T Bell Laboratories [Musa75, Musa78, Musa79a,
Musa79b, Musa80, Musa87]. Musa has been a leading contributor in
this field and has been a major proponent of using models to aid in
determining the reliability of software. As such, it is natural that his
models (the basic execution and the logarithmic Poisson, see Sec. 3.5.3)
have been applied in many diverse fields.

This model was one of the first to use the actual execution time of the
software component on a computer for the modeling process. The times
between failures are expressed in terms of computational processing
units (CPU) rather than elapsed wall-clock time. Musa feels that exe-
cution time is more reflective of the actual stress induced on the soft-
ware system than the amount of calendar time that has elapsed. The
model does, however, have a feature to convert the execution time
results to calendar time. This is accomplished by a second component
of the model that functionally relates human and computer resources
utilization with the execution time.

3.3.4.2 Assumptions and data requirements. Including the Standard
Assumptions (see Sec. 3.3.1.2), the basic assumptions are:

1. The cumulative number of failures by time ¢, M(¢), follows a Poisson
process with mean value function u(¢) = Bo[1 — exp(—p;t)], where B,
B; > 0. The mean value function is such that the expected number of
failure occurrences for any time period is proportional to the ex-
pected number of undetected faults at that time. Since lim, _, .. u(¢) =
lim, |, .(Bol1 — exp(—B.2)]) = By, it is a finite failure model. The parame-
ter B, is the total number of faults that would be detected in the limit.

2. The execution times between the failures are piecewise exponen-
tially distributed, i.e., the hazard rate for a single fault is constant.
This is why this model belongs to the exponential class.

88 Technical Foundations

3. The quantities of the resources (number of fault-identification,
-correction personnel and computer times) that are available are
constant over a segment for which the software is observed.

4. Resource expenditures for the kth resource, Ay;, associated with a
change in MTTF from T, to T can be approximated by Ay, = 6;Af +
1 Am, where At is the increment of execution time, Am is the incre-
ment of failures experienced, 9, is an execution time coefficient of
resource expenditure, and |, is a failure coefficient of resource expen-
diture.

5. Fault-identification personnel can be fully utilized and computer
utilization is constant.

6. Fault-correction personnel utilization is established by the limita-
tion of fault queue length for any fault-correction person. Fault
queue is determined by assuming that fault correction is a Poisson
process and that servers are randomly assigned in time.

Assumptions 3 through 6 are needed only if the second component of
the basic execution model linking execution time and calendar time is
desired.

The data requirements to implement this fault count model are:

m For the basic execution time component. Kither the actual times
that the software failed, t;, ., . . . , £, or the elapsed time between fail-
ures xi, X, . . . , X,, Where x; =¢, — t;_1.

m For the basic calendar time component

1. The available resources for both identification and correction per-
sonnel and the number of computer shifts. We'll denote them as P,
Pg, and Pg, respectively.

2. The utilization factor for each resource, that is, p; (=1), pr, and pc.

3. The execution time coefficient of resource expenditure for each
resource, that is, 0;, 6 (=0 usually), and 6.

4. The failure coefficient of resource expenditure for each resource,
that is, u,, Uur, and pc.

5. The maximum fault queue length @ for a fault correction personnel.

6. The probability P that the fault queue length is no larger than .

3.3.4.3 Model form. Since u(t) = Bo(1 — exp(—pi#)), the failure intensity
function for this model is

At) = p'(2) = BoPrexp(—Pit)

We notice that for large B, the failure intensity function will decrease
rapidly, while for a small one it will decrease slowly. In either case, the
function decreases exponentially to 0. This is illustrated in Fig. 3.2.

Software Reliability Modeling Survey 89

By making the correspondence that 3; = B¢ and By = vy, where B is
defined as the fault reduction factor (the proportionality constant
relating the fault correction rate to the hazard rate) and ¢ is the con-
stant hazard rate per individual fault, the preceding formulation can
be put into the framework in which Musa originally introduced this
model. (See [Musa87], p. 285, for this correspondence.)

Using the result of Sec. 3.2.2 and the above expressions for the mean
value and failure intensity function, one can show (see Prob. 3.2) that
the reliability function after (i — 1) failures have occurred is R(A¢ |¢;)
= exp(—[Boexp(—PBit; - DI[1 — exp(-P;A8)]) for 0 < At, and the conditional
hazard rate is z(At | ¢, 1) = BoPrexp(—Bit; Dexp(—p1At) for 0 < At.

For the development of the calendar time component of this model
you are referred to [Musa87].

3.3.4.4 Model estimation and reliability prediction. Suppose we have
observed n failures of the software system at times ¢, ¢,. . ., £,, and
from the last failure time ¢, an additional time of x (x > 0) has elapsed
without failure (that is, ¢, + x is therefore the total time the software
component has been observed since the start). Using the model as-
sumptions, the likelihood function for this class is obtained as

L(Bo, Bu) = Bgﬁf[ﬂ exp (—Bltl-)]exp(—sou — exp(=Bi(t, + 2)])
i=1

so the MLEs of 3; and ; are obtained as the solutions to the following
pair of equations:

n
1 — exp(—P,(t, + x))

and

B(): 3 n(t, +x) B Ztizo
i=1

n
B, exp(Bit, +x) -1

Once the estimates of B, and 3, are obtained, we can use the invariance
property of the MLEs to estimate other reliability measures. These

Failure Intensity

/ﬁ,&

Figure 32 Failure intensity
function for Musa’s basic execu-
tion model.

Execution Time

90 Technical Foundations

include the reliability function, hazard rate, failure intensity function,
etc. An example is the estimate of the failure intensity function. Since
the function is A(¢; BO: By) = BoPiexp(—Pit), the MLE of this function is

A Bo, Bu) = PoPrexp(-Bi).

Example 3.3 Suppose the observed times of failures are ¢t; = 10, £, = 18, t3 = 32,
t, =49, t; = 64, ts = 86, t; = 105, ty = 132, &y = 167, t1p = 207, with an additional 15
CPU hours of no failure after the last one. All the units are taken to be in hours
and are all measured in execution time. Using the above equations, the MLEs of
Bo and P, are the solution of the following equations:

10

o= 10 2220
°7 1 - exp(—22203,)

B, exp(222B,) -1

and —-870=0

The solutions to these equations are found to be: B, = 13.6 and B, = 0.006. Esti-
mates of other reliability measures can then be calculated.

3.3.45 Comments. [Musa87] recommends this model in contrast to
his logarithmic Poisson (see Sec. 3.5.3) if you wish to predict early reli-
ability before program execution is initiated and failure data observed,
if the program is substantially changing over time as the failure data
are observed; and if you are interested in seeing the impact of a new
software engineering technology on the development process.

3.3.5 Hyperexponential model

3351 Overview of the model. This model is an extension of the classi-
cal exponential models considered by Musa and Goel (see Secs. 3.3.4
and 3.3.2). The hyperexponential model was first considered by Ohba
[Ohba84] and has been addressed in variations by others (e.g,
[Yama85] and [Lapr91]). The basic idea is that the different sections (or
classes) of the software experience an exponential failure rate; however,
the rates vary over these sections to reflect their different natures. This
could be due to different programming groups doing the different parts,
old versus new code, sections written in different languages, etc. The
basic idea is that different failure behaviors are represented in the dif-
ferent sections. We thus reflect the sum of these different exponential
growth curves, not by another exponential, but by a hyperexponential
growth curve. If in observing a software system, you notice that differ-
ent clusters of that software appeared to behave differently in their fail-
ure rates, the hyperexponential model may be more appropriate than
the classical exponential model that assumes a similar failure rate.

3.3.5.2 Assumptions and data requirements. The basic assumptions
are as follows. Suppose there are K sections (classes of the software)
such that within each class:

Software Reliability Modeling Survey 91

1. The rate of fault detection is proportional to the current fault con-
tent within that section of the software.

2. The fault detection rate remains constant over the intervals be-
tween fault occurrence.

3. A fault is corrected instantaneously without introducing new faults
into the software.

And for the software system as a whole:

4. The cumulative number of failures by time ¢, M(¢), follows a Poisson
process with mean value function u(¥) = N Y%_; pill — exp(-Bt)]
where 0 < ;< 1,¥5, p,=1,0 < p, <1 and N is finite. (Notice it is a
finite failure model.)

The Standard Assumptions of Sec. 3.3.1.2 are again assumed to hold.
The data requirements to implement this fault count model are:

1. The fault counts in each of the testing intervals, i.e., the fs.

2. The completion time of each period that the software is under obser-
vation, 1.e., the ¢,s.

3.3.5.3 Model form. Notice that if K = 1 we have the NHPP model of
Sec. 3.3.2. Also, lim, _, .. W(#) = N; so, as before, N represents the expected
total number of faults to be eventually detected. (Note: N is not
required to be an integer since it is the expected number of faults that
will eventually be detected.) For the ith class, we also note that Np; is
the expected number of faults within that class. Since the failure inten-
sity function is the derivative of u(¢), we therefore have

K
MO=N > pBexp(-pit)

i=1

Notice that the failure intensity function is strictly decreasing for ¢ > 0.

3.3.5.4 Model estimation and reliability prediction. By letting N;* = Np;,
that is, N¥ is the number of faults in the ith class, one can obtain the
MLE estimates for each class as the MLE estimates given in the NHPP
model (see Sec. 3.3.2.4). The MLE estimate of IV i1s then found as the
sum of the MLEs over the classes.

3.35.5 Comments. If there are only two classes (e.g., new versus old
code; easy versus difficult to detect faults), this model is called the
modified exponential software reliability growth model [Yama85].

92 Technical Foundations

Laprie et al. [Lapr91] considered a variation of this model for the sit-
uation where K = 2. They considered a hyperexponential model with
failure rate function

;\-(t) — P1§19Xp(—€1t) +p2§2exp(_(;2t)
p1exp(—{it) + poexp(—Lot)

From this they derived an expression for the unavailability of a system
including both hardware and software components and then showed
how the techniques could be extended. As discussed in Chap. 2, this is
a significant step in helping bridge the gap between hardware and soft-
ware models.

3.3.6 Others

We'll briefly describe some additional exponential models and varia-
tions of some of the models considered in this section. The first is the
inflection S-shaped software reliability growth model proposed by
Ohba [Ohba84], which has a mean value function of the form:

1 — exp(—Bt) 1-r
1 + y(r)exp(—B¢)

W) = N() where y(r) = ,r>0

The parameter r is the inflection rate that indicates the ratio of de-
tectable faults to the total number of faults in the software. This model
basically assumes that the error discovery rate increases throughout a
test period. If r equals 1 we have the basic exponential growth curve con-
sidered in this section.

Everett [Ever92] proposed an extension of Musa’s basic execution
model, which he referred to as the extended execution time model. The
mean value function for this model is of the form:

ut) = Bo[l - jo ' exp(—((a + DPit)x*) dx] wherea 20

While the basic execution model was a function of two parameters, this
one has an additional one, a. This parameter reflects the nonunifor-
mity of instruction execution. The larger it gets the more nonuniform
the execution is. If ¢ = 0, this becomes the basic execution model, while
as a gets large, this model tracks the logarithmic Poisson considered in
Sec. 3.5,

Brooks and Motley [Broo80] and [AIAA93] formulated models of the
Poisson and binomial type that are finite failures models. Each use the
fault count per unit interval for model parameter estimation. These

Software Reliability Modeling Survey 93

two models are especially mentioned because they are among the few
that treat the situation where not all of the code is being tested equally,
and/or not all of the software is complete at the time of testing. Some of
the modules are under test while others are still to be written. These
models specifically factor in those components that are under test at
both the system or module level. You are referred to the references for
details.

3.4 Weibull and Gamma Failure Time
Class of Models

For Weibull and gamma failure time classes, we take the per-fault fail-
ure distribution to be the traditional Weibull and gamma distributions,
respectively, rather than the exponential distribution considered in the
previous section. These are important distributions because of the
great flexibility given for failure modeling because of the shape and
scale parameters that define them. Many hardware failure processes
are modeled using these distributions. As such they were naturally one
_ of the first groups to be applied in the software arena.

3.4.1 Weibull model

3.4.1.1 Overview of the model. One of the most widely used models for
hardware reliability modeling is the Weibull distribution. It can accom-
modate increasing, decreasing, or constant failure rates because of the
great flexibility expressed through the model’s parameters. This model
belongs to the finite failures category and is of the binomial type using
the [Musa83] classification scheme of Sec. 3.2.2.

3.4.1.2 Assumptions and data requirements. Including the Standard
Assumptions of Sec. 3.3.1.2, the basic assumptions are:

1. There is a fixed number of faults (V) in the software at the beginning
of the time in which the software is observed.

2. The time to failure of fault ¢, denoted as T,, is distributed as a
Weibull distribution with parameters o and f (that is, the density
function of T, is £,(¢) = aft*~ 'exp(—pt*), with ¢, B > 0 and £ = 0. (Since
the per-fault distribution is £,(¢), the per-fault hazard rate is z,(¢) =
offt* 1)

3. The number of faults (f1, fs, . . . , f,,) detected in each of the respective
intervals [(t() = O, tl), (tl, tz), ey (ti—h ti), ey (tn_l, tn)] are inde-
pendent for any finite collection of times.

94 Technical Foundations

The data requirements to implement this fault count model are:

1. The fault counts in each of the testing intervals, i.e., the [s.

2. The completion time of each period that the software is under obser-
vation, i.e., the #/s.

3.4.1.3 Model form. Since this model belongs to the binomial type,
from Eqgs. (3.2), (3.3), and the cumulative distribution function for a
Weibull, we have for the failure intensity function and the mean value
function:

AMe) = Nf,(t) = Nopte ™ exp(—pi*) and
u(t) = NF,(&) = N(1 - exp(—pt*)

Notice that lim, , .. u(#) = N, the total number of faults in the system at
the start. Also, from the assumptions we have that if o = 1, the distri-
bution f, becomes the exponential, and if it equals 2 we have the
Rayleigh distribution, another important failure model in hardware
reliability theory. We also note for the case o = 2 that this becomes the
early model considered by Schick-Wolverton [Schi73]. You can also see
that if 0 < o < 1, the per-fault hazard rate is decreasing with respect to
time; if o equals 1 (exponential) it is constant; and if o > 1, it increases.

The form of the conditional hazard rate is shown to be (see Prob. 3.3):

2t =N —i+DoPt+t_)*t fort,_ <t+t, 1<t

This function is plotted in Fig. 3.3 for 0 < o < 1 to contrast its behav-
ior with the exponential class illustrated in Fig. 3.1. In that figure, the
change occurred at each fault detection and it was a constant change.
For the Weibull distribution, the change occurs at a fault detection, but
the change is not constant. The effect on the hazard rate decreases with
time because of the power function component.

z(t)

¢ t t

1 2 3
Figure 3.3 Program hazard rate function for Weibull.

Software Reliability Modeling Survey 95

The reliability function is obtained from the cumulative distribution
function as R(¢) = 1 — F(¢) = exp(—Bt*) and, hence, from Eq. B.28 the
MTTF is

R

MTTF = [R(t)dt = r(% + 1)/3
0

where I'(®) is the gamma function.

3.4.1.4 Model estimation and reliability prediction. [Cout73] shows that
the parameters o and B can be estimated using method of moments,
least squares, MLLE, or even graphical procedures. For the case of the
least squares estimates, suppose we let 5 =In(B), Y; = In [In[1/1 - F))]],
with F(i) = /., f/>%., f, the normalized cumulative number of faults
found up through the ith time period, and X; = In(¢;). Starting with the
cumulative distribution function, you can obtain the equation for a
straight line of the form Y = oX + b. Using the points (X}, Y;) calculated
from the data, the usual least squares estimates (LSEs) for the slope
and intercept are easily obtained. The estimates of o. and B are then
obtained as the slope estimate and p = exp(b), respectively. Correspond-
ing estimates of the reliability measures are obtained by substituting
the associated LSEs for o and § in the measures expressions. [Wago73]
also addresses the issues of parameter estimation for this distribution
class.

3.4.2 S-shaped reliability growth model

3.4.2.1 Overview of the model. The S-shaped (or delayed S-shaped)
reliability growth model ([Yama83], [Ohba84]) will be illustrative of
the gamma distribution class. Here the per-fault failure distribution is
gamma. The number of failures per time period, however, is a Poisson
type model using the classification scheme of Musa and Okumoto
[Musa83] rather than the binomial considered in the previous section.
It, like the Weibull, is a finite failures model, i.e., lim, _, .. u(¢) < =, It is
patterned after the Goel-Okumoto model considered in Sec. 3.3.2.
Yamada, Ohba, and Osaki felt that the mean value function u(¢) is
often a characteristic S-shaped curve rather than the exponential
growth of the Goel-Okumoto model. The software error detection pro-
cess can be described as an S-shaped growth curve to reflect the initial
learning curve at the beginning, as test team members become famil-
1ar with the software, followed by growth and then leveling off as the
residual faults become more difficult to uncover.

3.4.2.2 Assumptions and data requirements. Including the Standard
Assumptions of Sec. 3.3.1.2, the basic assumptions are:

96 Technical Foundations

1. The cumulative number of failures by time ¢, M(z), follows a Poisson
process with mean value function (¢). The mean value function is of
the form u(@) = o[l — (1 + Btle™] for o, B > 0. This is a bounded, non-
decreasing function of time with lim, ... p(#) = o < o, that 1s, it is a
finite failure model.

2. The time between failures of the (i — 1)st and the ith depends on the
time to failure of the (i — 1)st.

3. When a failure occurs, the fault which caused it is immediately
removed and no other faults are introduced.

The data requirements to implement this model are:

1. The failure times, #;’s, of the software system, or

2. The number of faults detected, £, in each period of observation of the
software along with the associated lengths [; of those periods, i =
1,...,n

If data of type 1 are available, the data of the second type can be con-
structed by first forming a partition of the time period over which the
software is observed and then counting up the number of faults that
fall in each respective period of the partition. As a consequence, this
model can be used for either the time-between-failures data or the
number of faults per time period.

3.4.2.3 Model form. Suppose we have a partition of the time interval
over which the software is observed. This partition could represent the
testing intervals of the software. Let T denote this partition, that is,
t¥=0<tf<--.<t¥ Suppose fi, fs, . . ., f are the number of software
faults detected in each interval of the partition, that is, f; is the number
of faults occurring in the interval of length [; = 7 — ¢ ;. From the
assumptions we have, each f; is an independent Poisson random vari-
able with mean

H(tik) - M(tfkf J=afl -1+ Bt;k)e—ﬁti*] —ofl-(1+ Bt:k, l)e_ﬁtl:i 1
= (1 + Pt e i1 — (1 + Btle]

Also, from the mean value function u(#) = a[1 — (1 + Btle™], we have
the failure intensity function A(¢) = p'(¢) = aff’te™. The model gets its S-
shaped form because of the mean value function. Moreover, you can see
that lim, .. u(t) = o < =, s0 we indeed have a finite failures model with
o being the total number of faults in the system. If you were to plot the
failure intensity function, you would see that it increases up to time ¢ =
1/B and then begins to decrease asymptotically approaching the time

Software Reliability Modeling Survey 97

axis. Since we have a Poisson type as well as a finite failures model,
using Eq. (3.3), the per-fault time distribution between failures is
fo(8) = P*te ™, as M) = of,(¢). This is the gamma distribution.

Using the above relationships one can also establish (See Prob. 3.4)
the following reliability measures for this model:

The reliability of the function at time ¢; + A¢ given a failure at time
t; = exp(—at[(1 + Bt e — (1 + Ble; + At))e P4 +29])
The hazard rate function at time ¢, + At given a failure at time
t; = aff¥(¢; + Abexp(—B(¢; + At))

The expected number of faults in the ith period of length

i-1

[- a[(l . Bi_f lj)e‘ﬁigl" _ (1 ; B(l +i§ zj))e“‘(”;f ’1)}
J =t J=1

3.4.2.4 Model estimation and reliability prediction. The joint density of
the fault counts over the given partition is

n *y * fi
e .

i-1 fi

using the assumptions from the previous section. The MLEs of o and J3
are then shown to be (see Prob. 3.5) the-solutions of the following pair
of equations:

S =61 -1 +pte™) and
=1

L i-1
n =)@ - (e Pi-y
Oty e Ph= (J'Zlf;’ j; ﬂ)) -
=1 (1 + Bt e — (1 + Pre™)

For implementation purposes, if you have the observed failure times
(t’s), you could let the X _, f’s be the cumulative number of failures up
to time ¢, and let the partition correspond to the failure time points
(i.e., let £; = t;); on the other hand, if you have the number of faults
detected per period (the fs), with the associated period lengths (the
I7s), you would let ¢ = ¥%_; [; in the above equations. These equations
are solved through standard numerical analysis techniques. Such an
implementation is incorporated into the SMERFS [Farr93a, Farr93b]
software package.

98 Technical Foundations

MLEs of the associated reliability metrics are derived, as in past sec-
tions, by replacing the respective parameters o and p according to their
corresponding MLE estimates.

3.4.2.5 Comments. For many applications at our facility, this model
has been successfully applied. Many times this model was able to suc-
cessfully fit a given data set when others couldn’t. Excellent fits and
predictions can be obtained when the S-shaped behavior is present in
your data set. Trend analysis (see Chap. 10) can help to detect this.

3.5 Infinite Failure Category Models

Using Musa and Okumoto’s classification scheme [Musa83] for this
category of models, the lim, _, .. li(¢) = <« for the mean value function of
the process. This means that the software will never be completely
fault free. This could be caused by additional faults being introduced in
the software through the error correction process.

3.5.1 Duane’s model

3.5.1.1 Overview of the model. Originally proposed for hardware reli-
ability, one of the earliest models was Duane’s model [Duan64]. While
at General Electric, Duane noticed that if the cumulative failure rate
versus the cumulative testing time was plotted on In-In paper, it
tended to follow a straight line. Crow [Crow74] observed that this
behavior could be represented as a Weibull process. This process is a
nonhomogeneous Poisson process in which the failure intensity func-
tion has the same form as the hazard rate for a Weibull distribution.
This same behavior has been observed for software systems and has
been used to develop various reliability estimates based upon this
result. This model is sometimes referred to as the power model since
the mean value function for the cumulative number of failures by time
t is taken as a power of ¢, that is, u(t) = ait? for some > 0 and o > 0. (For
the case where = 1, we have the homogeneous Poisson process model.)
This model is an infinite failures model since lim; , .. f(¢) = .

3.5.1.2 Assumptions and data requirements. Including the Standard
Assumptions of Sec. 3.3.1.2, the basic assumption is:

1. The cumulative number of failures by time ¢, M(¢), follows a Poisson
process with mean value function p(¢) = o#® for some > 0 and o > 0.

The data requirement to implement this model is: either the actual
times that the software failed, ¢,, ¢, . . . , £,, or the elapsed time between
failures x, x2,. .., x,, Where x; = ¢, — £; _; and £, = 0.

Software Reliability Modeling Survey 99

3.5.1.3 Model form. From assumption 1 we have a Poisson process
with a mean value function of u(¢) = ot®. If T is the total time the soft-
ware is observed, then we have

WT) _ aT® expected number of failures by time T

T T total testing time

so that if we take the natural log of both sides of the equations we have

Y- 1n((—“(7fi) - 1n(°‘TTB) _In(o0) + (B — DIn(T)

We can thus see if the first equation is plotted on In-In paper versus
observed time 7, or the second equation is plotted on regular paper ver-
sus In(T) we will obtain a straight line. It is this form that is fitted to a
given data set.

The failure intensity function is obtained by taking the derivative of
the mean value function, that is, A(#) = du(¢)/dt = oft? - . From this func-
tion we see that the failure intensity function is strictly increasing for
B > 1, a constant for the case of a homogeneous Poisson process (= 1),
and strictly decreasing for 1 > 8 > 0 only. For B > 1, there can be no reli-
ability growth!

3.5.1.4 Model estimation and reliability prediction. Crow [Crow74] de-
rived the miaximum likelihood estimates as:

n

|3

&= and B:n_l

i=1

qo

Maximum likelihood estimates are then derived for the mean value
and failure intensity function, 1(¢) and A(¢), by replacing the parame-
ters o and § according to their maximum likelihood estimates (MLEs).
In his paper Crow also shows that the MLE for the mean time to fail-
ure (MTTF) is MTTF = t,/nf for the (n + 1)st failure, and he provides
tables that can be used to construct confidence intervals for this reli-
ability measure.

3.5.2 Geometric model

3.5.2.1 Overview of the model. The geometric model was proposed by
Moranda [Mora75b, Mora79] and is a variation of the Jelinski-Moranda
model considered in Sec. 3.3.1. The time between failures is taken to be
an exponential distribution whose mean decreases in a geometric fash-

100 Technical Foundations

ion. The discovery of the earlier faults is taken to have a larger impact
on reducing the hazard rate than the later ones. As failures occur the
hazard rate decreases in a geometric progression. Figure 3.4 illustrates
this behavior. The function is initially a constant, D, but it decreases
geometrically (0 < ¢ < 1) as each failure occurs. The change in the reduc-
tion of the function is seen to get smaller as more failures occur, reflect-
ing the smaller impact of the later-occurring faults.

3.5.2.2 Assumptions and data requirements. Including ths Standard
Assumptions of Sec. 3.3.1.2, the basic assumptions are:

1. The fault detection rate forms a geometric progression and is con-
stant between fault detections, that is, z2(¢) = D¢' !, where 0 < ¢ < 1
and ¢, ; <t <t;, witht,_,; being the time of the (i — 1)st failure.

2. There is an infinite number of total faults in the system, i.e., lim, , ..
u(t) = o, where p(¢) is the mean value function of the process.

3. The time between fault detection follows an exponential distribution.

The data requirement to implement this model is: either the actual
times that the software failed, ¢,, ¢, . . . , £, or the elapsed time between
failures x1, X3, . . . , X, Where x; =¢t; — ¢, ;and ¢, =0.

3.5.2.3 Model form. Using assumptions 1 and 3, we have the density
for the time between failures of the ith and (i — 1)st is exponential of
the form: AX,) = D¢’ lexp(-D¢ ~'X)) = z(t;_exp(-2(¢;_1)X;). Thus the
expected time between failures is

1 1 .
EX)= G Do fori=1,...,n
z(1) Program Hazard Rate Function
D
}pa-0)
el OO s
------------------ D(1-
D¢3 --------------------------]L——I
Time

Figure 3.4 Geometric model hazard rate function.

Software Reliability Modeling Survey 101

Using the fact that E(X;) = 1/A(#) and i = u(t) (see [Musa87]), it follows
(see Prob. 3.6) that

u(t) = % In([DB exp(B)lé +1) and

D exp(P)
(DB exp(B)lt + 1

AMt) = where B =-In(¢) for0 << 1

Clearly, lim, _, ., u(¢) = =0, so we indeed have an infinite failures category
model.

3.5.2.4 Model estimation and reliability prediction. From the previous
section and the assumptions, the joint density function for the X/’s is

H X)) = D”H 0 1exp(—DZ o 1X)

i=1 i=1

Taking the natural log of this function and taking the partials with
respect to ¢ and D, the maximum likelihood estimates are the solutions
of the following pair of equations:

. S b
. D= nd)n and izl :n+1
> ox, >obx, 2
i=1 i=1

Again, the MLE of the various reliability measures can be obtained
using the invariance property of the MLE estimates. For -example, the
MLE of the failure intensity function is A(t) = D exp(B)A[Df exp(P)lt + 1)
where B = —In(9).

It is left as an exercise to you (Prob. 3.7) to show that the least
squares estimates based upon the X’s are the solutions to the following
pair of equations:

i 1

A2 - 1)

. = 013

DLS=I n and
2 5
=1 Ois?

102 Technical Foundations

3.5.2.5 Comments. An extension of this model was proposed by Lipow
and is discussed in [Suke76]. Lipow relaxed the assumption of an infi-
nite number of faults being present in the code. For his model, the haz-
ard rate is taken to be of the form z(¢) = D¢™-1 for t;_; < ¢ < t;. The term
n; ,is the cumulative number of faults found up to the ith interval that
the software is being observed. D and ¢ are as defined in the geometric
model. Another variation proposed by Moranda [Mora75b] was the geo-
metric Poisson. This takes the number of failures during specified time
intervals as being independent Poisson random variables with the
mean for the ith interval to be D¢ !. Again we see the geometric pro-
gression of the mean starting as we progress from an initial value of D.

3.5.3 Musa-Okumoto logarithmic Poisson

3.5.3.1 Overview of the model. The logarithmic Poisson proposed by
Musa and Okumoto [Musa84] is another model that has been exten-
sively applied. It is also a nonhomogeneous Poisson process with an
intensity function that decreases exponentially as failures occur. The
exponential rate of decrease reflects the view that the earlier discov-
ered failures have a greater impact on reducing the failure intensity
function than those encountered later. It is called logarithmic because
the expected number of failures over time is a logarithmic function.

3.5.3.2 Assumptions and data requirements. Including the Standard
Assumptions of Sec. 3.3.1.2, the basic assumptions are:

1. The failure intensity decreases exponentially with the expected
number of failures experienced, that is, M#) = Ajexp(—6u(t)), where
u(¢) is the mean value function, 6 > 0 is the failure rate decay param-
eter, and A > 0 is the initial failure rate.

9. The cumulative number of failures by time ¢, M(¢), follows a Poisson
process.

Because of assumption 1, it follows that p() = In(A.6¢ + 1)/6 (Prob.
3.8), and therefore A(¢) = Ay/(A0t + 1). Clearly this is an infinite failure
model.

The data requirements are: either the actual times that the software
failed, ¢4, ts, . . . , t., or the elapsed time between failures x, x3, . . . , %,
wherex; =¢, - £, _1.

3.5.3.3 Model form. The plot of the failure intensity function versus
time is illustrated in Fig. 3.5. This illustrates the exponential type
decay and the fact that the earlier encountered failures have a more
dramatic impact than the later ones. The parameter 8 controls the
shape of the curve.

Software Reliability Modeling Survey 103

A

«—— Initial Failure Intensity

10

Figure 3.5 Failure intensity
function for logarithmic poisson
model.

Time

A second expression of the logarithmic Poisson model to aid in
obtaining the maximum likelihood estimates is through a reparame-
terization of the model. We let B, = 6! and B, = A¢8. The intensity and
mean value functions become in this case: AM#) = BoB/(B:¢ + 1) and u(t) =
Boln(By£ + 1).

[Musa87] derives the program reliability and the hazard rate func-
tions after the (i — 1)st failure, respectively, as:

Biti_1+1
Bl(tiﬁl + At) +1

i
R(Atltiwl)zli :’ fOTAt20

and

Z(At I ti_ 1) = B{)B]/(Bl(ti_ 1+ At) + 1) for At > 0

3.5.3.4 Model estimation and reliability prediction. Using the reparame-
terized model, the maximum likelihood estimates of Bo and B, are shown
in [Musa87] to be the selutions of the following pair of equations:

n_
In(1 + Bit,)

1 i 1 nt,
B]_ i=1 1 + Blti (1 + Bltn)ln(]. + Bltn)

and

Boz

As in the previous sections, estimates of various reliability measures
are then obtained by using the invariance property of the MLE, i.e.,
substituting in an expression the MLEs B, and B, for the corresponding
parameters [, and B,. For example, from the above the MLE of the fail-
ure rate function is A(¢) = Boﬁll(ﬁlt + 1).

Example 3.4 Suppose we use the same data as in Example 3.3, i.e.,
tl = 10, tz = 18, tg = 32, t4 = 49, t5 = 64, tﬁ = 86, t7 = 105, ta = 132, tg = 167, tl() = 207

and there is an additional 15 CPU hours of no failure after the last one. All the
units are taken to be in hours and are measured in execution time. Using the
SMERFS software package, the solutions to the MLE equations of the previous
section are found to be: B, = 7.93 and f3; = 0.01139. Various reliability estimates
can then be obtained using the invariance property of the MLE. For example, the
hazard rate function is

104 Technical Foundations

At Bo, Br) = Alt; 7933, 0.01139) = BoB/(Bit + 1) = 0.0903/(0.011385¢ + 1)

The estimate of the initial hazard rate is therefore A0; [30, BI) = 0.0903, fmd the
estimate of the hazard rate from the time of the last failure is M207; By, Bl) =
0.0269, that is, a little less than three failures per 100 hours of CPU operation.

35.3.5 Comments. This model is especially applicable when it is
anticipated that the program’s operational use will be decidedly non-
uniform. The nonuniformity tends to make the failures encountered
earlier have more of an impact than later ones. It is this impact that
this model is especially good at capturing. This model was also one of
the selected models in the AIAA Recommended Practice Standard
[ATAA93] as a good candidate to try initially for fitting your reliability
data set.

3.6 Bayesian Models

This group of models views reliability growth and prediction in a
Bayesian framework rather than the traditional one considered in the
previous sections. The previous models allow change in the reliability
only when an error occurs. Most of them also look at the impact of each
fault as being of the same magnitude. A Bayesian model takes a sub-
jective viewpoint in that if no failures occur while the software is
observed then the reliability should increase, reflecting the growing
confidence in the software by the user. The reliability is therefore a
reflection of both the number of faults that have been detected and the
amount of failure-free operation. This reflection is expressed in terms
of a prior distribution representing the view from past data and a pos-
terior distribution that incorporates past and current data.

The Bayesian models also reflect the belief that different faults have
different impacts on the reliability of the program. The number of
faults is not as important as their impacts. If we have a program that
has a number of faults in seldomly used code, is that program less reli-
able than one that has only one fault in the part of the code that is used
often? The Bayesian would say no! The Bayesian modeler says that it
is more important to look at the behavior of the software than to esti-
mate the number of faults in it. The mean time to failure would there-
fore be a very important statistic in this framework.

The prior distribution reflecting the view of the model parameters
from past data is an essential part of this methodology. It reflects the
viewpoint that one should incorporate past information, say projects of
similar nature, etc., in estimating reliability statistics for the present
and future. This distribution is simultaneously one of the Bayesian’s
framework strengths and weaknesses. One should incorporate the
past, but how is the question.

Software Reliability Modeling Survey 105

The basic idea on the mathematics behind this theory is as follows.
Suppose we have a distribution for our reliability data that depends
upon some unknown parameters, §, that is, /r(t|€) and a prior g(&; ¢)
that reflects our views on those parameters, €, from historical data.
Once additional data have been gathered through the vector t (note that
boldfacing of a component denotes a possible vector of subcomponents
to allow for multidimensionality, that is, & = (£, &,, . . . , &), our view of
the parameter £ changes. That change is reflected in the posterior dis-
tribution which is calculated as

frt|EgE&; ¢) _ g)
o I8 9 dE T flt: 0)

Using the posterior distribution, various estimates of € can then be
obtained leading to reliability estimates involving €. A common Bayes-
ian procedure is to define a loss function, I(E(t), £), where &(t) is an esti-
mate of § and then choose the estimate of & that minimizes the
expected loss using the posterior distribution. For a squared-error
function or quadratic loss function, that is, [(§(t), &) = (E(t) - £)?, the esti-
mate is the mean of the posterior distribution, that is, E{& |t}. You are
referred to any mathematical statistics book for further details, e.g.,
[Mood74].

3.6.1 Littlewood-Verrall reliability
growth model

3.6.1.1 Overview of the model. The Littlewood-Verrall model [Litt73,
Litt78, Litt80a] is probably the best example of this class of models. It
is also the one recommended in the ATAA Recommended Practice Stan-
dard [AIAA93] if you are looking for an initial candidate Bayesian
model for fitting your data. The model tries to account for fault gener-
ation in the fault correction process by allowing for the probability that
the software program could become less reliable than before. With each
fault correction, a sequence of software programs is generated. Each is
obtained from its predecessor by attempting to fix the fault. Because of
uncertainty, the new version could be better or worse than its prede-
cessor; thus another source of variation is introduced. This is reflected
in the parameters that define the failure time distributions, which are
taken to be random. The distribution of failure times is, as in the ear-
lier models, assumed to be exponential with a certain failure rate, but
it is that rate that is assumed to be random rather than constant as
before. The distribution of this rate, as reflected by the prior, is
assumed to be a gamma distribution.

106 Technical Foundations

3.6.1.2 Assumptions and data requirements. The basic assumptions are:

1. Successive execution times between failures, that is, X/’s, are as-
sumed to be independent exponential random variables with param-
eter,i=1,...,n

2. The &;s form a sequence of independent random variables, each with
a gamma distribution of parameters o and y(i). The function y(i) is
taken to be an increasing function of i that describes the quality of
the programmer and the difficulty of the task. A good programmer
would have a more rapidly increasing function than a poorer one.

3. The software is operated in a manner similar to the anticipated
operational usage.

By requiring the function y to be increasing, the condition P{§;< L} 2
P{E; , < L} for all j is satisfied. This reflects the intention to make the
program better after a fault is discovered and corrected, but it cannot

be assured that the goal is achieved.
The data requirements are: the time-between-failure occurrences,

i.e., the x/s.

3.6.1.3 Model form. To calculate the posterior distribution we first
need the marginal distribution of the xs. The prior distribution is of

the form:

) lexpyE)
g(él, W(l);a) =]“(og,) . E_,L >0

Using this prior and the following conditional exponential distribution
for the x;’s: fx(x;| &) = &; exp (-&ix,) for x; > 0, the marginal distribution of
the x; (Prob. 3.9) can be shown to be:

oly(2)]°

[+ forx;, >0

flxs | o, W) =

that is, a Pareto distribution, so that the joint density is

o ﬁ Yok

f(xlaxQ’---gxn)= fOI‘xi>O,i=1,...,n

[BEZER)
i=1

The posterior distribution for the &’s is therefore obtained as (see Prob.
3.10):

Software Reliability Modeling Survey 107

I é?exp(—i £, + w(i)))
i=1 1

i=1

R, Es, ... E) = for&,>0,i=1,....n

Mo+ DI [] G + w@))e+?
i=1

Each &; is an independent gamma distribution with parameters o + 1
and (x; + y(i)). Therefore, if you use a quadratic loss function, the
Bayesian estimate of §; is the mean; namely, (o + D/(x; + y(@)).

Littlewood and Verrall suggest a linear and quadratic form for the
w(2) function, that is, w(i) = B, + Bii (the linear form) and W(z) = By + Byi?
(the quadratic form).

The failure intensity functions for the linear and quadratic forms
can be shown (see [Musa87]) to be

_ o-1
;"linear(t) - \/[33 + 2[31)5((1 _ 1)

and
Aquadratic(t) = tz\/_u—%iu;((t + (£ + 0)VE)MB — (¢ — (£2 + 1,)V2)13)

where v, = (o - 1)"*/(18B,)** and v, = 4B3/(9(0. — 1)2B,).

3.6.1.4 Model estimation and reliability prediction. Using the marginal
distribution function for the x;’s, the maximum likelihood estimates of
o, Bo, and B, can be found as the solutions to the following system of
equations:

% + > In(§@) = >’ Infx; + () = 0
i=1 i=1
so 1 . < 1
02 @ @V o W)
n il n i;
R LG D Y
0Lz‘Zl ¥@) @+);,'21 x; + Y(i)

where y(i) = B, + B,i" and i’ is either i or i2, Using a uniform prior for
o, Littlewood and Verrall [Litt73] obtain the marginal distribution of
the x;’s as a function of B, and B, only. The MLEs of these two parame-
ters are then obtained. You are referred to that reference for further
discussions.

A third procedure is to derive the least squares estimates. Using the
fact that

108 Technical Foundations

anly@l |, _ [y
EX) f I+ y@ T a1

the least squares estimates are those parameters that minimize:

St P B = 3" (- (15)

i=1

You are referred to [Farr83] for further details.

Estimates of various reliability measures are then obtained accord-
ingly, using any of the estimates derived from above. For example, the
estimate of the mean time to failure for the ith failure is:

MTTF =)]
0 —1

a —_—
where i’ is the linear or quadratic term for i.

Example 3.5 Suppose we use the data set that we have considered before, i.e.,
the following elapsed time between failures where the units of time are CPU

hours:
x1=10,%,=8,x3 =14, x, = 17, x5 = 15, x5 = 22, x7 = 19, x5 = 27, x9 = 35, x19 = 40

Using the SMERF'S program and the linear form, the MLE estimates for o, P,
and [, are obtained as & = 10415, Bo = 57269, and {31 28162. The estimate of the

failure intensity function is thus
(60— 1)
VB + 2Bsé - 1)

Failure intensity function (linear) at time ¢ = A(z; &, Bo, B1) =

so the estimated current failure intensity is with ¢ = 207, 1(207) = 0.02949. An
estimate of the mean time to failure is obtained as MTTF = [, + p,(1 1)/ — 1) =

35.25 CPU hours.

3.6.1.5 Comments. A paper by Mazzuchi and Soyer [Mazz88] consid-
ers a variation of this model by assuming all of the parameters o, By,
and B, are random variables with appropriate priors. Employing some
approximations because of computational difficulties, they then obtain
some corresponding results.

Musa [Musa84a] considered the use of a rational function for y(;). He
felt that this parameter should be inversely related to the number of
failures remaining. The form of this function was expressed as:

No+1)

Vi =5 N oD

Software Reliability Modeling Survey 109

Here N is the expected number of faults within the software as time
becomes infinite, A, is the initial failure intensity function, and « is the
parameter of the gamma distribution considered earlier. The index i is
the failure index. You can see that as the number of remaining failures
decreases, the scale parameter, y(i), increases.

Another variation of this model is the one considered by Keiller et al.
[Keil83]. Again, successive failures follow an exponential distribution
with an associated gamma prior. However for this case, the reliability
growth is induced by the shape parameter o rather than the scale
parameter y(i). See [Keil83] for additional details.

3.6.2 Other Bayesian models

A Bayesian formulation of the Jelinski-Moranda model was considered
by [Lang88] and [Litt80c]. The Jelinski-Moranda model [Lang88]
assumes that the time between failures is an exponential distribution.
In addition, the parameters that define the distribution are themselves
random variables. [Litt80c] uses a similar approach to derive the addi-
tional testing time required to achieve a specified reliability for a given
operational time. Others who have taken this same Bayesian approach
with this model are: Jewell [Jewe85], who allows the parameter, A, of
the Poisson distribution for N to itself be a random variable; Littlewood
and Sofer [Litt87], who consider a reparameterized version; and
Csenki [Csen90], who uses this Bayesian approach to derive the distri-
bution for the time to next failure.

Other Bayesian approaches include: Kyparisi and Singpurwalla’s
[Kypa84] Bayesian nonhomogeneous Poisson process model; Liu’s
[Liu87] Bayesian geometric model; Becker and Camarinopoulos’
[Beck90] Bayesian approach for a program that may be error free; and
Thompson and Chelson’s [Thom80] Bayesian model. [Xie91a] provides
additional details on these models as well as other pertinent refer-
ences.

3.7 Model Relationships

This section will provide an overall structure for software reliability
modeling.

3.7.1 Generalized exponential model class

The generalized exponential model first appeared in the AIAA’s Rec-
ommended Practice for Software Reliability [ATIAA93] standard as one
of the recommended models because of its generality. It reflects work

110 Technical Foundations

by Shooman and Musa to simplify the modeling process by having a
single set of equations to represent a number of important models hav-
ing the exponential hazard rate function considered in Sec. 3.3. The
overall idea is that the failure occurrence rate is proportional to the
number of faults remaining, and the failure rate remains constant
between failures while it is reduced by the same amount when a fault
is removed. Besides the Standard Assumptions of Sec. 3.3.1.2, the other
assumptions of the model are:

1. The failure rate is proportional to the current fault content of the
software.

2. The faults that caused a failure are corrected instantaneously with-
out additional faults being introduced by the correction process.

The data required are the usual time between failures, x/s, or the
time of the failures, the #/s.
The model form is expressed as:

2(t) = K[E, — E(¢?)]

where z(*) is the software hazard rate function; ¢ is a time or resource
variable for measuring the progress of the project; K is a constant of
proportionality denoting the failures per unit of ¢; E, is the initial num-
ber of faults in the software; and E, is the number of faults in the soft-
ware which have been found and corrected after ¢ units have been
expended. Table 3.2 reflects how this model is related to some of the
models considered in Sec. 3.3.

TABLE 3.2 Generalized Exponential Model Relationships

Original hazard Parameter
Model rate function equivalences

Generalized form KIE, - E. ()]
Shooman model K[EJ/Ir —eft)] e, = E /Iy where Ir is the

number of instructions

K’ = KIT
Jelinski-Moranda ON — (i — 1) o0=K,N=E),i-1)=E(t)
Basic execution model Bifol1 — w(@)/Bol Bo = Eo, P = K, w(e) = E.(¢)

where p#) = Bo[1 — exp(—p:#)]

Logarithmic Poisson B1Boexp(—1(t)/Bo) B1Bs = KE,,

where U(#) = Boln(B¢ + 1) E, - E.(t) = Eqexp(—u)/By)

Software Reliability Modeling Survey 11

3.7.2 Exponential order statistic
model class

For this model the failure times of a software reliability growth process
are modeled as order statistics of independent and nonidentically dis-
tributed exponential random variables. Miller [Mill86] developed this
generalization and showed that the Jelinski-Moranda, Goel’'s NHPP,
the logarithmic Poisson, and the power law models (e.g., Duane’s
model), among others, are special cases of this class. Miller lets a set of
random variables, X;, i = 1,.. ., n, be independent random variables
with respective rates A. He then defines a stochastic process, N(1),
that is the number of failures that have occurred by time # and an as-
sociated process {T},i = 1,. ...} that is the times of the failures, that
18, T; = minf¢: N(¢) 2 i}. The N(¢) and the T are the counting and the
occurrence-time processes of an exponential order statistic model with

parameter set A = {Ay, X, . . ., A,,}. The exponential order statistic model
is characterized by this parameter set. The only restriction on it is that
A20,i=1,2,...,and £7.; A; < . Miller shows some special cases of

the class by letting the A’s be various functions (e.g., constant, geomet-
ric, logarithmic, etc.). He then goes on to prove various results concern-
ing this general class, including showing how a wide variety of known
models are obtained as special cases. Estimation of the parameters is
not considered in this paper. You are referred to his paper for addi-
tional details.

3.8 Software Reliability Prediction in Early
Phases of the Life Cycle

All of the approaches considered so far in this chapter attempt to pre-
dict the reliability of the software in the later stages of the life cycle
(integrated test and beyond). What is lacking are models that are
applicable in the earlier phases, when less costly changes can be made.
This section will briefly describe some approaches in this area. More
research is, however, greatly needed.

3.8.1 Phase-based model

Gaffney and Davis [Gaff88, Gaff90] of the Software Productivity Con-

sortium developed the phase-based model. It makes use of fault statis-

tics obtained during the technical review of requirements, design, and

the implementation to predict the reliability during test and operation.
The assumptions for this model are:

1. The development effort’s current staffing level is directly related to
the number of faults discovered during the development phase.

112 Technical Foundations

2. The fault discovery curve is monomodal.

3. Code size estimates are available during the early phases of a devel-
opment effort. The model expects that fault densities will be ex-
pressed in terms of the number of faults per thousand lines of source
code, which means that faults found during the requirements anal-
ysis and software design will have to be normalized by the code size
estimates.

Their model is then expressed as:
AV, = number of discovered faults per KLOC from time ¢ - 1 to ¢
= Elexp(—-B(t — 1)* — exp(-B#?)]

where E = total lifetime fault rate expressed in faults per thousand

source lines of code (KLOC)
¢t = fault discovery index, with ¢t = 1 means requirements

analysis, t = 2 means software design, t = 3 means imple-
mentation, t = 4 means unit test, t = 5 means software
integration t = 6 means system test, t = 7 means accep-
tance test (note t is not treated in the traditional sense
that we have used it previously)

and B =—1—2
' 27,

where 1, is the defect discovery phase constant, the peak of a continu-
ous curve fit to the failure data. This is the point at which 39 percent
of the faults have been discovered.

The camulative form of the model is V, = E[1 — exp(-Bt?)], where V, is
the number of faults per KLOC that have been discovered through
phase ¢. As data become available B and E can be estimated. This quan-
tity can also be used to estimate the number of remaining faults at
stage ¢t by multiplying Eexp(~B¢?) by the number of source line state-
ments at that point.

3.8.2 Predicting software defects
from Ada designs

This section, unlike the others that consider prediction in the early
phases, addresses one particular language, Ada. Agresti and Evanco
[Agre92] attempted to develop models for predicting defect density

based on product and process characteristics for Ada development
efforts. The model they considered was:

Software Reliability Modeling Survey 113

log(DD) = aq + Z a; * log(X))
=1

that is, a multivariate linear regression with the dependent variable
being the log of the defect density (DD), and the independent variables
being the log of various product characteristics of the Ada design and
process characteristics. Among the variables considered were:

m Content coupling measures of the external or architectural complex-
ity of the design

1. Number of exported declarations per library unit

2. The ratio of the number of import declarations to export declara-
tions

3. Number of content couples per library unit
n Volatility

1. Number of modifications per library unit
2. The number of nondefect modifications per unit library

® Reuse

1. Fraction of the total compilation units that were new or exten-
sively modified

®» Complexity
1. The ratio of imports from within a subsystem to the total imports

Using data from various projects, the multivariate regression analy-
ses were conducted with resulting models explaining 63 to 74 percent of
the variation in the dependent variable. Content coupling emerged as a
consistently significant variable in these models. We plan to apply this
approach on additional data sets. The results appear encouraging for
this phase of the life cycle and this particular language.

3.8.3 Rome Laboratory work

One of the earliest and most well known efforts to predict software
reliability in the earlier phases of the life cycle was the work initiated
by the Air Force’s Rome Laboratory [RL92] (see updates in this refer-
ence). For their model, they developed predictions of fault density
which they could then transform into other reliability measures such
as failure rates. To do this the researchers selected a number of factors
that they felt could be related to fault density at the earlier phases.
Included in the list were:

A Application type (e.g., real-time control systems, scientific, informa-
tion management).

114 Technical Foundations

D Development environment (characterized by development methodol-
ogy and available tools). The types of development environments con-
sidered are organic, semidetached, and embedded modes.

Requirements and design representation metrics

SA Anomaly management
ST Traceability
SQ Incorporation of quality review results into the software

Software implementation metrics
SL Language type (assembly, high-order, etc.)
SS Program size
SM Modularity
SU Extent of reuse

SX Complexity
SR Incorporation of standards review results into the software

The initial fault density prediction is then:
8p=A *D = (SA * ST = SQ) * (SL * 8S * SM * SU = SX * SR)

Once the initial fault density has been found, a prediction of the initial
failure rate is made as [Musa87]

Ao = F x K * (8, * number of lines of source code) = F * K * W,

The number of inherent faults = W, = (§, * number of lines of source
code); F is the linear execution frequency of the program; and K is the
fault expose ratio (1.4 * 107 < K < 10.6 * 10°7), By letting F = R/I, where
R is the average instruction rate and [is the number of object instruc-
tions in the program, and then further rewriting I as I, * @,, where I is
the number of source instructions and @, is the code expansion ratio
(the ratio of machine instructions to source instructions—an average
value of 4 is indicated), the initial failure rate can be expressed as

om(re o) ()

This chapter has presented an overview of the classes of models that
have appeared most often in the literature on software reliability mod-
eling. We clearly have not covered the myriad of models that have
appeared to date—to do so would require a large book unto itself. We
have tried to give an overview of the important classes of these models

3.9 Summary

Software Reliability Modeling Survey 115

along with important examples within those classes. You should not be
dismayed by the number of classes and the associated models. This
should drive home two important points. First, that the field has
matured to the point that it can be applied in practical situations and
give meaningful results and, second, that there is no one model that is
best in all situations. We firmly believe that to successfully apply soft-
ware reliability modeling, you need to select the model that is most
appropriate for the data set and the environment in which the data
were collected.

We also must warn you to exercise care in applying the results of this
chapter. As can be seen from the results presented, the mathematics
can be quite complex. This cautionary statement is not made to dis-
courage the application of these results, but to warn you that the
results cannot be blindly applied. You don’t need a detailed under-
standing of the mathematical derivations to apply it. You must, how-
ever, have an understanding of what software reliability models can
and cannot do. A little time spent in learning this can be the difference
between a successful program and one that isn’t. Data collection, qual-
ity, and monitoring, as well as what has been emphasized for model
selection and validation are all essential if these models are to be suc-
cessfully applied.

This field will continue to evolve as newer models are developed. As
this occurs, new ideas will no doubt emerge to improve the prediction
and estimation process. This is especially true for software reliability
prediction in the earlier phases of the life cycle (e.g., the requirements
and the design phase).

Many challenges yet await the researcher and practitioner: dis-
tributed and parallel-based software systems, high-integrity software
systems, and fault tolerance are just a few. The field of software engi-
neering is continuously evolving. The software development process is
changing, which, in turn, will present new problems for the software
reliability engineer. We have made and will continue to make great
strides in providing quantitative answers to the question, “Just how
good is the software?”

Problems

3.1 Show for a Poisson process that the conditional hazard rate function,
2(t|t,), with ¢; being the time of the ith failure, and the failure intensity func-
tion, A(¢) are the same if the failure intensity function is evaluated at the cur-
rent time ¢; + ¢ with ¢ 2 0, that is,

Zt|t)=Mti+¢) foré>0

116 Technical Foundations

For this case, what can we then conclude about the relationship between the
mean value function, u(¢), and the hazard rate?

3.2 Using the expressions for the mean value and failure intensity functions
for the Musa basic execution model of Sec. 3.3, show that the reliability func-
tion and the hazard rate function after (i — 1) failures have occurred are

R(At | t;_1) = exp(~[Boexp(—Bit;_ DI[1 — exp(~p1AD)]) for At = 0,
and Z(At I i 1) = BQB16XP(“B1ti_ 1)6Xp(‘“l31At) for At >0

3.3 Show for the Weibull model considered in Sec. 3.4 that the conditional
hazard rate after (i — 1) failures have occurred is:

2(At |t) =N =i+ Dol + At forAt=0andO<a<1

What happens to this function as o approaches 1?

3.4 Derive the conditional reliability function and the hazard rate function
after a failure has occurred at time ¢; for the S-shaped model in Sec. 3.4. Derive
also the expected number of faults to be detected in the ith interval of testing
assuming it is of length /.

3.5 Derive the maximum likelihood estimates of o and B of the S-shaped
model considered in Sec. 3.4. What are the resulting estimates for the data set
considered in Example 3.2? Using the results from Prob. 3.4, what is the
expected number of faults in the next testing period where all periods have
been normalized to length 1?

3.6 Show that the mean value and failure rate function for the geometric
model of Sec. 3.5 are

1
B
where 8 = -In(¢) for 0 < ¢ < 1. (Hint: See Sec. 3.5.2.3.)

Dexp(p)
[DBexp(P)] + 1

u@) = —In([DP exp(P)lz + 1) and M) =

3.7 Using the formula for the expected time between failures and the actual
times (X, X,, . . ., X,), derive the least squares estimates for D and f of the geo-
metric model considered in Sec. 3.5. Using the data from Example 3.3, calcu-
late the least squares estimates for D and B, and then the corresponding
estimates for |(¢) and A(¢) using the results from Prob. 3.6.

3.8 Show that the mean value and failure intensity function for the logarith-
mic Poisson in Sec. 3.5.3 are u(¢) = In(A:0¢ + 1)/6 and A(#) = Ay/(A0f + 1), respec-
tively.

3.9 For the Littlewood-Verrall model in Sec. 3.6, taking the conditional distri-
bution of the time between failures, (x;) to be exponential with parameter &,
and the prior distribution to be a gamma distribution with parameters y(i) and
o, show that the marginal distribution of x; is

Software Reliability Modeling Survey 117

. L aly@)]* .
flx: |, W) = o+ YO for x; >0

3.10 Using the results from Prob. 3.9 and Sec. 3.6.1.3, show the resulting pos-
terior distribution of the &’s for the Littlewood-Verrall model is

Il é:-*exp(— S b+ v)
i=1 i=1

h(&, &, ... ,E)= n fi >0,i=1,...,

Colo o= P [T e e S0 "

i=1

