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16.1 Introduction

Previous chapters discuss the opportunities and benefits of SRE
throughout the entire life cycle, from requirements determination
through design, implementation, testing, delivery, and operations.
Properly applied, SRE is an important positive influence on the ulti-
mate quality of all life-cycle products. The set of life-cycle activities and
artifacts, together with their attributes and interrelationships, that
are related to reliability* comprise what we here refer to as the reli-
ability process. The artifacts of the software life cycle include docu-
ments, reports, manuals, plans, code, configuration data, test data,
ancillary data, and all other tangible products.

Software reliability is dynamic and stochastic. In a new or upgraded
product, it begins at a low figure with respect to its new intended usage
and ultimately reaches a figure near unity in maturity. The exact value
of product reliability, however, is never precisely known at any point in
its lifetime.

The software reliability models described in Chap. 3 attempt to
assess expected reliability or future operability using observed failure
data and statistical inference techniques. Most of these treat only the
exposure and handling of failures during testing or operations. They
are restricted in their life-cycle scope and adaptability to general use

* Suitable extensions of the concepts of this chapter may also apply to simulation of
other quality profiles, such as availability.
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for a number of reasons, including their foundation on oversimplified
assumptions and their primary focus on testing and operations
phases.

Modelers have traditionally imposed certain simplifying assump-
tions in order to obtain closed-form, idealized approximations of soft-
ware reliability. Some modelers may have relaxed an assumption here
or there in attempts to provide more generality, but as models become
more and more realistic, the likelihood of obtaining simple analytic
solutions plunges to impossibility.

This situation is not a roadblock to software reliability modeling, but
perhaps a boon, in that it forces us to apply modern technology to the
problem. Computer models are not subject to the oversimplifications
required to obtain closed-form results. Numerical methods can cope
with models having very realistic and complex representations of proj-
ect processes, software artifacts, and the development and operational
environments.

Reliability models attempt to capture the structure and interrela-
tionships among artifacts, activities, resources, quality, and time. How-
ever, this chapter is mainly about computational techniques for
modeling reliability behavior. It does not present a tool for operational
situations that you may immediately apply off-the-shelf. It does pre-
sent concepts for generalized tools that mirror reliability processes. We
hope that the material presented will demonstrate the power, flexibil-
ity, and potential benefits that simulation techniques offer, together
with methods for representing artifacts, activities, and events of the
process, and techniques for computation.

16.2 Reliability Simulation

A simulation model describes a system being characterized in terms of
its artifacts, events, interrelationships, and interactions in such a way
that one may perform experiments on the model, rather than on the
system itself, ideally with indistinguishable results.

Simulation presents a particularly attractive computational alterna-
tive for investigating software reliability because it averts the need for
overly restrictive assumptions and because it can model a wider range
of reliability phenomena than mathematical analyses can cope with.
Simulation does not require that test coverage be uniform, or that a
particular fault-to-failure relationship exist, or that failures occur
independently, if these are not actually the case.

But power and generality are ineffective where ignorance reigns. Sci-
entific philosophy teaches us to seek the simplest models that explain
poorly understood phenomena. For example, when we do not under-
stand how fault attributes relate to consequent failures, we may as
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well simplify the model by assuming that faults produce independent
failures, at least until our experiments prove otherwise.

But objective validation of even a simple reliability model may be
problematic, because controlled experiments, while easy to simulate,
will be impossible to conduct in practice. However, if we can build an
overall model upon simple and plausible submodels that together inte-
grate cleanly to simulate the phenomenon under study, then we may
gain some aggregate trust from the combined levels of confidence we
may have in the constituent submodels.

16.2.1 The need for dynamic simulation

Reliability modeling ultimately requires good data. But software proj-
ects do not always collect data sets that are comprehensive, complete,
or consistent enough for effective modeling research or model applica-
tion. Additionally, industrial organizations are reluctant to release
their reliability data for use by outside parties. Further, data required
for software reliability modeling in general, and execution time models
in particular, seem to be even more difficult to collect than other types
of software engineering data. Even when data are available, they are
rarely suitable for isolation of individual reliability drivers.

In practicality, isolating the effects of various driving factors in the
life cycle requires exploring a variety of scenarios “with other factors
being the same.” But no real software project can afford to do the same
project several times while varying the factors of interest. Even if it
could, control and repeatability of factors would, at best, be question-
able. A project may attempt, of course, to utilize data from past experi-
ences, “properly adjusted” to appear as if earlier realizations of the
current project were available. However, in view of the current scarcity
of good, consistent data, this may not be realistic.

Reliability modelers thus never have the real opportunity to observe
several realizations of the same software project. Nor are they provided
with data that faithfully match the assumptions of their models. Nor
are they able to probe into the underlying error and failure mecha-
nisms in a controlled way. Rather, they are faced not only with the
problem of guessing the form and particulars of the underlying random
processes from the scant, uncertain data they possess, but also with the
problem of best forecasting future reliability using those data.

Since good data sets are so scarce, one purpose of simulation is to
supply carefully controlled, homogeneous data or software artifacts
having known characteristics for use in evaluating the various as-
sumptions upon which existing reliability models have been built.
Since actual software artifacts (such as faults in computer programs)
and processes (such as failure and fault removal) often violate the
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assumptions of analytic software reliability models, simulation can
perhaps provide a better understanding of such assumptions and may
even lead to a better explanation of why some analytic models work
well in spite of such violations.

But while simulation may be useful for creating data sets for study-
ing other, more conventional reliability models, it cannot provide the
necessary attributes of the phenomena being modeled without real
information derived from real data collected from real projects, past
and present.

A second use of simulation, then, is in forecasting the driving influ-
ences of a real project. Models that can faithfully portray the relative*
consequences of various proposed alternatives can potentially assess
the relative advantages of the candidates. Once a project sufficiently
characterizes its processes, artifacts, and utilization of resources, then
trade-offs can indicate the best hopes for project success.

Simulation can mimic key characteristics of the processes that cre-
ate, validate, and revise documents and code. It can mimic faulty obser-
vation of a failure when one has, in fact, occurred, and, additionally, can
mimic system outages due to failures. Furthermore, simulation can
distinguish faults that have been removed from those that have not,
and thus can readily reproduce multiple failures due to the same as-
yet unrepaired fault. Some reliability subprocesses may be sensitive to
the passage of execution time (e.g., operational failures), while others
may depend on wall-clock, or calendar, time (e.g., project phases); still
others may depend on the amount of human effort expended (e.g., fault
repair) or on the number of test cases applied. A simulator can relate
model-pertinent resource dependencies to a common base via resource
schedules, such as workforce loading and computer utilization profiles.

16.2.2 Dynamic simulation approaches

Simulation in this chapter refers to the technique of imitating the
character of an object or process in a way that permits one to make
quantified inferences about the real object or process. A dynamic simu-
lation is one whose inputs and observables are events and parameter
values, either continuous or discrete, that vary over time. The formal
characterization of the object or process is the model under study.

When the form of the model changes over time, adapting to actual
data from an evolving project, the simulation is trace-driven. If param-
eters and interrelationships are static, without trace data, the simula-
tion is self-driven.

* Absolute accuracy is not required for many trade-off studies. Factors which remain
the same for all alternative choices do not affect the relative advantage analyses.
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The observables of interest in reliability engineering are usually dis-
crete integer-valued quantities (e.g., counts of errors, defects, faults,
failures, lines of code) that occur, or are present, as time progresses.
Studies of reliability in this context belong to the general field of
discrete-event process simulation. Readers wishing to learn more
about discrete-event simulation methods may consult [Kreu86].

One approach to simulation produces actual physical artifacts and
portions of the environment according to factors and influences be-
lieved to typify these entities within a given context. The artifacts and
environment are allowed to interact naturally, whereupon we observe
the actual flow of occurrences of activities and events. We refer to this
approach as artifact-based process simulation, and discuss it in detail
in Sec. 16.4.

The other reliability simulation approach [Taus94, Taus96] produces
time-line imitations of reliability-related activities and events. No arti-
facts are actually created, but are modeled parametrically over time.
The key to this approach is a rate-based architecture, in which phe-
nomena occur naturally over time as controlled by their frequencies of
occurrence, which depend on driving factors such as numbers of faults
so far exposed or yet remaining, failure criticality, workforce level, test
intensity, and execution time.

Rate-based event simulation is a form of modeling called system
dynamics, with the distinction that the observables are discrete events
randomly occurring in time. Systems dynamics simulations are tradi-
tionally nonstochastic and nondiscrete. But, as will be shown, exten-
sion to a discrete stochastic architecture is not difficult. For more
information on the systems dynamics technique, see [Robe83].

The use of simulation in the study of software reliability is still for-
mative, experimental, speculative, controversial, and in the proof-of-
concept stage. Although simulation models conceptually seem to hold
high promise both for creating data to validate conventional models
and for generating more realistic forecasts than do analytic models, the
evidence to support these hypotheses is currently rather scant and
arguable. There are some favorable indications of potential, however, to
be discussed.

16.3 The Reliability Process

Because of the lack of good data, past efforts in modeling the reliability
process have perhaps been, to some, daunting tasks with uncertain
benefits. However, as projects are now becoming increasingly better
instrumented, data availability will eventually make this modeling
entirely feasible and accurate. Some simulations of portions of the reli-
ability process where measurements are routinely taken are practical.
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The reliability process, in generic terms, is a model of the reliability-
oriented aspects of software development, operations, and mainte-
nance. Since every project is different, describing an “average” case
requires characterizing behavior typical of a class, with variations
according to product, situation, environmental, and human factors. In
this section, we shall attempt to describe some of the more qualitative
aspects of the software reliability process. Quantitative profiles will
then follow in subsequent sections.

16.3.1 The nature of the process

Quantities of interest in a project reliability profile include artifacts,
errors, inspections, defects, corrections, faults, tests, failures, outages,
repairs, validations, retests, and expenditures of resources such as
CPU time, staff effort, and schedule time.

A number of factors hold varying degrees of influence over these
interrelated elements. Influences include relatively static entities,
such as product requirements, as well as other, more dynamic factors,
such as the order and concurrency among activities in the process. One
would hope to quantify trends, correlations, and perhaps causal factors
from data gathered from previous similar projects that would be of cur-
rent use. Even when formal data are not available, project personnel
may often be able to apply their experiences to estimate many of the
parameters of the reliability profile needed for modeling.

We will aggregate activities relating to reliability into typical classes
of work, such as

1. Construction generates new documentation and code artifacts, while
human mistakes inject defects into them. Activities divide into sepa-
rate documentation and coding subphases, and perhaps further
divide into separate work packages for constructed components.

2. Integration combines reusable documentation and code compo-
nents with new documentation and code components, while human
mistakes may create further defects. Integration activities divide
into separate documentation and code integration subphases, and
perhaps further divide into separate work packages according to
the build architecture.

3. Inspection detects defects through static analyses of software arti-
facts. Inspections also divide into separate document and code sub-
phases mirroring construction. Inspections may fail to recogmze
defects when encountered.

4. Correction analyzes and removes defects, again in document and
code correction subphases. Corrections may be ineffective, and may
inject new defects.
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5. Preparation generates test plans and test cases, and readies them
for execution.

6. Testing executes test cases, whereupon failures occur. Some fail-
ures may escape observation, while others may initiate system out-
ages. Failure criticality determinations are made.

7. Identification makes failure-to-fault correspondences and fault cat-
egory assignments. Each fault may be new or previously encoun-
tered. Identification may erroneously identify the cause of a failure.

8. Repair removes faults (not necessarily perfectly) and possibly in-
troduces new faults.

9. Validation performs inspections and static checks to affirm that
repairs are effective, but may err in doing so; it may also detect that
certain repairs were ineffective (i.e., the corresponding faults were
not totally removed), and may also detect other faults.

10. Retest executes test cases to verify whether specified repairs are
complete. If not, the defective repair is marked for re-repair. New
test cases may be needed. Retests may err in qualifying a fault as
repaired.

16.3.2 Structures and flows

Work in a project generally flows in the logical precedence of tasks
listed above. But some activities may take place concurrently and
repeatedly, especially in rapid prototyping, concurrent engineering,
and spiral models of development. Models of behavior cannot ignore
project paradigms, but must adapt to them.

Events occur and activities take place through the application of
resources over intervals of time. No progress in the life cycle results
unless activities consume resources. As examples, a code component of
500 lines of code (LLOC) may require an average of W, work hours and
H_. CPU hours per LOC to develop, to be expended between the sched-
ule times ¢, and #,; testing the component may require W, work hours to
generate and apply test cases and H, CPU hours per test case to exe-
cute, scheduled for the time interval between ¢; and #,; and a repair
activity may require W, work hours and H, CPU hours to complete,
during the interval between times £; and #.

The project resource schedule is essential for managing the reliabil-
ity process. It defines the project activities, products, flow of work, and
allocation of resources. It thus reflects the planned development
methodology, management and engineering decisions, and environment
constraints.

Projects may, of course, measure failure profiles and other reliability
data without recording the schedule and resource of actual performance
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details. However, they will not be able to extract quantitative relation-
ships among reliability and management parameters without these
details.

The data essential to a process schedule define the resources and
resource levels that are applied throughout the project duration.
Schedule items may, for example, appear as tuples, such as

(resource, event_process, rate, units, Lbegins tond)

Together, the items relate the utilization of all resources at each
instant of time throughout the process. The tuple specifies that the
named event_process activity uses the designated resource at the given
application rate during the designated time interval (£4..,, fera), NOt to
exceed the allocated units limit.

The rate defines the amount of resource consumed per dt of the
event_process. If dt is calendar time and the resource is human effort,
the rate is staff level; if the resource is CPU and dt is in CPU hours, the
rate is CPU hours per calendar day. When an event_ process expends its
allocated units, the effective rate becomes zero.

Projects typically express schedule information in units of calendar
time. If a project includes weekends, holidays, and vacations, then the
schedule must either exclude these as inactive periods or else provide
compensating rate factors between resource days and calendar time.
For example, if a project is idle for two weeks during the winter holi-
day season, the schedule should not allocate any resources during
this time. If a project works only 5 days a week, the resource utiliza-
tion rate should allocate only 5/7ths of a workday per calendar day.
(However, if the project allocates time and resources in weeks, then 5
days is a normal work week, and no rate adjustment is necessary in
this case.)

16.3.3 Interdependencies among elements

Causal relationships exist between a project’s input reliability drivers
and its resulting reliability profile, in that all development subpro-
cesses consume resources and are driven, perhaps randomly, by other
factors of influence.

Quantification of relationships is tantamount to modeling, and is
required for simulation. As examples, the degree to which code and doc-
uments are inspected correlates with the number and seriousness of
faults discovered in testing; the correctness of specifications relates to
the correctness of ensuing code; and the seriousness of failures influ-
ences when a project will schedule the causal faults for repair.

Some relationships may be generic, while others may be unique to a
given project. Some interrelationships may be subtle, while others may
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seem more axiomatic. Some of the tyi)ic‘al axiomatic generic relation-
ships among reliability profile parameters are:

1. All activities (including outages) consume resources.

2. Code written to missing, incorrect, or volatile specifications will be
more faulty than code written to correct, complete, and stable spec-
ifications.

3. Tests rely on the existence of test cases. Old test cases rarely expose
new faults.

4. The number of faults removed will be less than the number at-
tempted. The attempted removal activity may also create new
faults.

5. The number of validated fault removals will not exceed the number
of attempts. Validation may erroneously report a fault removed.

6. Retesting usually encounters only failures due to bad fixes.

16.3.4 Software environment
characteristics

Software in a test environment performs differently than it will in an
operational environment. There are many reasons, more adequately
addressed in Chap. 13, why this is the case. Principal reasons among
them, however, are differences in configuration, execution purpose,
execution scenarios, attitudes toward failures, and orientation of per-
sonnel. In brief, testing and operations are different environmentally.

Reliability profiles during test and operations depend on the envi-
ronments themselves, not just on the test case execution scenarios and
values of environment parameters. Although testing may attempt to
emulate real operations in certain particulars, we must recognize that
the characters of testing and operations are apt to differ significantly.

Predicting failures in differing environments requires, at the least,
adaptability of the reliability model to fit configuration, scenario, and
previous failure data. Such adaptations must accommodate for differ-
ences in hardware, test strategies, loading, database volume, and user
training.

16.4 Artifact-Based Simulation

Software developers have long questioned the nature of relationships
between software failures and program structure, programming error
characteristics, and test strategies. Von Mayrhauser et al. [Mayr91,
Mayr92, Mayr93] have performed experiments to investigate such ques-
tions, arguing that the extent to which reliability depends merely on



670 Emerging Techniques

these factors can be measured by generating random programs having
the given characteristics, and then observing their failure statistics. It is
not important, in this respect, that the programs actually execute to per-
form useful functions, but merely that they possess the hypothesized
properties that “real” programs would have in a given environment.

If the hypothesis is true, then the effects of the various controlled ele-
ments under study would be readily discovered. For example, by ad-
justing code structural characteristics (e.g., size, ratio of branching
decisions to loop decisions, and fault distribution) in a controlled set of
experiments, we may observe the contributory effects to failure behav-
ior. We may also learn something about the sensitivities of rehablhty
models to their founding assumptions. Such studies would lead practi-
tioners to the best model(s) to use in given situations.

To explore the conjecture, they identified program properties and
test strategies to be investigated. Then they performed experiments
using automatically generated programs having the given properties,
subjected these to the selected test strategies, and measured the reli-
ability results.

Their investigations proceeded using only single-module programs
(i.e., ones with no procedure calls), assumed that faults are of only a
single type and severity, distributed uniformly throughout the pro-
gram, and considered only a constant likelihood that a failure results
when execution encounters a statement containing a fault.

There is no fundamental limitation in the artifact simulation tech-
nique that excludes procedure calls, multiple fault types, and time-
dependent statistics. They were excluded in these early experiments to
establish basic relationships. Their architecture will support multiple
subprograms; faults of various types, severities, and distributions; and
time-varying parameters at the later stages of experimentation.

16.4.1 Simulator architecture

The reported simulation covers the coding, testing, and debugging por-
tions of the software life cycle. The simulator consists of the following
components (see Fig. 16.1). .

The code generator uses program design and/or code structural and
error characteristics to produce executable code with faults. Code gen-
eration is discussed more fully later (Sec. 16.4.1.2). The faults injected
into the program cause actual execution failures during testing to
occur in such a manner as to be detected by the test harness module,
discussed below.

The compiler is an ordinary compiler, the same as an actual project
would use. The compiler generates executable code from the generated
code and from updates following each of the fault repairs.
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Figure 16.1 Artifaét-based software process simulator program.

The test data generator uses the generated code, together with
parameters that select testing strategy, testing criteria, and phase
(unit test, integration test, system test, etc.) to produce test input data
and testing procedure parameters.

The test harness module applies test data to the simulated system in
accordance with the selected test procedures, then detects each failure
as it occurs, and categorizes it according to predetermined fault expo-
sure and severity criteria.

The debugger and code repair functions of the simulation locate and
repair faults recognized by the test harness, and then reschedule the
program for compilation and retesting. The debugger may fail to locate
the fault and may either completely or incompletely remove the fault,
when located. It may, at times, even introduce new faults. The debug-
ger parameters include inputs to control locatability, severity, com-
pleteness, and fault detectability.

Reliability analysis combines the failure data output by the test har-
ness with the residual fault data from the debugger (undetected errors
and incorrect repairs) to assess the reliability of the simulated code.
This assessment compares failure results with the output of a conven-
tional software reliability model.

16.4.1.1 Simulation inputs. Artifact simulation experiments can vary
many aspects of program construction and testing to investigate the
effect of static properties on dynamic behavior. Inputs may include
those which characterize code structure, coding errors, test input data,
test conduct, failure characteristics, debugging effectiveness, and com-
puting environment.

The investigated code structure parameters pertained to control
flow, data declaration, structural nesting, and number and size of sub-
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programs. Statement type frequencies represented the structural de-
pendencies of a program. The experiments assumed four types of pro-
gram statements: assignments, looping statements, if statements, and
subprogram calls. Data structure declaration characteristics were not
simulated because faults in such structures tend to be caught by the
compiler, and because the effects of faults in such statements would be
included among thoge of the four chosen types.

" Type, distribution, density, and fault-to-failure relationship parame-
ters influenced the insertion of coding errors. The generator used type
information to select the kinds of statements composing the program.
Distribution information controlled where faults were located, either
clustered in specified functions or scattered randomly throughout the
program. Fault-to-failure relationships defined the frequency of fail-
ures when faults are encountered at run time.

Test input data depend on the testing environment, operational sce-
nario, testing strategies, test phase, desired coverage, and resources
available for testing. In the simulations reported, resource considera-
tions were not addressed. Provisions for test strategies included fea-
tures for random, directed, functional, mutation, sequencing, and
feature testing. Test coverage selection included parameters designat-
ing node, branch, and data flow modes.

Projects classify failure attributes by type, severity, and detection
status. Investigations so far have treated only failures of a single type
and severity. 4

Debugging effectiveness depended on parameters associated with
fault detection, identification, severity, and repair. Each of these, except
severity, has correctness and resource dimensions. For example, identi-
fication establishes a fault-to-failure correspondence and the time
required to make that correspondence.

Computing-environment parameters included all the data required to
run the test harness and analyze the failure data. The experiment envi-
ronment data included machine, language, and workload parameters.

16.4.1.2 Simulated code generation. A code generator may produce
simulated code using measured parameters of the actual project (trace-
driven), or from generic data taken from a wide variety of project his-
tories (self-driven). '

Figure 16.2 illustrates a self-driven code generator architecture. The
reported code simulator operates approximately as follows: Given the
number of modules and the set of module sizes, the generator creates
statements of the specified types according to their given occurrence
frequencies, sometimes followed by code that represents a fault of a
specified character.
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Figure 16.2 Self-driven artifact simulation of the coding phase.

The means for invoking multiple modules and for controlling the
depth and length of nested structures were not explicitly revealed in
the source references. If you wish to duplicate the simulator for your
own experiments you will have to decide upon appropriate models for
these characteristics.

It is not necessarily assumed that real faults are uniformly dis-
tributed over the program; rather, the program generator can seed
faults on either a function-by-function or statement-by-statement
basis, according to a distribution by statement type and nesting level.
Further, the fault-exposure ratios of each fault need not be the same.

The presence of a real fault in a normal program corresponds to an
ersatz element within the simulated program that can cause a failure
contingent on a supposed failure characteristic. As the simulated pro-
gram executes, a statement containing a fault will, with a given proba-
bility (the fault-exposure ratio), cause a failure.

But the ersatz failure, when it occurs, is not meant to duplicate the
appearance of the real failure; only its occurrence and location are of
importance. The injected fault thus needs to raise an exception with
information that will identify where, when, and what type of failure
has occurred. The reported simulator used a divide-by-zero expression
to trigger the fault, which was then trapped by the execution harness
via the signal capability of C.

An important step toward extending the utility of the simulation
technique would be to make it trace-driven, or adaptive to project mea-
surements as they emerge dynamically, rather than using only the
static historic data of the self-driven simulation described above. Fig-



674 Emerging Techniques

ure 16.3 illustrates how trace data would replace the random selection
of statements during program execution.

16.4.1.3 Execution harness. The reported execution harness con-
tains a test driver program that creates an interface between the gen-
erated program and its test data, spawns a child process to execute
the generated program, and collects execution-time data on the child
process separately from that of its ancillary functions, which may not
have the same structural characteristics. The returned value of the
child process indicated whether the test resulted in failure or termi-
nated naturally.

Simulated faults in the generated program could have been repre-
sented in any of a number of ways. The reported experiments used
arithmetic overflow. Having detected the failure, the test harness
enters the returned information into the failure log for use in locating
and removing the fault. The updated program then recompiles and
reexecutes.

16.4.1.4 Reliability assessment. The output log provides the execution
time of each test run and indicates which runs experienced failures; it
also identifies which fault caused the failure. Tools, such as those
described in App. A, can use these data to generate tabular and graph-

Project
PDL
PDL Fault
Analyzer Density
Statement Fault / Generated
Type Inserti > Program
Selection sertion z Statements

Random
Number
Generator

Figure 16.3 Trace-driven artifact simulation of the coding phase.
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ical analyses of the failures. Such analyses may include application of
any of a number of reliability growth models, maximum likelihood esti-
mates and confidence limits for model parameters, and visual plots of
important reliability attributes, such as cumulative failures or present
failure intensity versus time.

The reliability assessment function also has available to it the out-
put of the debugging function, which tells which faults were correctly,
incorrectly, or incompletely made. At any time, then, the status of
remaining faults in the generated program is visible.

16.4.2 Results

Reliability investigations using artifact simulation are currently in
their formative stage. The fundamental, first-order validations of the
equivalence hypotheses are yet in progress. Consequently, the process
of evolution has imposed some limitations that will disappear, with
time. The fundamental question has been: Do simulated programs in
simulated environments exhibit reliability profiles representative of
real programs in real environments that have the same parameters?
A software artifact simulation study, [Mayr91], compared (Fig. 16.4)
the results of testing a 5000-line C program with the predicted per-
formance using the basic execution time model. These experiments

Failures

1 1
.00 0.10 0.20

Execution time (CPU hrs)

Figure 16.4 Simulated code experimental cumulative failures
(from [Mayr91]}.



676 Emerging Techniques

demonstrated that the order in which failures occurred among state-
ments containing faults closely matched the execution counts for those
statements, and that the failure counts correlated with the types of
program structures surrounding the faults.

These and other early results tend to confirm that static measures of
program structure, error characteristics, and test strategies influence
the reliability profiles of simulated and real programs in the same ways.

Artifact simulation studies of the future will continue to quantify the
extent to which static parameters relate to reliability dynamics. As the
software simulation art evolves, the effects of size, multiple-procedure
program structures, multiple failure types, nonuniform fault distribu-
tions, and nonstationary parameters on reliability will increasingly
become known.

16.5 Rate-Based Simulation Algorithms

The fundamental basis of rate-controlled event process simulation is
the representation of a stochastic phenomenon of interest by a time
series x(¢) whose behavior depends only on a rate function, call it B(z),
where () dt acts as the conditional probability that a specified event
occurs in the infinitesimal interval (¢, ¢ + dt).

A number of the analytic reliability growth models discussed in
Chap. 3 echo this assumption and further assume that events in
nonoverlapping time intervals are independent. The processes mod-
eled are thereby Markov processes [Papo65], or nonhomogeneous Pois-
son processes (NHPP), which are also Markov processes. These include
the models proposed by Jelinski and Moranda ([Jeli72]), Goel and Oku-
moto ([Goel79]), Musa and Okumoto ([Musa84]), Duane ([Duan64]),
Littlewood and Verrall ([Litt73]), and Yamada ([Yama83]). Rate func-
tions for these appear in Sec. 16.6.1.

The algorithms described here not only apply to simulating Markov
processes, but are capable of simulating processes having time-
dependent event-count dependencies and irregular rate functions.
These algorithms can simulate a much more general and realistic
reliability process than has ever been hypothesized for any analytic
model.

The mathematics presented in this section treats general statistical
event processes and rate-driven event processes, not merely those
believed to describe software failures. As in the analytic models men-
tioned above, it is only the form of the rate functions and interpretation
of parameters that set these models apart as pertaining to software.
We begin this specialization formally in the next section and continue
it through Sec. 16.7. First, however, we derive the forms of the simula-
tion algorithms.




Software Reliability Simulation 677

16.5.1 Event process statistics

If S, and S, denote the states of an event §, S, in effect before the event
and S, after its occurrence, then a particular member of the stochastic
time series defined by {By(¢), Sy, S1} beginning at time ¢ = 0 is a sample
function, or realization, of the general rate-based discrete-event sto-
chastic process. The zero subscript on B.(¢) signifies the S,, or zero
occurrences, starting state.

The statistical behavior of this process is well known: the probability
that event ¢ will not have occurred prior to a given time ¢ is given by
the expression

Py(t) =@ 0 (16.1)

where
holt, o) = jt Bo(v) d (16.2)

The form of By(£) is unrestricted, but generally must satisfy
Bo1)20  and  Agleo, 0) = oo (16.3)

The first of these prevents the event from occurring at a negative rate,
and the second stipulates that the event must eventually occur. If the
second condition is violated, there will be a finite probability that the
event will never occur.

When the events of interest are failures, By(¢) is often referred to as
the process hazard function and Ay(¢, 0) is the total hazard. The cumu-
lative distribution function and probability density function for the
time of an occurrence are then

Fit)=1- Pyt (16.4)
F1(8) = Bo(t)e O (16.5)

The mean time of occurrence is
EQ) = f tBo(tle % O dt (16.6)
0

If A%, 0) is known in closed form, we may sometimes be able to write
down and analyze the event probability and mean time of occurrence
functions directly. In all but the simplest cases, however, we will
require the assistance of a computer. When we cannot express the inte-
grals in closed form, we can still evaluate them using straightforward
numerical analysis.
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16.5.2 Single-event process simulation

It is rather easy and straightforward to simulate the rate-based single-
discrete-event process, as illustrated in the following computer algo-
rithm (expressed in the C programming language) which returns the
occurrence time:

double single_event(double t, double dt, double (xbeta)(double))
{
int event = 0;

while (event == 0)
! if (occurs(betalt) = dt))
event++;
to+=dt;
}
return t;

!

Above, the C language syntax defines a function named
single_event() that will eventually return a double-precision floating-
point value of the time of event occurrence. Starting at time t, and con-
tinuing as long as the event value remains 0, the function monitors the
event status; at the occurrence, cvent increases by 1, as signified by
the ++ operation, which stops the iteration. Time augments by dt units
each iteration, denoted by the "+=" cperation.

In the following we have programmed the occurs(x) operation as a
macro that compares a random() value over [0, 1) with the formal
parameter x, which must be less than unity, thus attaining the speci-
fied conditional probability function. (The extern double designation
declares that random() is in an external library that returns a double-
precision floating-point value.) You may wish to consult [Knut70] for a
discussion of random-number-generation techniques.

extern double random(void);
ffdefine occurs(x) (random() < x)

The particular application determines the form of the user-supplied
rate function beta(t). Any required initialization takes place in the
main() program prior to invocation of the single_event () function. Fig-
ure 16.5 depicts the basic data flow of the overall program.

We must choose the dt in simulations to satisfy all the following
conditions:

1. dt is smaller than the desired time-granularity of the reliability
profile.

2. Variation in B(¢) over the incremental time intervals (¢, ¢ + d¢) 1s
negligible.
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Figure 16.5 Simulation program structure for a single event
occurrence.

3. The chance of multiple event occurrences within a dt interval is
negligible.

4, The magnitude of B(¢) dt is less than unity at each ¢ in the interval of
interest.

The time complexity of the algorithm is O(Bt/dt), where the B compo-
nent represents the maximum complexity of computing ().

We may also simulate the behavior of a nonstochastic* rate-based
single-event process merely by altering the algorithm for occurs(). If
B(t) represents the occurrence rate, then the event occurs when its inte-
gral reaches unity.

double accumulated rate;
fidefine occurs{x) (if ((accumulated rate += x) < 1.) \
then FALSE else TRUE)

The construction above increments accumulated_rate by x prior to
checking its value; the expression then switches from a false to a true
state when the value reaches unity. (The “\” at the end of the line sig-
nifies continuation on the next line of the macro.)

16.5.3 Recurrent event statistics

If we permitted the iteration in the previous algorithm to continue
throughout a given time interval (0, ¢), then the simulated event could
occur a random number of times, which could be counted. We may com-

* This technique also approximates the calculation of the mean occurrence behavior of
a stochastic process; however, the method is exact only for the constant-hazard case.
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pute the cumulative distribution function F,(¢) that the nth occurrence
lies in the interval (0, ¢) as follows: if £, _; has just been observed as the
(n — 1)st event occurrence, then we may treat the interval immediately
after ¢, | as a new experiment. Translating Eq. (16.1) to the nth occur-
rence interval produces the occurrence distribution function condi-
tioned on ¢, _ 4,

Pyt | ty_y) = etn-i®0d (16.7)
F.@|t.-1)=1-P, & | t._1 (16.8)

£
Mt ) = | B de (16.9)

e

The time dependency retained in Eq. (16.9) reflects the possible non-
stationary nature of the event process. Each of the (3,(¢) functions is
subject to the restrictions given in Eq. (16.3); otherwise F,(¢ | ¢,_,)
above must be divided by 1 — P, _y(ec | ¢, 1) = 1 — e %-J, We shall
assume these requirements in the remainder of this chapter.

The nth occurrence probability densities then follow from differenti-
ation of Eq. (16.8),

fn(t I tnfl) = anl(t)eiln_l(t’tn_l) (1610)
t
FO=Bus(®) | e ¥, dr (16.11)

the latter being recursively defined, with ¢, for the n = 1 case defined as

0. The conditional probability displays the same type of statistical

behavior seen in Eq. (16.5) for the single-occurrence case above, but

operates piecewise on successive intervals between occurrences.
Finally, F,(¢) follows by integration,

F,(¢) = E (v dr (16.12)

When events are modeled as Markov occurrences, the probability
P.(t) that exactly n occurrences appear in the interval (0, ¢) is known
[Taus91] to be of the form

Pot) = 0.0 (16.13)
t

P)=| Bu-1Py.se % du (16.14)
0

Mathematically closed-form solutions for these probability functions
are rarely* known. General solutions thus require simple, but perhaps

* Closed-form solutions for P,(t) and f,(¢) are known to exist when the process is of
the nonhomogeneous Poisson variety, namely, P.(t) = A*(Z, 0) exp[-A(t, 0))/n! and f.(¢) =
BOA" (¢, 0) expl-ALt, 0))/(n — L.
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time-consuming, recursive numerical methods: the time complexity of
fut | t,_1) is of order O(B(t — t,_/dt); f.(t) and P.(t) are of order
O(Bnt/dt), and F,(2) is also of order O(Bnt/dt). The space complexities of
these measures are, respectively, O(1), O(t/dt), and O(t/dt).

The expected time of the nth occurrence follows directly from Eq.
(16.11) as a recursive expression,

=[] B [ et @ (16.15)
0 0

with time complexity O(Bnt.. /d¢) and space complexity O(Z.. /dt).

16.5.4 Recurrent event simulation

Simulation offers a relatively economical alternative in the evaluation
of rate-based performance over the more complex numeric integrations
of the previous section. The recurrent events algorithm below is a sim-
ple extension of the single-occurrence event code that returns the num-
ber of occurrences over the time interval (¢, £). Its computational
complexity to the nth occurrence is only O(ft,/dt), in constant space:

void recurrent_event(double ta, double t, double dt,
double (xbeta)(int, double), int xevents)
{
while (ta < t)
{ if (occurs(betalevents, ta) = dt))
++xevents;
ta += dt;

}

The calling program must initialize the events parameter to the actual
number of occurrences prior to time #,; events will contain the new
count after the function returns. (Note that we renamed events in the
plural to acknowledge that multiple occurrences are being counted.)
Figure 16.6 depicts the program data flow structure.

Mathematically, B,(¢) is valid only in the interval ¢, <t <t, ., and sig-
nifies that n occurrences of the event have occurred prior to £. The use
of beta(events, t) in the algorithm acknowledges that the event may
recur from time to time and that the occurrence rate function may not
only change over time, but also may be sensitive to the number of event
occurrences (as well as possibly other influences). The simulation algo-
rithm observes the event occurrence times and may change the beta()
function as required by the application.
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Figure 16.6 Simulation program for recurrent events.

We may also simulate nonstochastic rate-based recurrent-event pro-
cesses* by making the single-occurrence occurs() function recognize
unit crossings of the rate accumulator, as follows:

#define occurs(x) (if ((accumulated_rate += x) < 1.) 2\
then FALSE else (accumulated rate —= 1., TRUE))

Note that accumulated_rate decrements by unity at each occurrence,

_»

signified by the “~=" operation.

16.5.5 Secondary event simulation

Another type of event process of interest is when a primary event trig-
gers the occurrence of a secondary event of a different type. For exam-
ple, producing a unit of code may create a fault in the code.

Notationally, if p; denotes the probability that the ith occurrence of
the primary event causes the occurrence of the secondary event, then
we may express the probability P2 (¢) that m such secondary events
have occurred in the interval (0, £) as

P2@)= > DPmia®P.) (16.16)

=m

+ This technique, as before, approximates the average occurrence behavior of stochas-
tic recurrent-event processes.
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with

Pm|» = P{m secondary events | n primary events in (0, £)} (16.17)

=2 pu---pi,(1=-p;, ) (1-py) (16.18)
icy

where the index vector i = (iy, i, . .., i,) is a permutation of (1, 2, . . .,
n)such that (iy, . . . , i, ) extends over all combinations of m out of n pri-
mary events, a set $ of size (). The computational complexity of P{¥(¢)
is thus of combinatorial order, and not practical to evaluate in general
cases of practical interest. In the special case that p; = p is constant,
Pm|» reduces to the binomial function,

Pl = (’:)pm(l _pynm (16.19)

The simulation algorithm for a dependent secondary event process,
however, can remain quite general; one merely adds a mapping array
secondary_event that relates the primary event to its secondary event
and a function p(i, events, t) that returns the probability that the
primary event triggers the secondary event:

if (occurs(beta(i, events, ta) = dt))

{ ++events[il;
it ((j = secondary_event[i]) && occurs(p(j, events, t)))
{ ++events{]J];
f

!

We may similarly treat multiple secondary events emanating from a sin-
gle primary event at only a moderate increase in algorithm complexity.

16.5.6 Limited growth simulation

When the final number N of occurrences that an event process may
reach is prespecified, the normal growth of the event count over time
must stop after the Nth occurrence. For example, if there are N faults
to repair, and repairs proceed reasonably, then effort ceases after the
last one is fixed.

Simulating this behavior is simple, but must include steps to pre-
vent the event count from overshooting N when multiple occurrences
occasionally take place within a dt interval. This may be done by alter-
ing the event-counting functions, not to exceed prespecified maxima
max_events, as follows:

if (events[i] < max_events[i])
++events[i];
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16.5.7 The general simulation algorithm

You may have already guessed the form of a general rate-based
discrete-event process simulator. It is merely the recurrent-event algo-
rithm augmented to accommodate multiple simultaneous events, mul-
tiple event categories, secondary events, and growth limits.

The general algorithm below incorporates all of these features. It
simulates f event processes over a time interval ta to t using time
slices of duration dt; an initialized input array events counts the occur-
rences, which may not exceed corresponding values in the max_events
array; an array event category contains the mapping of event occur-
rences into categories, which counts occurrences up to the maxima
specified in the max_categories array; and a secondary_event array
and p() function control secondary occurrences, as described in Sec.
16.5.5. For readability, the control function name beta() becomes
rate().We also add action() and display() functions, described below.

void simulate{int f, double ta, double t, double dt,
double (xrate)(int, int =, double),
int events[], int max_eventsl],
int categories[], int max_categoriesl[],
int event_category[],
int secondary_event[], double («p)(int, int x, double),
void (xaction){int %, double),
void («display){int =, doublel)

int 1, J, k;

while (ta < t)
{ for (1 =0; 1 < f; i++)
{ if (occurs(rate{i, events, ta) = dt))
{ if (eventsli] < max_events[il])
{ ++events[i];
k = event_categoryl[il;
if (categories(k] < max_categorieslk])
++categories[k];
]
if ((j = secondary_event[i]1) && occurs{p(]j, events, ta))
{ if (events[j] < max_events(jI)
{ ++eventsl(jl;
k = event_categoryl[J];
if (categories[k] < max_categeries(k])
++categoriesikl];

}
action(events, ta);
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}
!
ta += dt;
display(events, ta);

The action() function specifies what takes place when an event
occurs. For example, if one category of events represents identified
faults and another represents repairs, then action() may compute an
unrepaired fault parameter for display(), or it may recompute appro-
priate max_events or max_categories bounds. The action() functions
may well also pass additional parameters, such as i, j, k, and m, should
these local values be needed to effect the proper change in state.

The display() function outputs the simulation status monitors as a
profile in time. It may publish only certain parameters of interest, or it
may detail the entire reliability state at each dt, depending on the
time-line information desired by the user. Figure 16.7 shows the over-
all simulation program data flow.

We must choose the dt for the simulation experiments simultane-
ously to satisfy earlier-stated constraints imposed by each of the event
rates. As a consequence, execution may be very slow. Alternatively, we
could speed up the algorithm by choosing larger values of dt and com-
puting the numbers of multiple events that may occur during each of
the larger intervals, as determined by the probability functions of pri-
mary and secondary events. It is known, when event occurrences in
nonoverlapping intervals are independent (see, e.g., [Taus91]), that pri-
mary events are Poisson distributed and secondary events are binomi-

System
Parameters

initialize()
Rate
Function action()
rate(i, e, t)
Simulation /
main() Algorithm display()
simulate() 7

Figure 16.7 General rate-controlled process simulator program.
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ally distributed. Generally, however, the probability functions are
unknown, even when the rate functions are fairly simple.

But if these probability functions were known, there would be only
slight changes required in the algorithm above: occurs(rate() = dt)
would be replaced by a primary(rate() » dt) function that counts the
random number n of primary event occurrences in the dt interval;
occurs(p()) gets replaced by secondary(n, p()), which counts the
number m of occurrences of secondary events; and events{] augments
by n and m, rather than unity, respectively.

If we desire, for execution-time reasons, a value of dt that is too large
for use in the general algorithm above, but is yet small enough that pri-
mary and secondary event statistics over dt intervals are approxi-
mately Poisson and binomially distributed, respectively, then the
modified algorithm can be applied. We refer to this configuration as the
piecewise-Poisson approximate simulation. Piecewise-Poisson simula-
tions, of course, are valid for all the usual NHPP models, because no
approximations are actually made. We have not yet studied the valid-
ity of the approximation applied to other processes.

16.6 Rate-Based Reliability Simulation

Rate-based reliability simulation is a natural extension of techniques
for analyzing conventional models, because many of these are also rate
(or hazard) based. The underlying processes assumed by these models
are thus the same.

Because of algorithmic simplicity, simulation serves as a powerful
tool not only for analyzing the behaviors of processes assumed to have
complex rate functions, but also for investigating whether the stochas-
tic nature of a project’s measured failure data is typical of that ob-
tained by simulation. We may vary the modeling assumptions until
profiles reach a satisfactory alignment.

The challenge in life-cycle simulation is finding rate functions that
satisfactorily describe all of the activities, not just testing. Such a
model enables optimum planning through trade-offs among allocated
resources, test strategies, etc.

16.6.1 Rate functions
of conventional models

Several published analytic models treat (or approximate) the overall
growth in reliability during the test and fault-removal phases as non-
homogeneous Poisson processes in execution time, while others focus
on Markov execution-time interval statistics. While these may differ
significantly in their assumptions about underlying failure mecha-
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nisms, they differ mathematically only in the forms of their rate func-
tions. Some examples are the following:

1. The Jelinski-Moranda model [Jeli72] describes statistics of failure
time intervals under the presumption that B,(¢) = By(1 — n/n,), where
no is the estimated (unknown) number of initial software faults and
By is initial failure rate.

2. The Goel-Okumoto model |Goel79] treats an overall reliability growth
process with B(£) = nyde ¥, where n, and ¢ are input parameters, nyd
being the initial failure rate, and ¢ the rate decay factor. Strictly
speaking, this rate function violates the conditions on A(¢, 0) imposed
in Eq. (16.3), because Ay(es, 0) = ng and Py() = e7. In practicality, n, is
usually fairly large, so the consequences may be negligible.

3. The Musa-Okumoto model [Musa84] posits an overall reliability
growth process in which B(¢) = By/(1 + 6¢), where [3; is the initial failure
rate and 0 is a rate decay factor. Both 3, and 0 are input parameters.

4. The Duane model [Duan64] deals with another overall reliability
growth model, with B(¢) = kbt®~!, where k and b are input parame-
ters. Equation (16.3) requires that 0 < < 1.

5. The Littlewood-Verrall inverse linear model [Litt73] is an overall
reliability growth model with B(z) = By/V1 + 6¢ where B, is the initial
failure rate and 0 is a rate decay factor.

6. The Yamada delayed S-shape model [Yama83] represents still
another overall reliability growth model, with B(¢) = ¢ yte' 7', where ¢
(the maximum failure rate) and y are input parameters. This rate
function, too, violates condition (16.3), as Ay (e, 0) = e¢/y and Pylee) =
e % again, when the number of faults is large, the effect is negligible.

You may find further discussions of these models in Chap. 3.

16.6.2 Simulator architecture

We have already discussed the algorithm for rate-based simulation.
The remaining architectural considerations are characterized by input
parameters, event rate functions, event response actions, and output
displays. The scope of user requirements should set the level of detail
being simulated.

A reliability process simulator should be able to respond to schedules
and work plans and to report the performance of subprocesses under
the plan. By viewing simulated results, users may then replan as nec-
essary. The simulator described here therefore does not assume specific
relationships involving staff, resource, or schedules, but expects these
as inputs in the form described in Sec. 16.3.2.
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Simulations should also embody interrelationships among project
elements. For example, defective specifications should lead to faults in
the code unless defects are corrected before coding takes place; missing
specifications should introduce even more coding errors; testing should
not take place without test cases to consume; repair activity should fol-
low fault identification and isolation; and so on.

A more comprehensive simulation model ([Taus91]) of the reliability
process uses about 70 input parameters describing the software project
and development environment, together with a project plan of arbi-
trary length containing activities, resources allocated, and application
schedules. This simulator, SoftRel, displays time-line profiles of almost
50 measures of project reliability status and the resources consumed,
by activity. The SoftRel tool is included in the Data and Tool Disk.

We shall illustrate the principles of reliability process simulation in
a somewhat more simplified example—only 25 input parameters and a
project resource schedule are required. You should not regard this
example necessarily as an illustration ready for industrial use, but as
a framework and means for experimentation, learning, and extension.

In the example (see Sec. 16.7), we simulate only a single category of
events for each reliability subprocess. Further, simulations produce only
two types of failure events, namely, defects in specification documents
and faults in code, all considered to be in the same severity category.

We also simplify the example reliability process not to include docu-
ment and code reuse and integration, test preparations and the depen-
dencies between testing and test-case availability, outages due to test
failures, repair validation, and retesting.

Other, more detailed, simplifications appear in the discussions below.

16.6.2.1 Environment considerations. We know that characteristics of
the programming, inspection, test, and operational environments can
influence the rates at which activities take place. For simplicity, how-
ever, we have eliminated as many of these from the example simulator
as seemed reasonable to our goals here. A more refined tool for general-
purpose industrial use would, of course, probably include more defini-
tive environmental inputs.

Events, of themselves, carry no intrinsic hazard values. The rates at
which events occur depend on a number of environmental and other
factors, including the nature of the events themselves. The model must
treat event hazards differently in different situations.

Some faults may be easier to discover by inspection than by testing,
while for others the opposite may be true. The fault discovery rate in
testing normally depends on such parameters as the CPU instruction
execution rate, the language expansion factor, the failure-to-fault rela-
tionship, and the scheduled CPU hours per calendar day that are
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applied. During inspections, on the other hand, fault discovery depends
on the discovery-to-fault relationship, the fault density, the inspection
rate, and applied effort.

A fault is independent of its means of discovery. The model must
therefore realize different hazard-per-fault rates in differing discovery
environments, rather than merely assign a specific hazard rate to the
fault itself.

16.6.2.2 Subprocess representation. In the example simulator, each
activity produces occurrences of one or more uncategorized event
types, either primary or secondary. Table 16.1 lists the simulated pri-
mary events. Except for test failures, all are goal-oriented processes
with limiting values, as shown. Test failures are limited by the current
fault hazard function.

Table 16.2 defines the secondary events that occur with a primary
event, controlled by an occurrence probability that may depend on a
number of combined factors. For example, the number of defects or
faults recognized during inspections will not only depend on the inspec-
tion efficiency (the fraction of defects recognized when inspected), but
also on the density of defects in the material being inspected. All sec-
ondary event occurrences are naturally limited in number to the occur-
rences of their primary events; no other limits are imposed.

16.6.3 Display of results

Internally, a process simulator carries very detailed, fine-grained in-
formation on the activities and events under study, of types that are
both visible and latent in real projects. In the spirit of simulation, the
profiles viewed by humans should appear as if taken from reality.
However, a simulation user may well desire visibility into latent val-
ues, such as the numbers of unfound defects and faults, in order to
make decisions on subsequent actions. When real project profiles
match their corresponding simulation profiles, then the user probably

TABLE 16.1 Reliability Process Primary Events and Limits

Primary event Rate control Limit
Doc unit created Build workforce Doc size
Doc unit inspected Document insp workforce Doc insp goal
Doc defect treated Document corr workforce Defects recognized
Code unit created Coding workforce Code size
Code unit inspected Code insp workforce Code insp goal
Code fault treated Code corr workforce Faults created
Test failure Size, faults, cpu, exposure oo
Failure analyzed Analysis workforce Test failures

Fault repair attempt Repair workforce Faults found
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TABLE 16.2 Reliability Process Secondary Events, Correspondences, and Controls

Secondary event Primary event Rate control
Defect created Doc unit created Defect density
Defect recognized Doc unit inspected Latent defects, efficiency
Defect corrected Defect treated Correction efficiency
Fault created Code unit created Fault density, missing/faulty doc
Fault recognized Code unit inspected Latent fault density, efficiency
Fault corrected Fault treated Fault correction efficiency
Test failure
Fault identified Failure analyzed Id efficiency, fault density
Fault repaired Repair attempt Repair efficiency

expects that the latent behaviors will also agree. But we must not
expect latent, model-internal behaviors to be accurate, because they
can never be matched with reality.

To some extent, real profiles depend on how projects instrument and
organize themselves for reliability measurement. They may record the
status of documents and development code only at certain milestones.
Other parameters, such as failures, may be logged automatically by the
operating system, if detected, or by humans on a daily or weekly basis.

Visible project parameters include (1) the input facts (or assump-
tions) that define the environment and (2) the measured profiles, such
as pages of documentation, lines of code, defects and faults found by
inspections, failures, test faults identified, repairs, resources expended,
and schedule time.

16.7 The Galileo Project Application

This section describes simulating a real-world project based on data
and parameters taken from a subsystem of the Galileo project at the
Jet Propulsion Laboratory ([Lyu91al).

Galileo is an outer planet spacecraft project that began at the start
of fiscal year 1977, a mission that was originally entitled “Jupiter
Orbiter and Probe,” or JOP. Unlike previous outer solar system mis-
sions, the Galileo orbiter was intended to remain in Jovian orbit for an
extended interval of time. This would allow observations of variations
in planetary and satellite features over time to augment the informa-
tion obtained by single-observation opportunities afforded by previous
fly-by missions. Galileo was launched in October of 1989 and reached
the Jovian system in 1995.

There are two major on-board flight computers in the Galileo space-
craft: the Attitude and Articulation Control Subsystem (AACS), and
the Command and Data System (CDS). A significant portion of each of
these systems is embodied in software. This case study focuses on the
CDS software reliability profile.
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The CDS performs such critical functions as command and control of
the spacecraft and the acquisition and transmission of flight data. CDS
software selects among the many available telemetry rates and modes,
and commands and controls all on-board experiments involving instru-
ments.

The CDS flight software is characterized as a real-time embedded
subsystem having high reliability requirements in a project where the
mission design was redone* several times. The software consists of
about 17,000 lines of assembly language code, with about 1400 pages of
documentation, produced over a period of approximately 300 calendar
weeks. The project spent 1200 days (in 5-day workweeks) in pretest
activities and 420 days (in 7-day workweeks) in test preparation, tests,
and rework, for a total of 1620 total days. The actual test period lasted
only 280 of the 420 days; the project recorded the failure profile only
during this 280-day subsystem software testing period.

16.7.1 Simulation experiments and results

Some of the CDS project parameters needed for simulation were calcu-
lated from project records; other values were estimated by project per-
sonnel; we chose the remaining values as probably typical of this
project, but for which we had no immediately available data. We
assigned believed-typical values, for example, to parameters relating to
the injection and removal of defects and faults. Thus, even though only
a few verifiable parameters were available outside the software testing
phase, we nevertheless formed an entire plausible hypothetical model
in order to illustrate an end-to-end reliability process.

For lack of better development life-cycle information, we presumed
that all CDS events occurred at uniform rates per event, that all activi-
ties took place without resource and schedule variations, and that test-
ing required applied CPU resources according to the basic execution-
time model.

Observing experiments using the simulator described in [Taus91]
led to regressive adjustments of the estimated project rate input
parameters. Each experiment profiled the status of defects and faults
as random streams; the final parameter values resulted in event pro-
files typified by those shown in Figs. 16.8 and 16.9. The figures depict
the results of a single experiment in simulating defect and fault pro-
files of the CDS software, sampled at 2-week intervals.

Note the smoothness that appears in the rise of some curves in these
figures is due to the regularity of the schedule, not randomness in per-

* Redesigns were necessitated by launch delays due to congressional actions and the
Space Shuttle Challenger disaster.
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Figure 16.9 Simulated Galileo CDS fault status profile.
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formance. Performance deviations seem invisible not because they are
small, but because they are relatively small, as a result of the law of
large numbers.* Although we have no CDS data to refute this behavior,
we doubt that the assumed constant resource levels reflect reality. A
more realistic extension to the case study would have been to introduce
irregular schedules, since we know that people rarely dedicate their
time exclusively to one single activity at a time. If actual CDS schedule
information had been available, we could have input this data into the
simulation, whereupon the process statistics would probably have
appeared more irregular.

Figure 16.8 displays the experimental defect behavior: injected doc-
ument errors (E), detected defects (D), remaining defects (F-d); and
remaining detected defects D-d. These profiles appear a little more
irregular than do those of documentation and code production, but not
much. The documentation appears to contain a sizable number of
latent defects; even many of the detected defects appear to have been
left uncorrected. Experimental rms deviation in the final defect counts
was about 25.

Figure 16.9 shows the experimental fault activity. These profiles
exhibit visible randomness, only partially masked by the law of large
numbers. The rise in total faults (F) during the code construction activ-
ity appears almost linear, again a consequence of a constant-effort
schedule. We chose project parameters that prevented the creation of
faults by imperfect corrections and repairs.

Correction of faults found in inspections began in week 150 and con-
tinued until week 240, removing 162 of them. The plateau in total
repaired faults (R) and in total remaining faults (F-R) between weeks
240 and 260 occurred due to staff preparations for testing. At week 260,
the test phase began, and failures (f) rose to 341 by week 300. Of
these, 284 were repaired (r).

By the end of the 300-week simulated project, almost 10 faults per
kiloline of code had been found in inspections and corrected, and
another 20 faults per kiloline of code had been uncovered by testing and
removed. The latent fault density was about 2 faults per kiloline of code.

Standard deviations computed after conducting many such experi-
ments were about 22 in fault count (F), 30 in faults remaining (F-R), 32
in discovered faults (f), and 25 in remaining discovered faults (f-r).

If the simulation parameters were typical of the CDS project, and
had the real CDS project been conducted a number of times, these
same ranges of variations in the final status of the CDS artifacts would

* The law of large numbers governs the rate at which the sample mean of an experi-
ment converges to the distribution mean. For many processes, this is of order O(1/V/n).
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Figure 16.10 Simulated Galileo CDS testing fault density profile (newly
discovered faults per two-week interval), constant CPU resource.

have been observed. The simulation did not replicate the CDS project
behavior, but mirrored the behavior of a CDS-type project.

Although the final fault discovery count seems typical of a CDS-type
project, the time profile of the simulation results shown in Fig. 16.10
does not quite seem to match the character of the actual project data.
The failure rate seems too high during early tests and too low during
the later tests. The actual test resource schedule was certainly not as
simple as that used in the simulation.

On the basis of these experiments, it appears that realistic simu-
lation of the general reliability process will require that detailed
resource and schedule information will have to be provided to the
model. It is important to remember that an actual project will probably
not proceed as smoothly as its simulation. Consequently, projects will
have to plan and measure their achievements as carefully for simula-
tion as they will for the actual production.

16.7.2 Comparisons with other software
reliability models

Figure 16.11 compares the actual CDS subsystem failure data with that
obtained from a constant-test-hazard-per-fault simulation. We detailed
the testing phase into five subactivities with constant staffing, but hav-
ing irregular CPU and schedule allocations, as shown in Table 16.3. We
obtained these schedule parameters using “eyeball regression” of the
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Figure 16.11 Cumulative failure data for Galileo CDS.

simulator output against the project data (see CDS.DAT on the Data
Disk). The fit appears adequate to describe the underlying nature of the
failure process (we did not expect an exact fit).

A comparison of failure profile simulation results with predictions of
three other models, Jelinski-Moranda (JM), Musa-Okumoto (MO), and
Littlewood-Verrall (LV), appears in Fig. 16.12. For better amplification
of model differences, the figure displays failures per week, rather than
cumulatively. The JM, MO, and LV statistics are one-week-ahead pre-
dictions, in which all failure data up to a given week are used to predict
the number of failures for the next week.

The figure shows that the CDS simulation behavior is very similar to
the noisy actual profile in variability and trends; the simulation could
have been used for assessing the CDS reliability status and trends dur-
ing the entire testing phase. The simulated profile could even have
been calculated well prior to the start of testing from schedule and

TABLE 16.3 Simulator Schedule for CDS Testing Phase

Accumulated Begin End CPU
Activity failures week week Staffing rate
1. Functional test 90 0 5 2.0 04
2. Feature test 150 5 13 2.0 04
3. Operation test 1 300 13 23 2.0 1.2
4. Operation test 2 325 23 33 2.0 1.0

5. Operation test 3 341 33 40 2.0 2.0
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Figure 16.12 Comparison of actual, model-predicted, and simulated (vari-
able CPU resource) Galileo CDS test fault densities.

resource plans. The preceding models could not adequately predict
even one week ahead.

16.8 Summary

In many ways, the methods for software reliability assessment re-
ported in this chapter are very satisfying, and in other ways, most frus-
trating. The techniques provide quantitative measures of software
quality that can be used by management to guide progress of a project.
The frustration is that progress unveils the depth of our ignorance
about system reliability and the dearth of experimental reliability
data. We have neither addressed the means for obtaining the best sim-
ulation structures nor the number of past examples needed to validate
them. Nor have we addressed means for forecasting parameter values
for a project from historical data. But ignorance, frustration, and the
challenge they inspire are potent motivations for research.

The modeling assumptions required by the two simulation ap-
proaches addressed in this chapter are certainly less restrictive, but
perhaps more demanding, than those underlying analytic models. Sim-
ulation solves software reliability prediction problems by producing
programs and data conforming precisely to reliability process assump-
tions. If simulation profiles differ from actual performance, then the
user can adjust the simulation model until an acceptable match with
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reality obtains. Simulation thus enables investigations of questions too
difficult to be answered analytically.

Tools and environments supporting simulations may offer signifi-
cant assistance and insight to researchers and practitioners in un-
derstanding the effects of various software reliability drivers in
evaluating sensitivities of behavior to various modeling assumptions
and in forecasting software project status profiles, such as time lines of
work products and the progress of testing, fault isolation, repair, vali-
dation, and retest efforts.

Attempts to reproduce reliability signatures of real-world projects
using simulation have, so far, been encouraging. The results tend to
coincide intuitively with how real programs behave, and strengthen
the hope that such methods in the future will enable fuller investiga-
tions into the relationships between static measures and dynamic per-
formance. Such relationships foretell reliability profiles of programs
not yet written.

Problems

16.1 Sketch a C program for the self-driven simulated code generator of Sec.
16.4.1.2. Which method did you use to represent the injected faults?

16.2 Use Eq. (16.10) to derive a closed-form expression for the conditional
mean occurrence times ¢, when the rate function is independent of time, but
depends on the number n of events (that is, B,.(¢) = B.).

16.3 Write a program to calculate the mean by Eq. (16.15) and conditional
mean occurrence profiles for the simple, rate-driven recurrent event process in
Prob. 16.2.

16.4 Develop a formula for calculating the variance 6; = E[(Z, - t.)? of a rate-
driven process. Extend the program in Prob. 16.3 to compute the standard
deviation, o,.

16.5 Use the program of Prob. 16.4 to analyze the behavior of a Jelinski-
Moranda rate function B, = 1 — n/25. Run the program and compare the condi-
tional mean profile with the true mean occurrence time. Is there a significant
difference? Plot the mean profiles and +1-c, event envelopes. Is the expected
deviation from the mean significant?

16.6 Write a program to simulate the event process in Prob. 16.5. Plot several
simulated random-event profiles. How significant are the differences among
the profiles?

16.7 Rewrite the rate function of the program in Probs. 16.5 and 16.6 to ana-
lyze the performance of the Musa-Okumoto model. How significant are the dif-
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ferences between the output profiles? How do these results compare with those
of Probs. 16.5 and 16.6?

16.8 Gather environmental and project data (including the resource sched-
ule) of a simple reliability process in your organization (such as software fail-
ures) and simulate it. Compare simulated and measured results. Was it
possible to make the two appear as sample functions of the same random pro-
cess? What changes in the simulator inputs were required?

16.9 Based on comparisons of simulated and actual project profiles, what con-
clusions can be made on the accuracy of simulation experiments?

16.10 Write the C code for the rate(process,events,t) function of the
example simulator from the descriptions given in the discussions of reliability
subprocess architectures. The formal parameters are process, the integer
index of the event; events, a pointer to the integer array of event counts; and t,
the time of the simulation. Indicate how the program consumes staff and com-
puter resources as activities unfold.




