
Streaming Algorithms for Estimating High Set
Similarities in LogLog Space

Yiyan Qi , Pinghui Wang , Yuanming Zhang, Qiaozhu Zhai , Chenxu Wang ,
Guangjian Tian, John C.S. Lui , and Xiaohong Guan

Abstract—Estimating set similarity and detecting highly similar sets are fundamental problems in areas such as databases and
machine learning. MinHash is a well-known technique for approximating Jaccard similarity of sets and has been successfully used for
many applications. Its two compressed versions, b-bit MinHash and Odd Sketch, can significantly reduce the memory usage of the
MinHash, especially for estimating high similarities (i.e., similarities around 1). Although MinHash can be applied to static sets as well
as streaming sets, of which elements are given in a streaming fashion, unfortunately, b-bit MinHash and Odd Sketch fail to deal with
streaming data. To solve this problem, we previously designed a memory-efficient sketch method,MaxLogHash, to accurately estimate
Jaccard similarities in streaming sets. Compared with MinHash, our method uses smaller sized registers (each register consists of less
than 7 bits) to build a compact sketch for each set. In this paper, we further develop a faster method,MaxLogOPH++. Compared with
MaxLogHash, MaxLogOPH++ reduces the time complexity for updating each coming element from OðkÞ to Oð1Þ with a small additional
memory. We conduct experiments on a variety of datasets, and experimental results demonstrate the efficiency and effectiveness of
our methods.

Index Terms—Streaming algorithms, sketch, jaccard similarity

Ç

1 INTRODUCTION

DATA streams are ubiquitous in nature. Examples range
from financial transactions to Internet of things (IoT)

data, network traffic, call logs, trajectory logs, etc. Due to the
nature of these applications which involvemassive volume of
data, it is prohibitive to collect the entire data streams, espe-
cially when computational and storage resources are limited
[1]. Therefore, it is important to develop memory-efficient
methods such as sampling and sketching techniques for min-
ing large streaming data.

Many datasets can be viewed as collections of sets and
computing set similarities is fundamental for a variety of
applications in areas such as databases [2], [3], machine learn-
ing [4], and information retrieval [5], [6]. For example, one can
view eachmobile device’s trajectory as a set and each element
in the set corresponds to a tuple of time t and the physical
location of the device at time t. Then,mining deviceswith sim-
ilar trajectories is useful for identifying friends or devices
belonging to the same person. Other examples are datasets
encountered in computer networks, mobile phone networks,
and online social networks (OSNs), where learning user simi-
larities in the sets of users’ visited websites on the Internet,
connected phone numbers, and friends on OSNs is funda-
mental for applications such as link prediction and friendship
recommendation.

One of the most popular set similarity measures is the Jac-
card similarity coefficient, which is defined as jA\BjjA[Bj for two

sets A and B. To handle large sets, MinHash (or, minwise
hashing) [7] is a powerful set similarity estimation technique,
which uses an array of k registers to build a sketch for each
set. Its accuracy only depends on the value of k and the Jac-
card similarity of two sets of interest, and it is independent of
the size of two sets. MinHash has been successfully used for a
variety of applications, such as similarity search [5], com-
pressing social networks [2], advertising diversification [8],
large scale learning [4], and webspam detection [9]. Many of
these applications focus on estimating similarity values close
to 1. Take similar document search in a sufficiently large cor-
pus as an example. For a corpus, there may be thousands of
documents which are similar to the query document, there-
fore our goal is not just to find similar documents, but also to
provide a short list (e.g., top-10) and ranking of the most

Y. Qi, Y. Zhang, and Q. Zhai are with MOE Key Laboratory for Intelligent
Networks and Network Security, Xi’an Jiaotong University, P.O. Box 1088,
No. 28, XianningWest Road, Xi’an, Shaanxi 710049, China.
E-mail: {qiyiyan, zhangyuanming}@stu.xjtu.edu.cn, qzzhai@mail.xjtu.edu.cn.

P. Wang is with the MOE Key Laboratory for Intelligent Networks and Net-
work Security, Xi’an Jiaotong University, P.O. Box 1088, No. 28, Xianning
West Road, Xi’an, Shaanxi 710049, China, and also with Shenzhen Research
Institute, Xi’an JiaotongUniversity, Shenzhen, China.
E-mail: phwang@mail.xjtu.edu.cn.

X. Guan is with the MOE Key Laboratory for Intelligent Networks and
Network Security, Xi’an Jiaotong University, P.O. Box 1088, No. 28,
Xianning West Road, Xi’an, Shaanxi 710049, China, the Shenzhen
Research Institute, Xi’an Jiaotong University, Shenzhen, China, and also
with the Center for Intelligent and Networked Systems, Tsinghua National
Lab for Information Science and Technology, Tsinghua University, Beijing
100084, China. E-mail: xhguan@mail.xjtu.edu.cn.

C. Wang is with the School of Software Engineering, Xi’an Jiaotong Uni-
versity, Xi’an, Shaanxi 710049, China. E-mail: cxwang@mail.xjtu.edu.cn.

G. Tian is with Huawei Noah’s Ark Lab, Hong Kong.
E-mail: Tian.Guangjian@huawei.com.

J.C.S. Lui is with the Chinese University of Hong Kong, Hong Kong.
E-mail: cslui@cse.cuhk.edu.hk.

Manuscript received 12 Aug. 2019; revised 11 Dec. 2019; accepted 11 Jan.
2020. Date of publication 24 Jan. 2020; date of current version 10 Sept. 2021.
(Corresponding author: Pinghui Wang.)
Recommended for acceptance by C. Li.
Digital Object Identifier no. 10.1109/TKDE.2020.2969423

3438 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 10, OCTOBER 2021

1041-4347! 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

similar documents. For such an application, we need effective
methods that are very accurate and memory-efficient for esti-
mating high similarities. To achieve this goal, there are two
compressed MinHash methods, b-bit MinHash [10] and Odd
Sketch [11], which were proposed in the past few years to fur-
ther reduce the memory usage of the original MinHash by
dozens of times, while to provide comparable estimation
accuracy especially for large similarity values. However, we
observe that these two methods fail to handle data streams
(the details will be given in Section 3).

To solve the above challenge, recently, Yu andWeber [12]
develop a method, HyperMinHash. HyperMinHash con-
sists of k registers, whereas each register has two parts, an
FM (Flajolet-Martin) sketch [13] and a b-bit string. The b-bit
string is computed based on the fingerprints (i.e., hash val-
ues) of set elements that are mapped to the register. Based
on HyperMinHash sketches of two sets A and B, Hyper-
Minhash first estimates jA [Bj and then infers the Jaccard
similarity of A and B from the number of collisions of b-bit
strings given jA [Bj. Later in our experiments, we demon-
strate that HyperMinHash not only exhibits a large bias and
is also computationally expensive for estimating similari-
ties, which results in a large estimation error and a big delay
in querying highly similar sets. More importantly, it is diffi-
cult to analytically analyze the estimation bias and variance
of HyperMinHash [12], which are of great value in practice–
the bias and variance can be used to bound estimation
errors and determine the smallest necessary sampling bud-
get (i.e., k) for a desired accuracy.

We previously developed a memory-efficient method,
MaxLogHash, to estimate Jaccard similarities in streaming sets
[14]. Similar to MinHash, MaxLogHash uses a list of k regis-
ters to build a compact sketch for each set. Unlike MinHash
which uses a 64-bit (resp. 32-bit) register for storing the mini-
mum hash value of 64-bit (resp. 32-bit) set elements, our
method MaxLogHash uses only 7-bit register (resp. 6-bit reg-
ister) to approximately record the logarithmvalue of themini-
mum hash value, and this results in 9 times (resp. 5 times)
reduction in memory usage. Another attractive property is
that ourMaxLogHash sketch can be computed incrementally,
therefore, MaxLogHash is able to handle streaming-sets.
Given any two sets’ MaxLogHash sketches, we provide a sim-
ple yet accurate estimator for their Jaccard similarities and
derive exact formulas for bounding the estimation error. We
also developed a faster method,MaxLogOPH [14]. Compared
to MaxLogHash, MaxLogOPH reduces the time complexity
for updating each coming element from OðkÞ to Oð1Þ, but
gives a large estimation bias for small sets.

To solve this problem, in this paper, we design a novel
estimator, MaxLogOPH++, which significantly reduces the
estimation error of MaxLogOPH. Specifically, we first build
a likelihood function of generated sketches and then infer
the Maximum Likelihood Estimation (MLE) [15] of Jaccard
similarity using the Newton-Raphson method [16]. Com-
pared with our method MaxLogHash [14], MaxLogOPH++
reduces the time complexity from OðkÞ to Oð1Þ and gives
comparable accuracy. MaxLogOPH++ also significantly
reduces the estimation bias ofMaxLogOPH [14].We conduct
experiments on a variety of synthetic and real-world data-
sets. Our experimental results show that MaxLogOPH++
is two orders of magnitude faster than MaxLogHash at

the cost of 4 percent more memory usage, and is 2 times
more accurate thanMaxLogOPH for small sets.

The rest of this paper is organized as follows. The problem
formulation is presented in Section 2. Section 3 introduces pre-
liminaries used in this paper. Sections 4 and 5 present our
method MaxLogHash and MaxLogOPH++ respectively. The
performance evaluation and testing results are presented in
Section 6. Section 7 summarizes related work. Concluding
remarks then follow.

2 PROBLEM FORMULATION

For ease of reading and comprehension, we say that each set
belongs to a user, elements in the set are items (e.g., products)
that the user connects to. Let U denote the set of users and I
denote the set of all items. LetP ¼ eð1Þeð2Þ % % % eðtÞ % % % denote the
user-item stream of interest, where eðtÞ ¼ ðuðtÞ; vðtÞÞ is the ele-
ment of P occurred at discrete time t > 0, uðtÞ 2 U and
vðtÞ 2 I are the element’s user and item, which represents a
connection from user uðtÞ to item vðtÞ. We assume that P has
no duplicate user-item pairs,1 that is, eðiÞ 6¼ eðjÞ when i 6¼ j.
Let IðtÞu & I be the item set of user u 2 U , which consists of
items that user u connects to before and including time t. Let
[ðtÞðu1; u2Þ denote the union of two sets IðtÞu1

and IðtÞu2
, that is,

[ðtÞðu1; u2Þ ¼ IðtÞu1
[IðtÞu2

: Similarly, we define the intersection

of two sets IðtÞu1
and IðtÞu1

as \ðtÞðu1; u2Þ ¼ IðtÞu1
\ IðtÞu2

: Then, the

Jaccard similarity of sets IðtÞu1
and IðtÞu2

is defined as

J ðtÞ
u1;u2

¼ j \
ðtÞ ðu1; u2Þj

j [ðtÞ ðu1; u2Þj
;

which reflects the similarity between users u1 and u2. We
formulate our problem as:

Problem Definition. Given an insertion-only user-item
stream P ¼ eð1Þeð2Þ % % % eðtÞ % % % and current time t > 0, we aim
to develop a memory-efficient method to estimate JðtÞ

u1;u2
for

any two users u1 and u2 based on their corresponding item
sets appearing before and including time t.

3 PRELIMINARIES

In this section, we first introduce MinHash [7]. Then, we
elaborate two state-of-the-art memory-efficient methods
b-bit MinHash [10] and Odd Sketch [11] that can decrease the
memory usage of the original MinHash method. At last, we
demonstrate that both b-bit MinHash and Odd Sketch fail to
handle streaming sets.

3.1 MinHash
Given a random permutation (or hash function)2 p from ele-
ments in I to elements in I, i.e., a hash function maps inte-
gers in I to distinct integers in I at random. Broder et al. [7]
observed that the Jaccard similarity of two sets A;B ' I
equals

JA;B ¼ j \ ðA;BÞj
j [ðA;BÞj

¼ P ðminðpðAÞÞ ¼ minðpðBÞÞÞ; (1)

1. Duplicated user-item pairs can be easily checked and filtered
using fast and memory-efficient techniques such as Bloom filter [17].

2. MinHash assumes no hash collisions.

QI ETAL.: STREAMING ALGORITHMS FOR ESTIMATING HIGH SET SIMILARITIES IN LOGLOG SPACE 3439

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

where pðAÞ ¼ fpðwÞ : w 2 Ag. Therefore, MinHash uses a
sequence of k independent permutations p1; . . . ;pk and esti-
mates JA;B as

ĴA;B ¼
Pk

i¼1 1ðminðp1ðAÞÞ ¼ minðp1ðBÞÞ
k

; (2)

where 1ðPÞ is an indicator function that equals 1 when the
predicate P is true and 0 otherwise. Note that ĴA;B is an
unbiased estimator for JA;B, i.e., EðĴA;BÞ ¼ JA;B, and its vari-
ance is

VarðĴA;BÞ ¼
JA;Bð1(JA;BÞ

k
: (3)

Therefore, instead of storing a set A in memory, one can
compute and store its MinHash sketch SA, i.e.,

SA ¼ ðminðp1ðAÞÞ; . . . ;minðpkðAÞÞÞ;

which reduces the memory usage when jAj > k. The Jac-
card similarity of any two sets can be accurately and effi-
ciently estimated based on their MinHash sketches.

3.2 b-bit MinHash
Li and K€onig [10] proposed a method, b-bit MinHash, to fur-
ther reduce the memory usage. b-bit MinHash reduces the
memory required for storing a MinHash sketch SA from 32k
or 64k bits3 to bk bits. The basic idea behind b-bit MinHash
is that the same hash values give the same lowest b bits
while two different hash values give the same lowest b bits
with a small probability 1=2b. Formally, let minðbÞðpðAÞÞ
denote the lowest b bits of the value of minðpðAÞÞ for a per-
mutation p. Define the b-bit MinHash sketch of set A as

SðbÞ
A ¼ ðminðbÞðp1ðAÞÞ; . . . ;minðbÞðpkðAÞÞÞ:

To mine set similarities, Li and K€onig first compute SA for
each set A, and then store its b-bit MinHash sketch SðbÞ

A . At
last, the Jaccard similarity JA;B is estimated as

Ĵ ðbÞ
A;B ¼

Pk
i¼1 1ðminðbÞðpiðAÞÞ ¼ minðbÞðpiðBÞÞÞ (k

2b

kð1(1
2b
Þ

: (4)

Ĵ ðbÞ
A;B is also an unbiased estimator for JA;B, and its variance

is

VarðĴ ðbÞ
A;BÞ ¼

1(JA;B
k

JA;B þ 1

2b (1

! "
: (5)

3.3 Odd Sketch
Mitzenmacher et al. [11] developed a method Odd Sketch,
which is more memory efficient than b-bit MinHash for min-
ing highly similar sets. Odd Sketch uses a hash function h that
maps each tuple ði;minðpiðAÞÞÞ, i ¼ 1; . . . ; k, to an integer in

f1; . . . ; zg at random. For a setA, its odd sketch S(Odd)
A consists

of z bits. Function h maps tuples ð1;minðp1ðAÞÞÞ; . . . ; ðk;
minðpkðAÞÞÞ into z bits of S(Odd)

A at random. S(Odd)
A ½j+, 1 ,

j , z, is the parity of the number of tuples that are mapped to

the jth bit of S(Odd)
A . Formally, S(Odd)

A ½j+ is computed as

S(Odd)
A ½j+ ¼ -i¼1;...;k1ðhði;minðpiðAÞÞÞ ¼ jÞ; 1 , j , z:

The Jaccard similarity JA;B is then estimated as

Ĵ
(Odd)
A;B ¼ 1þ z

4k
ln 1(

2
Pz

i¼1 S
(Odd)
A ½j+ - S(Odd)

B ½j+
z

 !

:

(6)

Mitzenmacher et al. demonstrate that Ĵ (Odd)
A;B is more accurate

than Ĵ (b)
A;B under the same memory usage (refer to [11] for

details of the error analysis of Ĵ (Odd)
A;B).

3.4 Discussion
MinHash can be Directly Applied to Stream Data.We can easily
find that MinHash sketch can be computed incrementally.
That is, one can compute the MinHash sketch of set A [fvg
from the MinHash sketch of set A as

minðpðA [fvgÞÞ ¼ minðminðpðAÞÞ;pðvÞÞ:

Variants b-bit MinHash and Odd Sketch cannot be Used to Han-
dle Streaming Sets. Let pðbÞðvÞ denote the lowest b bits of pðvÞ.
Then, one can easily show that

minðbÞðpðA [fvgÞÞ 6¼ minðminðbÞðpðAÞÞ;pðbÞðvÞÞ:

It shows that computing minðbÞðpðA [fvgÞÞ requires the hash
value pðwÞ of each w 2 A [fvg. In addition, we observe that
minðbÞðpðAÞÞ cannot be approximated asminw2ApðbÞðwÞ, which
can be computed incrementally, becauseminw2ApðbÞðwÞ equals
0 with a high probability when jAj. 2b. Later in the experi-
ment section (Section 6.4), we show that the above approxima-
tion gives large estimate errors. Similarly, we cannot compute
the odd sketch of a set incrementally. Therefore, both b-bit
MinHash andOdd Sketch fail to deal with streaming sets.

4 MAXLOGHASH

4.1 Basic Idea
Let h be a function that maps any element v in I to a random
number in range (0,1). i.e., hðvÞ / Uniformð0; 1Þ. Define
the log-rank of v with respect to hash function h as
rðvÞ b(log2 hðvÞc:We compute and store

MaxLogðhðAÞÞ ¼ max
v2A

rðvÞ ¼ max
v2A
b(log2 hðvÞc: (7)

Let us now develop a simple yet accurate method to esti-
mate Jaccard similarity of streaming sets based on the fol-
lowing properties of functionMaxLogðhðAÞÞ.

Observation 1. MaxLogðhðAÞÞ can be represented by an
integer of no more than dlog2 log2jIje bits with a high
probability. For each v 2 I, we have hðvÞ / Uniformð0; 1Þ,
and thus

rðvÞ / Geometricð1=2Þ;

supported on set f0; 1; 2; . . .g, that is,

P ðrðvÞ < jÞ ¼ 1(1

2j
; j 2 f0; 1; 2; . . .g:3. A 32- or 64-bit register is used to store each minðpiðAÞÞ,

i ¼ 1; . . . ; k.

3440 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

Then, one can easily find that

P ðMaxLogðhðAÞÞ , 2dlog2 log2jIje (1Þ

¼ 1(1

22dlog2 log2 jIje

! "jAj
:

For example, when A ' f1; . . . ; 264g and jAj , 254, we
only require 6 bits to store MaxLogðhðAÞÞ with probabil-
ity at least 0.999.

Observation 2. MaxLogðhðAÞÞ can be computed incremen-
tally. This is because

MaxLogðhðA [fvgÞÞ ¼ maxðMaxLogðhðAÞÞ; b(log 2hðvÞcÞ:

Observation 3. JA;B can be easily estimated from
MaxLogðhðAÞÞ and MaxLogðhðBÞÞ with a little additional
information. We find that

g ¼P ðMaxLogðhðAÞÞ 6¼ MaxLogðhðBÞÞÞ

¼
Xþ1

j¼1

jA nBj
2jþ1

1(1

2jþ1

! "jAnBj(1

1(1

2j

! "jBj

þ
Xþ1

j¼1

jB nAj
2jþ1

1(1

2jþ1

! "jBnAj(1

1(1

2j

! "jAj
:

Due to the limited space, we omit the details of how g is
derived. Similar to MinHash, we have P ðmaxðhðAÞÞ 6¼
maxðhðBÞÞÞ ¼ 1(JA;B. Therefore, we have g < 1(JA;B.
Although g can be estimated similar to MinHash using k
hash functions h1; . . . ; hk, that is,

EðgÞ ¼
Pk

i¼1 1ðMaxLogðhiðAÞÞ 6¼ MaxLogðhiðBÞÞÞ
k

;

unfortunately, it is difficult to compute JA;B from g. To
solve this problem, we observe

P ðMaxLogðhðAÞÞ 6¼ MaxLogðhðBÞÞ ^ dA;B ¼ 1Þ
0 0:7213ð1(JA;BÞ;

(8)

where dA;B ¼ 1 indicates that there exists one and
only one element in A [B of which log-rank equals
MaxLogðhðA [BÞÞ.

Based on the above three observations, we propose
to incrementally and accurately estimate the value of
P ðMaxLogðhðAÞÞ 6¼ MaxLogðhðBÞÞ ^ dA;B ¼ 1Þ using k hash
functions h1; . . . ; hk. Then, we easily infer the value of JA;B.

4.2 Data Structure
The MaxLogHash sketch of a user u, i.e., Su, consists of k bit-
strings, where each bit-string Su½i+; 1 , i , k, has two com-
ponents, su½i+ andmu½i+, i.e.,

Su½i+ ¼ su½i+ k mu½i+:

At any time t, mu½i+ records the maximum hash value of
items in IðtÞu with respect to hash function rið%Þ ¼ b(
log 2hið%Þc, i.e., mu½i+ ¼ max

w2IðtÞu
riðwÞ, where IðtÞu refers to the

set of items that user u connected to before and including

time t; su½i+ consists of 1 bit and its value indicates whether
there exists one and only one item w 2 Iu such that
riðwÞ ¼ mu½i+. As we mentioned, we can use dlog2 log2jIje
bits to record the value of mu½i+ with a high probability
(very close to 1). When mu½i+ 1 2dlog2 log2jIje, we use a hash
table to record tuples ðu; i;mu½i+Þ for all users.

Algorithm 1. The Pseudo-Code of MaxLogHash

Input : P; k;a ¼ 0:7213.
1 U ;;
2 foreach user-item pair ðu; vÞ arriving on stream P do
3 UpdateUIPair (u; v);
4 Function UpdateUIPair (u; v)
5 if u =2 U then
6 U U [fug;
7 for i 2 f1; . . . ; kg do
8 su½i+ 1;
9 mu½i+ b(log2 hiðvÞc;
10 else
11 for i 2 f1; . . . ; kg do
12 riðvÞ b(log2 hiðvÞc;
13 if riðvÞ 1 mu½i+ then
14 if riðvÞ ¼¼ mu½i+ then
15 su½i+ 0;
16 continue();
17 su½i+ 1;
18 mu½i+ riðvÞ;
19 Function EstimateJaccard(u1; u2)
20 k̂ 0;
21 for i 2 f1; . . . ; kg do
22 ifmu1 ½i+ ¼¼ mu2 ½i+ then
23 continue();
24 ifmu1 ½i+ > mu2 ½i+ and su1 ½i+ ¼¼ 1 then
25 k̂ k̂þ 1;
26 continue();
27 ifmu1 ½i+ < mu2 ½i+ and su2 ½i+ ¼¼ 1 then
28 k̂ k̂þ 1;
29 Ĵu1;u2 1(k̂k(1a(1;

4.3 Update Procedure
For each user u 2 U , when it first connects to an item w in
stream P, we initialize the MaxLogHash sketch of user u as

Su½i+ ¼ 1 k riðwÞ; i ¼ 1; . . . ; k;

where riðwÞ ¼ b(log2 hiðwÞc. That is, we set indicator
su½i+ ¼ 1 and register mu½i+ ¼ riðwÞ. For any other item v that
user u connects to after the first item w, i.e., an user-item pair
ðu; vÞ occurring on streamP after the user-item pair ðu;wÞ, we
update it as follows: We first compute the log-rank of item v,
i.e., riðvÞ ¼ b(log2 hiðvÞc, i ¼ 1; . . . ; k. When riðvÞ is smaller
thanmu½i+, we perform no further operations for updating the
user-item ðu; vÞ. When riðvÞ ¼ mu½i+, it indicates that at least
two items in Iu has a log-rank valuemu½i+. Therefore, we sim-
ply set su½i+ ¼ 0. When riðvÞ > mu½i+, we set Su½i+ ¼ 1 k riðvÞ.
Algorithm 1 shows the pseudo-code ofMaxLogHash.

4.4 Jaccard Similarity Estimation
Define variables

xu1[u2 ½i+ ¼ 1ðmu1 ½i+ 6¼ mu2 ½i+Þ; i ¼ 1; . . . ; k; (9)

QI ETAL.: STREAMING ALGORITHMS FOR ESTIMATING HIGH SET SIMILARITIES IN LOGLOG SPACE 3441

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

cu1[u2 ½i+ ¼
su1 ½i+; mu1 ½i+ > mu2 ½i+
su2 ½i+; mu1 ½i+ < mu2 ½i+
(1; mu1 ½i+ ¼ mu2 ½i+

8
<

: (10)

du1[u2 ½i+ ¼ 1ðxu1[u2 ½i+ ¼ 1Þ1ðcu1[u2 ½i+ ¼ 1Þ: (11)

Note that du1[u2 ½i+ ¼ 1 indicates that there exists one and
only one element in set [ðu1; u2Þ of which log-rank equals
maxw2[ðu1;u2ÞriðwÞ with respect to function ri. Let du1[u2 ¼
j [ðu1; u2Þj, we have the following theorem to compute
P ðdu1[u2 ½i+ ¼ 1Þ.

Theorem 1. For non-empty sets Iu1 and Iu2 , we have
P ðdu1[u2 ½i+ ¼ 1Þ ¼ 0, i ¼ 1; . . . ; k, when du1[u2 ¼ 1. Other-
wise, we have

P ðdu1[u2 ½i+ ¼ 1Þ ¼ adu1[u2 ð1(Ju1;u2Þ; i ¼ 1; . . . ; k;

where an ¼ n
Pþ1

j¼1
1

2jþ1 1(1
2j

$n(1
; n 1 2:

Proof. Let r2 be the maximum log-rank of all items in
[ðu1; u2Þ. When two items w and v in Iu1 or Iu2 has the
log-rank value r2, we easily find that cu1[u2 ½i+ ¼ 0. When
only one item w in Iu1 and only one item v in Iu2 have the
log-rank value r2, we easily find that xu1[u2 ½i+ ¼ 0. Let

Dðu1; u2Þ ¼ ðIu1 n Iu2Þ [ðIu2 n Iu1Þ ¼ [ðu1; u2Þ n \ðu1; u2Þ;

and du1Du2 ¼ jDðu1; u2Þj. Then, we find that event
xu1[u2 ½i+ ¼ 1 ^ cu1[u2 ½i+ ¼ 1 happens (i.e., du1[u2 ½i+ ¼ 1)
only when one item w in Dðu1; u2Þ has a log-rank value
larger than all items in [ðu1; u2Þ n fwg. For any item
v 2 I, we have hiðvÞ / Uniformð0; 1Þ and so riðvÞ /
Geometricð1=2Þ, supported on the set f0; 1; 2; . . .g. Based
on the above observations, when du1[u2 1 2, we have

P ðdu1[u2 ½i+ ¼ 1 ^ r2 ¼ jÞ

¼
X

w2Dðu1;u2Þ
P ðriðwÞ ¼ jÞ

Y

v2[ðu1;u2Þnfwg
P ðriðvÞ < jÞ

¼
du1Du2
2jþ1

1(1

2j

! "du1[u2(1

:

(12)

Therefore, we have

P ðdu1[u2 ½i+ ¼ 1Þ ¼
Xþ1

j¼0

P ðdu1[u2 ½i+ ¼ 1 ^ r2 ¼ jÞ

¼
X

w2Dðu1;u2Þ
P ðrw ¼ jÞ

Y

v2[ðu1;u2Þnfwg
P ðrv < jÞ

¼
Xþ1

j¼1

du1Du2
2jþ1

1(1

2j

! "du1[u2(1 (13)

where the last equation holds for jDðu1; u2Þj ¼ j [ðu1;
u2Þj(j \ ðu1; u2Þj: tu

Define variable k̂ ¼
Pk

i¼1 1ðdu1[u2 ½i+ ¼ 1Þ: FromTheorem 1,
the expectation of k̂ is computed as

Eðk̂Þ ¼ E
Xk

i¼1

1ðdu1[u2 ½i+ ¼ 1Þ
 !

¼
Xk

i¼1

Eð1ðdu1[u2 ½i+ ¼ 1ÞÞ

¼ kadu1[u2 ð1(Ju1[u2Þ:

(14)

Therefore, we have

Ju1;u2 ¼ 1(Eðk̂Þ
kadu1[u2

: (15)

Note that the cardinality of set [ðu1; u2Þ (i.e., du1[u2) is
unknown. To solve this challenge, we find that

an ¼ n

2

Xþ1

j¼1

1

2j
1(1

2j

! "n(1

¼ n

2

Xþ1

j¼1

1

2j

Xn(1

l¼0

n(1

l

! "
(1

2j

! "n(l(1

¼ n

2

Xn(1

l¼0

ð(1Þn(l(1 n(1

l

! "Xþ1

j¼1

1

2jðn(lÞ

¼ n

2

Xn(1

l¼0

ð(1Þn(l(1 n(1

l

! "
1

2n(l (1
:

(16)

Fig. 1 shows that the value of an, n ¼ 2; 3; . . . : We find that
an 0 a ¼ 0:7213when n 1 2. Therefore, we estimate Ju1;u2 as

Ĵu1;u2 ¼ 1(k̂

ka
: (17)

4.5 Error Analysis

Theorem 2. For any users u1; u2 2 U , we have

EðĴu1;u2Þ (Ju1;u2 ¼ ð1(bdu1[u2
Þð1(Ju1;u2Þ;

where bn ¼ an
a . The variance of Ĵu1;u2 is computed as

VarðĴu1;u2Þ

¼
bdu1[u2

ð1(Ju1 ;u2 Þða
(1(bdu1[u2

ð1(Ju1 ;u2 ÞÞ
k :

When du1[u2 1 3, we have jbdu1[u2
(1j , 0:01, and so

EðĴu1;u2Þ 0 Ju1;u2 and VarðĴu1;u2Þ 0
ð1(Ju1 ;u2 ÞðJu1 ;u2þ0:3864Þ

k .

Fig. 1. Value of an, n ¼ 2; . . . ; 106 where ja2 (0:7213j ¼ 0:0546,
jan (0:7213j , 0:007 when n 1 3.

3442 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

Proof. From Equation (14), we easily have

EðĴu1;u2Þ ¼ E 1(k̂

ka

 !
¼ 1(

kadu1[u2 ð1(Ju1;u2Þ
ka

¼ bdu1[u2
Ju1;u2 þ 1(bdu1[u2 :

(18)

To derive VarðĴu1;u2Þ, we first compute

Eðk̂2Þ ¼ E
Xk

i¼1

1ðdu1[u2 ½i+ ¼ 1Þ

 !2
0

@

1

A

¼
Xk

i¼1

E ð1ðdu1[u2 ½i+ ¼ 1ÞÞ2
$

þ
X

i6¼j;1,i;j,k

E 1ðdu1[u2 ½i+ ¼ 1Þ1ðdu1[u2 ½j+ ¼ 1Þ
% &

¼ kadu1[u2 ð1(Ju1;u2Þ þ kðk(1Þa2
du1[u2

ð1(Ju1;u2Þ
2:

Then, we have

Varðk̂Þ ¼ Eðk̂2Þ (ðEðk̂ÞÞ2

¼ kadu1[u2 ð1(Ju1;u2Þð1(adu1[u2 ð1(Ju1;u2ÞÞ:
(19)

From the definition of Ĵu1;u2 , we have

VarðĴu1;u2Þ ¼ Var 1(k̂

ka

 !

¼ Varðk̂Þ
k2a2

: (20)

Then,we easily obtain a closed-form formulas ofVarðĴu1;u2Þ
fromEquation (19). tu

5 MAXLOGOPH++

5.1 Basic Idea
Although our method MaxLogHash is memory-efficient, it
suffers with the same efficiency problem as MinHash, i.e.,
hashing k times for each coming element. Inspired by one
permutation hashing (OPH) [18], which significantly
reduces the time complexity of MinHash processing each
element, we develop a faster method, MaxLogOPH++, to
further reduce the time complexity of MaxLogHash from
OðkÞ to Oð1Þ. In particular, we use a hash function which
splits items in Iu into k subsets without overlapping at ran-
dom, and each register Su½i+, 1 , i , k records the maxi-
mum rank value4 mu½i+ as well as the value of indicator su½i+
for elements in the ith subset, which is similar to the Max-
LogHash method in Section 4. Different from MaxLogHash,
MaxLogOPH++ introduces a counter du for each user u
which records the number of elements in Iu, i.e., du ¼ jIuj,
over time.

To estimate similarities via MaxLogOPH++, we first
build a probabilistic model based on generated sketches.
However, we find that the exact probabilistic model is hard
to solve. Inspired by [19], we instead use the Poisson
approximation model to approximate the exact model and

then infer the Maximum Likelihood Estimation [15] of Jac-
card similarity using the Newton-Raphson method [16].

Algorithm 2. The Pseudo-Code of MaxLogOPH++

Input : P; k;a ¼ 0:7213.
1 U ;;
2 foreach user-item pair ðu; vÞ arriving on stream P do
3 UpdateUIPair(u; v);
4 Function UpdateUIPair(u; v)
5 if u =2 U then
6 U U [fug, du 1;
7 for i 2 f1; . . . ; kg do
8 su½i+ 0,mu½i+ 0;
9 iv gðvÞ;
10 mu½iv+ b(log2 hðvÞc;
11 else
12 du du þ 1;
13 iv gðvÞ;
14 rðvÞ b(log2 hðvÞc;
15 if rðvÞ 1 mu½iv+ then
16 if rðvÞ ¼¼ mu½iv+ then
17 su½iv+ 0;
18 continue();
19 su½iv+ 1,mu½iv+ rðvÞ;
20 Function EstimateJaccard(u1; u2)
21 k̂ 0;
22 for i 2 f1; . . . ; kg do
23 ifmu1 ½i+ ¼¼ mu2 ½i+ then
24 continue();
25 ifmu1 ½i+ > mu2 ½i+ and su1 ½i+ ¼¼ 1 then
26 k̂ k̂þ 1;
27 continue();
28 ifmu1 ½i+ < mu2 ½i+ and su2 ½i+ ¼¼ 1 then
29 k̂ k̂þ 1;
30 Jð0Þ 1(k̂k(1a(1;

/* lT: the maximum number of iterations. */

31 for l ¼ 1; 2; . . .; lT do

32 JðlÞ J ðl(1Þ (fðJðl(1ÞÞ
f
0 ðJðl(1ÞÞ

;

33 return JðlT Þ;

5.2 Jaccard Similarity Estimation
Exact Probabilistic Model. Let g be a hash function that maps
any element v 2 I to a random integer in range ½1; k+. For
any users u1; u2 2 U , let [iðu1; u2Þ denote the subset of
[ðu1; u2Þ in which each element’s hash value equals i with
respect to function g, that is,

[iðu1; u2Þ ¼ fv : gðvÞ ¼ i; v 2 [ðu1; u2Þg; 1 , i , k:

Our algorithm randomly splits items from [ðu1; u2Þ into k
non-overlapped subsets [1ðu1; u2Þ, . . ., [kðu1; u2Þ. Define
du1[u2 ¼ j [ðu1; u2Þj and du1[u2;i ¼ j [i ðu1; u2Þj. Using the
classical balls-in-urns model [20] (randomly throwing balls
into k bins), we derive the probability distribution of vector
ðdu1[u2;1; . . . ; du1[u2;kÞ as

P ðdu1[u2;1; . . . ; du1[u2;kjdu1[u2Þ ¼
du1[u2

du1[u2 ;1;...;du1[u2 ;k

$

kdu1[u2
: (21)

Similar to MaxLogHash, we let du1[u2 ½i+ indicate whether
there exists one and only one element in set [iðu1; u2Þ of

4. For MaxLogOPH++, the rank value of an empty bucket is always
smaller than that of any element.

QI ETAL.: STREAMING ALGORITHMS FOR ESTIMATING HIGH SET SIMILARITIES IN LOGLOG SPACE 3443

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

which log-rank equals maxw2[iðu1;u2ÞrðwÞ with respect to
function r. We give the following theorem to compute
P ðdu1[u2 ½i+jdu1[u2;iÞ.

Theorem 3. For non-empty sets Iu1 and Iu2 , we have

P ðdu1[u2 ½i+ ¼ 1jdu1[u2;iÞ ¼ adu1[u2 ;i
ð1(Ju1;u2Þ;

where a1 ¼ 1 and a2;a3; . . . have the same definition as those
in Theorem 1.

We omit the proof which is similar to Theorem 1. Let
ddu1[u2 ¼ ðdu1[u2 ½1+; . . . ; du1[u2 ½k+Þ. Let P ðddu1[u2 jdu1[u2Þ denote
the probability density function (PDF) of ddu1[u2 given du1[u2 .
In what follows we drop the subscript u1 [u2 for brevity.
From Equation (21), we compute P ðddjdÞ as

P ðddjdÞ ¼
X

d1þ...þdk¼du

P ðd1; . . . ; dkjdÞP ðddjd1; . . . ; dkÞ

¼
X

d1þ...þdk¼du

d
d1;...;dk

$

kd

Yk

i¼1

P ðd½i+jdiÞ;
(22)

where P ðddjd1; . . . ; dkÞ ¼
Qk

i¼1 P ðd½i+jdiÞ because the value of
d½i+ can only be changed by the elements thrown into subset
[iðu1; u2Þ.

Poisson Approximation Model. The above probabilistic
model is hard to compute because d1; . . . ; dk are not inde-
pendent. Therefore, inspired by [19], we use the Poisson
approximation technique to remove the dependence of
d1; . . . ; dk. Specifically, we assume that the value of d is dis-
tributed according to a Poisson distribution with parameter
!, i.e., d / Poissonð!Þ. Then, the PDF of dd given ! is

P ðddj!Þ ¼
Xþ1

d¼0

P ðddjdÞ e
(!!d

d!

¼
Xþ1

d¼0

X

d1þ...þdk¼d

d
d1;...;dk

$

kd

Yk

i¼1

P ðd½i+jdiÞ
e(!!d

d!

¼
Xþ1

d1¼0

. . .
Xþ1

dk¼0

Yk

i¼1

P ðd½i+jdiÞ
e(

!
k!di

di!kdi

¼
Yk

i¼1

Xþ1

di¼0

P ðd½i+jdiÞ
e(

!
k!di

di!kdi

(23)

where the third equation holds because d
d1;...;dk

$
¼ d!

d1!%%%dk!
.

Given d / Poissonð!Þ, the above equation indicates that the
values of d½1+; . . . ; d½k+ are independent and identically dis-
tributed. In addition, we note that the values of d1; . . . ; dk
are independent and identically distributed according to a
Poisson distribution Poissonð!kÞ.

Then, we briefly discuss why the Poisson approximation
model (i.e., P ðddjdÞ) works. Let fðddÞ be an estimator of J , we
denote the expectation and the variance of fðddÞ under
P ðddjdÞ as EdðfðddÞÞ and VardðfðddÞÞ respectively. We let
EPoissonð!ÞðfðddÞÞ and VarPoissonð!ÞðfðddÞÞ denote the expectation
and the variance of fðddÞ under P ðddjdÞ. When setting ! ¼ d,
[19], [21], [22] prove that statistical properties of EdðfðddÞÞ
and VardðfðddÞÞ are well approximated by EPoissonð!ÞðfðddÞÞ
and VarPoissonð!ÞðfðddÞÞ, which is the depoissonization step.

Estimator of J . Next, we elaborate our method to estimate
the Jaccard similarity J of any given user pair under the
Poisson approximation model. Let pJ ¼ P ðd½i+ ¼ 1j!Þ and
k̂ ¼

Pk
i¼1 1ðd½i+ ¼ 1Þ. Then, given k independent observed

variables d½1+; . . . ; d½k+, the likelihood function is formalized
as

logLðddj!Þ ¼ logP ðddj!Þ

¼ log
Yk

i¼1

P ðd½i+j!Þ

¼ log pk̂Jð1(pJÞk(k̂

¼ k̂log pJ þ ðk(k̂Þlog ð1(pJÞ:

By solving @ logLðddj!Þ
@pJ

¼ 0, we have

p̂J ¼ k̂

k
: (24)

Then, we compute pJ as

pJ ¼ P ðd½i+ ¼ 1j!Þ

¼
X1

di¼1

P ðd½i+ ¼ 1jdiÞP ðdij!Þ

¼ ð1(JÞP ðdi ¼ 1j!Þ þ a2ð1(JÞP ðdi ¼ 2j!Þ
þ a3ð1(JÞP ðdi ¼ 3j!Þ þ % % %

0 ð1(JÞP ðdi ¼ 1j!Þ þ a2ð1(JÞP ðdi ¼ 2j!Þ

þ að1(JÞ 1(
X2

di¼0

P ðdij!Þ

 !

;

(25)

where the last approximate equality holds because an 0 a ¼
0:7213when n 1 3. From Equations (24) and (25), we have

ð1(JÞP ðdi ¼ 1j!Þ þ a2ð1(JÞP ðdi ¼ 2j!Þ

þ að1(JÞ 1(
X2

di¼0

P ðdij!Þ
 !

¼ k̂

k
:

(26)

Recall that ! ¼ du1[u2 ¼
du1þdu2
1þJ . We use the Newton-Raph-

son method [16] to obtain J from the above equation. Let

fðJÞ ¼ ð1(JÞP ðdi ¼ 1j!Þ þ a2ð1(JÞP ðdi ¼ 2j!Þ

þ að1(JÞ 1(
X2

di¼0

P ðdij!Þ
 !

(k̂

k
:

(27)

The Newton-Raphson method starts from an initial estima-
tion J ð0Þ, and then repeats the following procedure

Jðlþ1Þ J ðlÞ (fðJ ðlÞÞ
f 0ðJðlÞÞ

; l 1 0;

until fðJÞ converges, where f
0ðJ ðlÞÞ is the derivative of fðJÞ

at J ¼ J ðlÞ. To set the initial estimation, we initialize

J ð0Þ ¼ 1(k̂k(1a(1; (28)

which is the estimate given by MaxLogOPH [14].

3444 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 shows the pseudo-code of MaxLogOPH++,
which includes the update and estimation modules. In
update module (Lines 4 - 19), for each coming user-item
pair ðu; vÞ, we first assign it an index 1 , i , k. Then, we
update registers su½i+ and mu½i+ according to the log-rank
values of item v, which is similar to MaxLogHash. In estima-
tion module (Lines 20 - 33), we first estimate J ð0Þ according
to Equation (28). Then, we iterate on J ðlÞ using Newton-
Raphson method and return JðlT Þ, where lT is the maximum
number of iterations.

5.3 Discussion
Compared withMaxLogOPH [14].When the cardinalities of sets
is large, i.e., d . k, we can approximate Equation (26) as

að1(JÞ 0 k̂

k
;

because
P2

di¼0 P ðdij!Þ 0 0. For example, when d ¼ 10; 000
and k ¼ 100, we have

P2
di¼0 P ðdij!Þ ¼ 1:863 10(40. We find

that the above equation is exactly the estimator of MaxLo-
gOPH, which explains why MaxLogOPH only gives large
errors when the cardinalities are small. However, our new
method MaxLogOPH++ uses the Newton-Raphson method
to solve Equation (26), which significantly reduces the esti-
mate error for small sets. Later in the experiments, we will
show that MaxLogOPH++ is several times more accurate
than MaxLogOPH.

Compared With OPH [18]. OPH randomly splits the
stream into k buckets and each bucket uses a register to
keep tracking of the element with the minimum value
among the bucket. Similar to MinHash, OPH uses a 64-bit
(resp. 32-bit) register for storing the minimum of 64-bit
(resp. 32-bit) set elements. Therefore, OPH and MinHash
require the same amount of memory and our method Max-
LogOPH++ reduces their memory usage by 5 / 9 times. In
addition, OPH may also have many empty buckets and
exhibit large estimation errors. Although several densifica-
tion techniques [23], [24], [25], [26] have been proposed to
resign the registers of empty buckets by other non-empty
ones to improve the estimation accuracy, these algorithms
may consume large time (i.e., Oðk2Þ for [23], [24], [25] and
Oðklog kÞ for [26]). In contrast, our method builds a likeli-
hood function of generated sketches and then directly infers
the Jaccard similarity using the MLE and Newton-Raphson
method. In our experiments, we find that the Newton-
Raphson method usually coverages in 5 / 10 iterations,
which takes small and constant time (i.e., 13 10(5 seconds
as shown in Fig. 6).

Compared With HyperLogLog [19]. Similar to HyperLo-
gLog, MaxLogOPH++ randomly splits the stream into k
registers and stores the maximal log-rank values. Different
from HyperLogLog, MaxLogOPH++ introduces a flag value
dðu1;u2Þ½i+ for each register to indicate whether there exists
one and only one element in set [iðu1; u2Þ of which log-rank
equals maxw2[iðu1;u2ÞrðwÞ with respect to function r. In addi-
tion, MaxLogOPH++ builds a likelihood function of gener-
ated sketches and then directly infers the Jaccard similarity
with MLE and Newton-Raphson method. As a result, Max-
LogOPH++ is more accurate than HyperLogLog with simi-
lar update and estimation time.

6 EVALUATION

In this section, we evaluate our methods with the state-of-
the-arts on both synthetic and real-world datasets. All algo-
rithms run on a computer with a Quad-Core Intel(R) Xeon
(R) CPU E3-1226 v3 CPU 3.30 GHz processor.

6.1 Datasets
For simplicity, we assume that elements in sets are 32-bit
numbers, i.e., I ¼ f0; 1; . . . ; 232 (1g. We evaluate the perfor-
mance of our method MaxLogHash and MaxLogOPH++ on
a variety of datasets.

1) Synthetic datasets. Our synthetic datasets consist of
set-pairs A and B with various cardinalities and Jac-
card similarities. We conduct our experiments on the
following two different settings:
Balanced set-pairs (i.e., jAj ¼ jBj). We set jAj ¼
jBj ¼ n and vary JA;B in f0:80; 0:81; . . . ; 1:00g.
Specially, we generate set A by randomly select-
ing n different numbers from I and generate set

B by randomly selecting jA \Bj ¼ JA;BjAj
1þJA;B

differ-

ent numbers from set A and n(jA \Bj different
numbers from set I nA. In our experiments, we
set n ¼ 10; 000 by default.

Unbalanced set-pairs (i.e., jAj 6¼ jBj). We set jAj ¼
n and jBj ¼ JA;Bn, where we vary JA;B 2 f0:80;
0:81; . . . ; 0:99g. Specially, we generate set A by
randomly selecting n different numbers from I
and generate set B by selecting JA;Bn different
elements from A.

2) Real-world datasets. Similar to [11], we evaluate the per-
formance of our method on the detection of item-pairs
(e.g., pairs of products) that always appear together in
the same records (e.g., transactions). For association
rule learning (also known as the market-basket prob-
lem), discovering item-pairs such as “beer and diapers”
and “Beluga vaviar and Ketel vodka” that are com-
monly-purchased or nearly always bought together
is critical for learning pairwise associations. Cohen
et al. [27] applied MinHash to solve this problem. We
conduct experiments on four real-world datasets from
different areas: MUSHROOM [11], CONNECT [11],
TREC [28], and EPINIONS [29]. MUSHROOM and
CONNECT are also used in [11]. We generate a stream
of item-record pairs for each dataset, where a record
can be viewed as a transaction and items in the same
record can be viewed as products bought together. For
each record x in the dataset of interest and every itemw
in x, we append an element ðw;xÞ to the stream of item-
record pairs.We summarize all datasets in Table 1.

TABLE 1
Real-World Datasets Used in Our Experiments, Where “size”

Refers to the Number of Elements in the Stream

jU j jIj size

MUSHROOM 119 8,124 186,852
CONNECT 127 67,557 2,904,951
EPINIONS 876,252 120,492 13,668,320
TREC 1,729,302 556,077 83,629,405

QI ETAL.: STREAMING ALGORITHMS FOR ESTIMATING HIGH SET SIMILARITIES IN LOGLOG SPACE 3445

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

6.2 Baselines
Our methods use k 6-bit registers to build a sketch for each
set. We compare our methods with the following state-of-
the-art methods:

MinHash [7]. MinHash builds a sketch for each set. A
MinHash sketch consists of k 32-bit registers.

b-bit MinHash [10]. b-bit MinHash compresses each
32-bit register used by MinHash into a b-bit register.
In our experiment, we update b-bit MinHash in an
incremental manner and set b to different values.

HyperLogLog [19]. A HyperLogLog sketch consists of k
5-bit registers, and is originally designed for estimat-
ing a set’s cardinality. One can easily obtain a Hyper-
LogLog sketch ofA [B bymerging the HyperLogLog
sketches of setsA andB and then use the sketch to esti-
mate jA [Bj. Therefore, HyperLogLog can also be

used to estimate JA;B by approximating jAjþjBj(jA[BjjA[Bj .

HyperMinHash [12]. A HyperMinHash sketch con-
sists of k q-bit registers and k r-bit registers. The first
k q-bit registers can be viewed as a HyperLogLog
sketch. To guarantee the performance for large sets
(including up to 232 elements), we set q ¼ 5.

6.3 Metrics
We evaluate both efficiency and effectiveness of our methods
in comparison with the above baseline methods. For effi-
ciency, we evaluate the running time of allmethods. Specially,
we study the time for updating each set element and estimat-
ing set similarities, respectively. The update time determines
the maximum throughput that a method can handle, and the
estimation time determines the delay in querying the similar-
ity of set-pairs. For effectiveness, we evaluate the error of esti-
mation Ĵ with respect to its true value J using metrics: bias
and root mean square error (RMSE), i.e., BiasðĴÞ ¼ EðĴÞ (J

and RMSEðĴÞ ¼
ffi
EððĴ (JÞ2Þ

q
. Our experimental results are

empirically computed from 1,000 independent runs by

default. We further evaluate our methods on the detection of
association rules, and use precision and recall to evaluate the
performance.

6.4 Accuracy of Similarity Estimation
MaxLogHash versusMinHash andHyperMinHash. FromFigs. 2a,
2b, 2c, and 2d, we see that our method MaxLogHash gives
comparable results to MinHash and HyperMinHash with
r ¼ 4. Specially, the RMSEs of these three methods differ
within 0.006 and continually decrease as the similarity
increases. The RMSE of HyperMinHash with r ¼ 1 signifi-
cantly increases as JA;B increases. We observe that the large
estimation error occurs because HyperMinHash exhibits a
large estimation bias. Figs. 2e, 2f, 2g, and 2h show the bias of
our method MaxLogHash in comparison with MinHash and
HyperMinHash. We see that the empirical biases of MaxLog-
Hash and MinHash are both very small and no systematic
biases can be observed. However, HyperMinHash with r ¼ 1
shows a significant bias and its bias increases as the similarity
value increases. To be more specific, its bias raises from (0:06
to (0:089 when the similarity increases from 0.80 to 0.99. One
can increase r to reduce the bias of HyperMinHash. However,
HyperMinHash with large r desires more memory space. For
example,HyperMinHashwith r ¼ 4 has comparable accuracy
but requires 1.5 timesmorememory space comparedwith our
method MaxLogHash. Compared with MinHash, MaxLog-
Hash gives a 5.4 times reduction in memory usage while
achieves a similar estimation accuracy. Later in Section 6.5, we
show that our methodMaxLogHash has a computational cost
similar to Minhash, but is several orders of magnitude faster
thanHyperMinHashwhen estimating set similarities.

MaxLogHash versus b-bit MinHash. Next, we compare our
method MaxLogHash with b-bit MinHash in streaming set-
ting. In this experiment, we update b-bit MinHash incremen-
tally, i.e., approximatingminðbÞðpðAÞÞ by usingminw2ApðbÞðwÞ.
As shown in Fig. 4, we see that b-bit MinHash fails to give an
accurate estimate regardless of b ¼ 4 or b ¼ 8. We also find

Fig. 2. Estimation error of our method MaxLogHash in comparison with MinHash and HyperMinHash on both balanced and unbalanced set-pairs with
k ¼ 128.

3446 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

that b-bitMinHash always estimates the Jaccard similarity as 1
because the value in each register equals 0 with a high proba-
bility when jAj; jBj. 2b. We omit the similar result on unbal-
anced set-pairs.

MaxLogHash versus HyperLogLog. To make a fair compari-
son, we allocate the same amount of memory space,m bits, to
each ofMaxLogHash andHyperLogLog. As discussed in Sec-
tion 4, the attractive property of our method MaxLogHash is
that its estimation error is almost independent with the cardi-
nality of setsA andB, which does not hold for HyperLogLog.
Fig. 3 shows the RMSEs of MaxLogHash and HyperLogLog
on sets of different sizes. We see that the RMSE of our method
MaxLogHash is almost a constant. Figs. 3a and 3b show the
performance of HyperLogLog suddenly degrades when
m ¼ 29 and the cardinalities of A and B are around 200,
becauseHyperLogLog uses two different estimators for cardi-
nalities within two different ranges respectively [19]. As a
result, our method MaxLogHash decreases the RMSE of
HyperLogLog by up to 36 percent. As shown in Figs. 3c and
3d, similarly, the RMSE of our method MaxLogHash is about
2.5 times smaller than HyperLogLog when m ¼ 210 and the
cardinalities ofA andB are around 500.

MaxLogHash versus MaxLogOPH++. We compare MaxLo-
gOPH++ with MaxLogHash and MaxLogOPH [14] on sets
with increasing cardinalities. In this experiment, we con-
duct experiments with the same number of buckets k. As
we mentioned, compared with MaxLoHash and MaxLo-
gOPH, MaxLogOPH++ uses an additional 32-bit register du
to record the cardinality of set Iu, which results in a slightly
increase of memory usage (e.g., 4 percent when setting
k ¼ 128). We set the maximal iteration lT ¼ 5 for MaxLo-
gOPH++. As shown in Figs. 5a, 5b, 5c, and 5d, MaxLogOPH
exhibits relatively large estimation errors for small cardinal-
ities. When k ¼ 128 and the cardinality increases to 200
(about 2k), we see that MaxLogOPH achieves similar accu-
racy to MaxLogHash. MaxLogOPH++ overcomes the short-
comings of MaxLogOPH. We can see that MaxLogOPH++

Fig. 3. Estimation error of our method MaxLogHash in comparison with
HyperLogLog on synthetic set-pairs A and B with the same memory
spacem bits, where jAj ¼ jBj ¼ n.

Fig. 4. Estimation error of our method MaxLogHash in comparison with
b-bit MinHash on synthetic set-pairs jAj ¼ jBj ¼ 10; 000 and JA;B ¼ 0:9
with the same number of registers.

Fig. 5. Estimation error of our methods MaxLogHash, MaxLogOPH, and MaxLogOPH++ on both balanced and unbalanced synthetic data pairs A
and B with the same number of registers, k ¼ 128.

QI ETAL.: STREAMING ALGORITHMS FOR ESTIMATING HIGH SET SIMILARITIES IN LOGLOG SPACE 3447

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

achieves similar estimation accuracy as MaxLogHash even
for n smaller than k. In Fig. 5e, 5f, 5g, and 5h, we also show
the bias of MaxLogOPH++, MaxLogOPH, and MaxLog-
Hash. We find that the estimation error of MaxLogOPH is
mainly caused by the bias, and our new method MaxLo-
gOPH++ significantly reduces the bias. Later in Section 6.5,
MaxLogOPH++ significantly accelerates the speed of updat-
ing elements compared with MaxLogHash.

Accuracy versus Memory Usage. In addition, we compare
all the competitors under different memory usage. Spe-
cially, we allocate m bits of memory for each algorithm and
compute these algorithms’ estimation errors. In Fig. 6, we
set JA;B ¼ 0:9 and varym from 27 to 215 bits. We see that our
method outperforms other competitors when using the
same memory. In particular, MaxLogHash is up to 54, 42,
and 56 percent more accurate than MinHash, HyperLogLog,
and HyperMinHash respectively.

6.5 Efficiency
We further evaluate the efficiency of our method MaxLog-
Hash, MaxLogOPH, and MaxLogOPH++ in comparison
with MinHash and HyperLogLog. Specially, we present the
time for updating each coming element and computing Jac-
card similarity, respectively. We conduct experiments on
synthetic balanced datasets. We omit similar results for
real-world datasets and synthetic unbalanced datasets.
Fig. 7a shows that the update time of MaxLogOPH, MaxLo-
gOPH++, and HyperLogLog is almost a constant and our
method outperforms other baselines. The update time of
HyperMinHash is almost irrelevant to its parameter r and
thus we only plot the curve for r ¼ 1. Specially, MaxLo-
gOPH and MaxLogOPH++ share the same update time and
are about 2 and 420 times faster than HyperMinHash and
MinHash. Fig. 7b shows that our methods MaxLogHash
and MaxLogOPH++ have estimation time similar to Min-
Hash, while they are about 6 times faster than Hyper-
LogLog and 4 to 5 orders of magnitude faster than
HyperMinHash. We also notice that the time required
for each Newton-Raphson iteration of MaxLogOPH++ is
almost a constant because it is irrelevant to the number of
buckets. When k increases to 210, MaxLogOPH++ is slightly
slower than MaxLogHash and MaxLogOPH.

6.6 Accuracy of Association Rule Learning
In this experiment, we evaluate the performance of our
method compared with other baselines on the detection of

items (e.g., products) that almost always appear together in
the same records (e.g., transactions). We conduct the experi-
ments on four real-world datasets listed in Table 1. We first
estimate all pairwise similarities among items’ record-sets,
and retrieve every pair of record-sets with similarity
J > J0. As discussed previously (results in Fig. 3), Hyper-
LogLog is not robust, because it exhibits large estimation
errors for sets of particular sizes. We also find that our
method MaxLogOPH++ and MaxLogHash give similar
results. Therefore, in what follows we compare our method
MaxLogOPH++ only with MinHash and HyperMinHash.
As shown in Fig. 8, MaxLogOPH++ gives comparable preci-
sion and recall to MinHash and HyperMinHash with r ¼ 4.
We see that MaxLogOPH++ gives similar performance in
comparison with MinHash and HyperMinHash.

Table 2 further shows the amount of memory required
for our methods MaxLogHash, MaxLogOPH, and MaxLo-
gOPH++ in comparison with MinHash and HyperMinHash
(r ¼ 4) with the same precision and recall scores, where
dataset TREC is used. Specially, for specific precision and
recall scores, we report the memory usage for all the algo-
rithms. Our methods MaxLogHash and MaxLogOPH use
the same amount of memory usage due to their same sketch
structure. MaxLogOPH++ requires a slightly more memory
space than MaxLogHash and MaxLogOPH, because we
additionally use a 32-bit register to record the number of
presented items for each set. Compared with MinHash and
HyperMinHash, our methods give up to 5.9 and 4.6 times
reduction in memory usage respectively.

7 RELATED WORK

Jaccard Similarity Estimation for Static Sets. Broder et al. [7]
proposed the first sketch method MinHash to compute the
Jaccard similarity of sets, which builds a sketch consisting

Fig. 6. Estimation error of our method MaxLogHash in comparison with
other baselines on synthetic set-pairs A and B with the same memory
spacem bits, where jAj ¼ jBj ¼ n and JA;B ¼ 0:9.

Fig. 7. Computational cost of our methods MaxLogHash, MaxLogOPH,
and MaxLogOPH++ in comparison with MinHash, HyperLogLog, and
HyperMinHash.

3448 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

of k registers for each set. To reduce the amount of memory
space required for MinHash, [10], [11] developed methods
b-bit MinHash and Odd Sketch, which are dozens of times
more memory efficient than the original MinHash. The basic
idea behind b-bit MinHash and Odd Sketch is to use proba-
bilistic methods such as sampling and bitmap sketching to
build a compact digest for each set’s MinHash sketch.

Recently, several methods [18], [23], [24], [25] were pro-
posed to reduce the time complexity of processing each ele-
ment in a set from OðkÞ to Oð1Þ.

Weighted Similarity Estimation for Static Vectors. There are
also some works for estimating similarity between real-
value weighted vectors. SimHash (or, sign normal random
projections) [30] was developed for approximating angle

Fig. 8. Precision and recall of our method MaxLogOPH++ in comparison with MinHash and HyperMinHash on datasets listed in Table 1.

TABLE 2
Memory Usage (in MB) of All Algortihms on Dataset TRECWhen Achieving the Same Precision and Recall Scores

MinHash HyperMinHash MaxLogHash MaxLogOPH MaxLogOPH++

J0 ¼ 0:8 Precision=0.95 1383.2 836.4 324.1 324.1 337.2
Recall=0.95 2213.1 778.0 518.7 518.7 539.4

J0 ¼ 0:9 Precision=0.95 2766.4 719.7 466.8 466.8 485.5
Recall=0.95 290.5 778.0 168.6 168.6 175.3

QI ETAL.: STREAMING ALGORITHMS FOR ESTIMATING HIGH SET SIMILARITIES IN LOGLOG SPACE 3449

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

similarity (i.e., cosine similarity) of weighted vectors.
CWS [31], [32], ICWS [33], 0-bit CWS [34], CCWS [35],
Weighted MinHash [36], PCWS [37], and BagMinHash [38]
were developed for approximating generalized Jaccard sim-
ilarity of weighted vectors,5 and Datar et al. [39] developed
an LSH method using p-stable distribution for estimating lp
distance for weighted vectors, where 0 < p , 2. Campagna
and Pagh [40] developed a biased sampling method for esti-
mating a variety of set similarity measures beyond Jaccard
similarity.

Similarity Estimation for Data Streams. The above similarity
estimation methods fail to deal with streaming vectors,
whereas elements in vectors come in a stream fashion. To
solve this problem, Kutzkov et al. [41] extended AMS
sketch [42] for the estimation of cosine similarity and Pearson
correlation in streaming weighted vectors. Yang et al. [43]
developed a streaming method HistoSketch for approximat-
ing Jaccard similaritywith concept drift. Set intersection cardi-
nality (i.e., the number of commonelements in two sets) is also
a popularmetric for evaluating the similarity in sets. A variety
of sketch methods such as LPC [44], FM [13], LogLog [45],
HyperLogLog [19], HLL-TailCut+ [46], and MinCount [47]
were proposed to estimate the stream cardinality (i.e., the
number of distinct elements in the stream), and can be easily
extended to estimate jA [Bj by merging the sketches of sets
A and B. Then, one can approximate jA \Bj because
jA \Bj ¼ jAjþ jBj(jA [Bj. To further improve the estima-
tion accuracy, Cohen et al. [48] developed a method combin-
ing MinHash and HyperLogLog to estimate set intersection
cardinalities. Our experiments reveal that these sketch meth-
ods have large errors when first estimating jA \Bj and
jA [Bj, and then approximating the Jaccard similarity JA;B.
Asmentioned in Section 3,MinHash can be easily extended to
handle streaming sets, but its two compressed versions, b-bit
MinHash andOdd Sketch fail to handle data streams. To solve
this problem, Peng [49] proposed to build a shared sketch
based on Odd Sketches [11] to handle fully dynamic stream
and gave a biased estimator. Yu and Weber [12] developed a
method, HyperMinHash, which can be viewed as a joint of
HyperLogLog and b-bit MinHash. HyperMinHash consists of
k registers, whereas each register has two parts, an FM sketch
and a b-bit string. The b-bit string is computed based on the
fingerprints (i.e., hash values) of set elements that map to the
register. HyperMinhash first estimates jA [Bj and then infers
the Jaccard similarity of setsA andB from the number of colli-
sions of b-bit strings given jA [Bj. Our experiments demon-
strate that HyperMinHash exhibits a large bias for high
similarities and it is several orders of magnitude slower than
ourmethodswhen estimating the similarity.

Fast Similarity Search. Locality Sensitive Hash (LSH) is an
effective technique for fast similarity search in high dimen-
sional spaces [30], [39], [50], [51]. The basic idea behind LSH is
to construct a family of hash functions such that sets with
high similarities are more likely to be hashed to the same
bucket of hash tables. Clearly, many of the above sketching
methods [7], [10], [23], [24], [25], [31], [32] belongs to the LSH

family. In addition to these sketching methods, Satuluri et al.
[52] proposed a Bayesian approach to fast prune set pairs of
which similarity is smaller than the user-specific threshold
with a high probability. Zhai et al. [53] developed a filtering-
based algorithm for generating set pairs of which similarities
are likely to be greater than the given threshold. Gao et al. [54]
gave a learning-based method to improve the effectiveness of
LSH. Recently, Zhang et al. [55] proposed to transform sets
into representative vectors and then used R-Tree to index all
these vectors to support fast similarity search.

8 CONCLUSIONS AND FUTURE WORK

We previously developed a memory-efficient method, Max-
LogHash, to estimate Jaccard similarities in streaming sets
[14]. Compared with MinHash, MaxLogHash uses smaller
sized registers to build a compact sketch for each set. In this
paper,we further develop amemory-efficient yet fastmethod,
MaxLogOPH++. Compared with MaxLogHash, MaxLo-
gOPH++ further reduces the time complexity of updating
each coming element from OðkÞ to Oð1Þ with a small addi-
tional memory. We conduct experiments on both real-world
and synthetic datasets. Experimental results demonstrate that
our methods can reduce around 3 / 6 times the amount of
memory required for other baselines with the same desired
accuracy and computational cost. In addition, our methods
can be orders of magnitudes faster than other baselines on
both update and estimation time. In the future, we plan to
extend our methods to weighted streaming vectors and fully
dynamic streaming sets that include both set element inser-
tions and deletions.

ACKNOWLEDGMENTS

The research presented in this paper was supported in part
by National Key R&D Program of China (2018YFC0830500),
Shenzhen Basic Research Grant (JCYJ20170816100819428),
National Natural Science Foundation of China (61922067,
U1736205, 61902305), MoE-CMCC “Artifical Intelligence”
Project (MCM20190701), Natural Science Basic Research
Plan in Shaanxi Province of China (2019JM-159), Natural
Science Basic Research Plan in ZheJiang Province of China
(LGG18F020016). The work of John C.S. Lui was supported
in part by the GRF R4032-18.

REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data stream systems,” in Proc. 21st ACM
SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst., 2002,
pp. 1–16.

[2] F. Chierichetti, R. Kumar, S. Lattanzi,M.Mitzenmacher, A. Panconesi,
and P. Raghavan, “On compressing social networks,” in Proc.
15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2009,
pp. 219–228.

[3] K. Yang, X. Ding, Y. Zhang, L. Chen, B. Zheng, and Y. Gao,
“Distributed similarity queries in metric spaces,” Data Sci. Eng.,
vol. 4, no. 2, pp. 93–108, 2019.

[4] P. Li, A. Shrivastava, J. L. Moore, and A. C. K€onig, “Hashing algo-
rithms for large-scale learning,” in Proc. 24th Int. Conf. Neural Inf.
Process. Syst., 2011, pp. 2672–2680.

[5] A. Broder, “On the resemblance and containment of documents,”
in Proc. Compression Complexity Sequences, 1997, pp. 21–29.

[6] Y. Yang, W. Zhang, Y. Zhang, X. Lin, and L. Wang, “Selectivity
estimation on set containment search,” in Proc. Int. Conf. Database
Syst. Adv. Appl., 2019, pp. 330–349.

5. The Jaccard similarity between two positive real value vectors
~x ¼ ðx1; x2; . . . ; xpÞ and ~y ¼ ðy1; y2; . . . ; ypÞ is defined as Jð~x;~yÞ ¼P

1,j,p
minðxj;yjÞP

1,j,p
maxðxj;yjÞ

.

3450 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

[7] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” J. Comput. Syst. Sci.,
vol. 60, no. 3, pp. 630–659, Jun. 2000.

[8] S. Gollapudi and A. Sharma, “An axiomatic approach for result
diversification,” in Proc. 18th Int. Conf. World Wide Web, 2009,
pp. 381–390.

[9] T. Urvoy, E. Chauveau, P. Filoche, and T. Lavergne, “Tracking
web spam with HTML style similarities,” ACM Trans. Web, vol. 2,
no. 1, Mar. 2008, Art. no. 3.

[10] P. Li and A. C. K€onig, “b-bit minwise hashing,” in Proc. 19th Int.
Conf. World Wide Web, 2010, pp. 671–680.

[11] M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient estimation for
high similarities using odd sketches,” in Proc. 23rd Int. Conf. World
Wide Web, 2014, pp. 109–118.

[12] Y. W. Yu and G. Weber, “HyperMinHash: Jaccard index sketching
in LogLog space,” 2017, arXiv:1710.08436.

[13] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for
data base applications,” J. Comput. Syst. Sci., vol. 31, no. 2, pp. 182–209,
Oct. 1985.

[14] P. Wang et al., “A memory-efficient sketch method for estimating
high similarities in streaming sets,” in Proc. 25th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2019, pp. 25–33.

[15] J. S. Cramer, Econometric Applications of Maximum Likelihood Meth-
ods. Cambridge, U.K.: Cambridge Univ. Press, 1986.

[16] T. Dence, “Cubics, chaos and newton’s method,” Math. Gazette,
vol. 81, no. 492, pp. 403–408, 1997.

[17] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[18] P. Li, A. B. Owen, and C. Zhang, “One permutation hashing,” in
Proc. 25th Int. Conf. Neural Inf. Process. Syst., 2012, pp. 3122–3130.

[19] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “HyperLogLog:
The analysis of a near-optimal cardinality estimation algorithm,”
in Proc. Int. Conf. Anal. Algorithms, 2007, pp. 127–146.

[20] A. Kheyfits, A Primer in Combinatorics. Berlin, Germany: Walter de
Gruyter, 2010.

[21] P. Jacquet and W. Szpankowski, “Analytical depoissonization and
its applications,” Theor. Comput. Sci., vol. 201, no. 1/2, pp. 1–62,
1998.

[22] M. Mitzenmacher and E. Upfal, Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. New York, NY, USA:
Cambridge Univ. Press, 2005.

[23] A. Shrivastava and P. Li, “Improved densification of one permuta-
tion hashing,” in Proc. 30th Conf. Uncertainty Artif. Intell., 2014,
pp. 732–741.

[24] A. Shrivastava and P. Li, “Densifying one permutation hashing
via rotation for fast near neighbor search,” in Proc. 31st Int. Conf.
Mach. Learn., 2014, pp. 557–565.

[25] A. Shrivastava, “Optimal densification for fast and accurate min-
wise hashing,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 3154–
3163.

[26] T. Mai, A. Rao, M. Kapilevich, R. Rossi, Y. Abbasi-Yadkori, and
R. Sinha, “On densification for minwise hashing,” in Proc. Conf.
Uncertainty Artif. Intell., 2019, p. 302.

[27] E. Cohen et al., “Finding interesting associations without support
pruning,” IEEE Trans. Knowl. Data Eng., vol. 13, no. 1, pp. 64–78,
Jan. 2001.

[28] National Institute of Standards and Technology, “Text REtrieval
Conference (TREC) English documents,” Aug. 2010. [Online].
Available: http://trec.nist.gov/data/docs_eng.html

[29] P. Massa and P. Avesani, “Controversial users demand local trust
metrics: An experimental study on epinions.com community,” in
Proc. 20th Nat. Conf. Artif. Intell., 2005, pp. 121–126.

[30] M. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proc. 34th Annu. ACM Symp. Theory Comput., 2002,
pp. 380–388.

[31] M. Manasse, F. McSherry, and K. Talwar, “Consistent weighted
sampling,” Microsoft, Redmond, WA, Tech. Rep. MSR-TR-2010–73,
Jun. 2010.

[32] B. Haeupler, M. Manasse, and K. Talwar, “Consistent weighted
sampling made fast, small, and easy,” 2014, arXiv:1410.4266.

[33] S. Ioffe, “Improved consistent sampling, weighted minhash and L1
sketching,” in Proc. IEEE Int. Conf. DataMining, 2010, pp. 246–255.

[34] P. Li, “0-bit consistent weighted sampling,” in Proc. 21th ACM
SIGKDD Int. Conf. Knowl. DiscoveryDataMining, 2015, pp. 665–674.

[35] W. Wu, B. Li, L. Chen, and C. Zhang, “Canonical consistent
weighted sampling for real-value weighted min-hash,” in Proc.
IEEE 16th Int. Conf. Data Mining, 2016, pp. 1287–1292.

[36] A. Shrivastava, “Simple and efficientweightedminwise hashing,” in
Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016, pp. 1498–1506.

[37] W. Wu, B. Li, L. Chen, and C. Zhang, “Consistent weighted sam-
pling made more practical,” in Proc. 26th Int. Conf. World Wide
Web, 2017, pp. 1035–1043.

[38] O. Ertl, “BagMinHash - Minwise hashing algorithm for weighted
sets,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2018, pp. 1368–1377.

[39] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-
sensitive hashing scheme based on p-stable distributions,” in
Proc. 20th Annu. Symp. Comput. Geometry, 2004, pp. 253–262.

[40] A. Campagna and R. Pagh, “Finding associations and computing
similarity via biased pair sampling,” Knowl. Inf. Syst., vol. 31,
no. 3, pp. 505–526, 2012.

[41] K. Kutzkov, M. Ahmed, and S. Nikitaki, “Weighted similarity esti-
mation in data streams,” in Proc. 24th ACM Int. Conf. Inf. Knowl.
Manage., 2015, pp. 1051–1060.

[42] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” in Proc. 28th Annu. ACM
Symp. Theory Comput., 1996, pp. 20–29.

[43] D. Yang, B. Li, L. Rettig, and P. Cudr "e-Mauroux, “HistoSketch: Fast
similarity-preserving sketching of streaming histograms with con-
cept drift,” in Proc. IEEE Int. Conf. DataMining, 2017, pp. 545–554.

[44] K. Whang, B. T. Vander-zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM
Trans. Database Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.

[45] M. Durand and P. Flajolet, Loglog Counting of Large Cardinalities.
Berlin, Germany: Springer, 2003, pp. 605–617.

[46] Q. Xiao, Y. Zhou, and S. Chen, “Better with fewer bits: Improving
the performance of cardinality estimation of large data streams,”
in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[47] F. Giroire, “Order statistics and estimating cardinalities of mas-
sive data sets,” Discrete Appl. Math., vol. 157, no. 2, pp. 406–427,
2009.

[48] R. Cohen, L. Katzir, and A. Yehezkel, “A minimal variance estima-
tor for the cardinality of big data set intersection,” in Proc. 23rd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2017,
pp. 95–103.

[49] P. Jia, P. Wang, J. Tao, and X. Guan, “A fast sketch method for
mining user similarities over fully dynamic graph streams,” in
Proc. IEEE 35th Int. Conf. Data Eng., 2019, pp. 1682–1685.

[50] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. 30th
Annu. ACM Symp. Theory Comput., 1998, pp. 604–613.

[51] A. Gionis et al., “Similarity search in high dimensions via
hashing,” in Proc. 25th Int. Conf. Very Large Data Bases, 1999,
vol. 99, pp. 518–529.

[52] V. Satuluri and S. Parthasarathy, “Bayesian locality sensitive hash-
ing for fast similarity search,” Proc. VLDB Endowment, vol. 5, no. 5,
pp. 430–441, 2012.

[53] J. Zhai, Y. Lou, and J. Gehrke, “ATLAS: A probabilistic algorithm
for high dimensional similarity search,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2011, pp. 997–1008.

[54] J. Gao, H. V. Jagadish, W. Lu, and B. C. Ooi, “DSH: Data sensitive
hashing for high-dimensional k-nnsearch,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2014, pp. 1127–1138.

[55] Y. Zhang, J. Wu, J. Wang, and C. Xing, “A transformation-based
framework for KNN set similarity search,” IEEE Trans. Knowl.
Data Eng., to be published, doi: 10.1109/TKDE.2018.2886189.

Yiyan Qi received the BS degree in automation
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2014. He is currently working toward
the graduate degree in NSKeyLab, Xi’an Jiaotong
University, Xi’an, China. His research interests
include Internet traffic measurement and model-
ing, abnormal detection, and online social net-
work measurement.

QI ETAL.: STREAMING ALGORITHMS FOR ESTIMATING HIGH SET SIMILARITIES IN LOGLOG SPACE 3451

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

Pinghui Wang received the BS degree in infor-
mation engineering and the PhD degree in auto-
matic control from Xi’an Jiaotong University,
Xi’an, China, in 2006 and 2012, respectively. He
is currently a professor in MOE Key Laboratory
for intelligent networks and network security,
Xi’an Jiaotong University, Xi’an, China. His
research interests include Internet traffic mea-
surement and modeling, abnormal detection, and
online social network measurement.

Yuanming Zhang received the BS degree in the
automation from Chongqing University, Chongqing,
China, in 2017. He is currently working toward the
graduate degree in NSKeyLab, Xi’an Jiaotong Uni-
versity, Xi’an, China. His research interests include
anomaly detection, encrypted traffic analysis, and
Internet trafficmeasurement andmodeling.

Qiaozhu Zhai received the BS and MS degrees in
applied mathematics and the PhD degree in sys-
tems engineering from Xi’an Jiaotong University,
Xi’an, China, in 1993, 1996, and 2005, respectively.
He is currently a professor with the Systems Engi-
neering Institute, Xi’an Jiaotong University, Xi’an,
China. His research interests include optimization
of large-scale systems and integrated resource bid-
ding and scheduling in the deregulated electric
power market.

ChenxuWang received the BS degree in commu-
nication engineering and the PhD degree in control
science and engineering from Xi’an Jiaotong Uni-
versity, Xi’an,China, in 2009and2015, respectively.
He was a postdoctoral research fellow with The
Hong Kong Polytechnic University, Hong Kong. He
is currently an assistant professor with the School
of Software Engineering, Xi’an Jiaotong University,
Xi’an, China. His current research interests include
datamining, network security, online social network
analysis, and information diffusion.

Guangjian Tian received the PhD degree in
computer science and technology from North-
western Polytechnical University, Xi’an, China, in
2006. He is currently a principle researcher in
Huawei Noah’s Ark Lab. Before that, he was a
postdoctoral research fellow with the Department
of Electronic and Information Engineering, The
Hong Kong Polytechnic University, Hong Kong.
His research interests include temporal data
analysis, deep learning, and data mining with the
specific focus on different industry applications.

John C.S. Lui received the PhD degree in com-
puter science from University of California, Los
Angeles, Los Angeles, California. He is currently a
professor with the Department of Computer Sci-
ence and Engineering, The Chinese University of
Hong Kong, Hong Kong. His current research inter-
ests include communication networks, network
system security, network economics, network sci-
ences, cloud computing, large-scale distributed
systems, and performance evaluation theory.

Xiaohong Guan received the BS and MS degrees
in automatic control from Tsinghua University,
Beijing, China, in 1982 and 1985, respectively, and
the PhD degree in electrical engineering from the
University of Connecticut, Storrs, Connecticut, in
1993. He is currently a professor with the Systems
Engineering Institute, Xi’an Jiaotong University,
Xi’an, China. His research interests include alloca-
tion and scheduling of complex networked resour-
ces, network security, and sensor networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3452 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 12,2022 at 08:15:57 UTC from IEEE Xplore. Restrictions apply.

