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ABSTRACT
In clouds and data centers, GPU servers which consist of multiple
GPUs are widely deployed. Current state-of-the-art GPU sched-
uling algorithm are “static” in assigning applications to di�erent
GPUs. These algorithms usually ignore the dynamics of the GPU
utilization and are often inaccurate in estimating resource demand
before assigning/running applications, so there is a large opportu-
nity to further load balance and to improve GPU utilization. Based
on CUDA (Compute Uni�ed Device Architecture), we develop a
runtime system called DCUDA which supports “dynamic” schedul-
ing of running applications between multiple GPUs. In particular,
DCUDA provides a realtime and lightweight method to accurately
monitor the resource demand of applications and GPU utilization.
Furthermore, it provides a universal migration facility to migrate
“running applications” between GPUs with negligible overhead.
More importantly, DCUDA transparently supports all CUDA appli-
cations without changing their source codes. Experiments with our
prototype system show that DCUDA can reduce 78.3% of overload-
ed time of GPUs on average. As a result, for di�erent workloads
consisting of a wide range applications we studied, DCUDA can
reduce the average execution time of applications by up to 42.1%.
Furthermore, DCUDA also reduces 13.3% energy in the light load
scenario.
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1 INTRODUCTION
Graphics processing units (or GPUs) are a class of computing device
with massive simple cores and high bandwidth memory. They have
been widely used in various systems for e�cient parallel comput-
ing, such as scienti�c computing, image processing, data mining,
machine learning and so on [8, 14, 22, 31]. With the rapid growth
of GPUs’ computing capacity, a GPU server usually contains many
GPUs, each of which further consists of thousands of computing
cores. However, many past studies demonstrated that the comput-
ing resources of GPUs are often under-utilized when running only
a single application on each GPU [16, 24, 25]. To improve GPU
utilization, GPU sharing is adopted to run multiple applications
concurrently on each GPU, and this scenario is quite common in
the current data centers and clouds.

To better utilize the computing power of all GPUs in a GPU
server, current GPU programming models (e.g., CUDA for NVIDI-
A GPUs [2]) provide a functionality for applications to explicitly
select the GPU device on which they wish to run. However, such
user-speci�ed assignments may lead to severe load imbalance be-
tween GPUs due to the unawareness of GPU utilization. To further
improve the e�ciency of GPU sharing, various scheduling meth-
ods are proposed to distribute GPU resources between tenants or
applications so as to balance the load between GPUs. Some well-
known GPU scheduling methods are Round-robin scheduling [19],
Least-Loaded scheduling [12, 26, 27], Prediction-based scheduling
[30] and so on. The main goal of these methods is to assign new ap-
plications to proper GPUs, e.g., the Least-loaded scheduling always
assigns new applications to the GPU which has the least load. We
call these methods static scheduling, because they only make the
GPU-application assignment before running the application, and
once an application is assigned to a GPU, it cannot be migrated to
another GPU during its execution.

In this work, we show that the e�ciency of GPU sharing is still
limited with static scheduling methods. The de�ciency of static
scheduling not only comes from the di�culty of estimating the
exact resource demand of applications before running them, but
also comes from the variability of GPU utilization as well as the lack
of live migration support for running applications. In particular,
our experiments show the case that at least one GPU is overloaded
while some other GPUs are underloaded accounts for 41.7% of
the whole execution time of all applications. The load imbalance
problem not only reduces the GPU utilization, but also signi�cantly
prolongs the execution time of applications. Moreover, the static
scheduling methods cannot explore the potential of GPU sharing,
which usually increases energy consumption of GPUs.
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To improve the e�ciency of GPU sharing, it is important to
develop a dynamic scheduling method by providing accurate moni-
tor of GPUs and applications as well as live migration support for
running applications. We emphasize that it is not an easy task to
support “lightweight” monitor and “live” migration, and several
challenges exist. First, current monitoring tools (e.g., nvprof [4])
collect the trace data of each function call by replaying APIs, and
thus introduce a high performance penalty. Therefore, it is chal-
lenging to accurately monitor the utilization of each GPU and the
resource demand of each application without interrupting the run-
ning applications so as to avoid the high overhead. Second, existing
programming model like CUDA does not support live migration,
so it is necessary to develop a new live migration facility to sup-
port migrating running CUDA applications between GPUs, while
the key challenging issue is how to guarantee the same runtime
environment and application data with low overhead. Last but not
the least, due to the dynamics of GPU utilization, how to determine
when and which applications should be migrated is also a challenge,
especially how to reduce the number of migration times and the
amount of migration data.

In this work, we design and implement DCUDA, a runtime sys-
tem which supports accurately monitoring GPUs’ utilization and
applications’ resource demands with negligible overhead, and pro-
vides dynamic scheduling of running applications. Moreover, DCU-
DA transparently supports live migration for all CUDA applications
with a little overhead. Our main contributions are

• We propose a lightweight monitoring method by intercept-
ing API calls with wrapper libraries and tracking the utiliza-
tion information from the function parameters. Comparing
with current monitoring tools like nvprof, our monitoring
scheme does not interrupt running applications, and incurs
negligible overhead while also achieves higher than 90% of
monitoring accuracy.

• We develop a live migration facility which is compatible
to all CUDA applications without requiring applications to
modify their source codes. Besides, the time cost of the live
migration task is less than 0.3% of the application execution
time due to our optimization techniques, such as handle
pooling and data prefetching.

• We propose a dynamic scheduling mechanism to guaran-
tee load balance between GPUs by migrating some running
applications from overloaded GPUs to underloaded GPUs.
After doing load balancing, we also propose two optimiza-
tion techniques to further reduce the energy consumption
by compacting lightweight applications and improve the
fairness with a priority-based time slicing policy.

• We implement a prototype and conduct experiments to show
the e�ciency of DCUDA. Results show thatDCUDA reduces
78.3% of overloaded time of GPUs on average. As a result,
DCUDA reduces the average execution time of all applica-
tions by up to 42.1%, and reduces the energy consumption
of GPUs by up to 13.3%.

The rest of the paper is organized as follows. In Section 2, we
introduce necessary background and analyze the limitations of
current scheduling policy, then motivate the design of DCUDA. In
Section 3, we present the design details of DCUDA. In Section 4, we

describe the experiment setup and present the evaluation results.
Section 5 reviews related work and Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 GPU with Uni�ed Memory
Traditionally, GPUs and CPUs have their own memory spaces, and
applications running on one particular GPU cannot access the data
directly from the memory of other GPUs or CPUs. To improve
memory utilization, the latest NVIDIA PASCAL GPU released in
2016 supports uni�ed memory [6], i.e., each GPU can access the
whole memory space of both GPUs and CPUs via uniform memory
addresses. In particular, the uni�ed memory provides to all GPUs
and CPUs a single memory address space, with an automatic page
migration for data locality. The page migration engine also allows
GPU threads to trigger page fault when the accessed data does
not reside in GPU memory, and this makes the system e�ciently
migrate pages from anywhere in the system to the memory of GPUs
in an on-demand manner.

The bene�ts of uni�ed memory are twofold. First, it enables a
GPU to handle dataset which is larger than its own memory size,
because the uni�ed memory can migrate data from CPUmemory to
GPU memory in an on-demand fashion. Second, using the uni�ed
memory can simplify the programming model. In particular, pro-
grammers can simply use a pointer to access data pages no matter
where they reside, instead of explicitly calling data migration.

We point out that the implementation of DCUDA takes advan-
tage of the uni�ed memory architecture, that is, migrating data
from source GPU to target GPU is performed in an on-demand
fashion, i.e., data movement is triggered by page faults caused by
accessing data on the target GPU with uni�ed memory pointers.

2.2 Energy Management of GPUs
Energy consumption is a major cost of data centers, and GPUs are
the major electricity consuming devices. To improve the energy
e�ciency, NVIDIA GPUs support adaptive management of the
energy consumption [15]. Precisely, a GPU can be con�gured to
run at multiple levels, and a lower level means lower performance
with lower energy consumption. GPUs will adaptively change their
power level based on their utilization, e.g., when a GPU becomes
idle, it will switch to the lowest level so as to save energy.

To explore the relationship between GPUs’ load and their ener-
gy consumption, we conduct experiments to evaluate the energy
consumption of a GPU by varying the number of applications simul-
taneously running on it. As shown in Fig. 1, we �nd that running a
single application on a GPU, which we call single execution, usually
increases a lot of energy consumption (note that the GPU energy
consumption in idle state is 441J), but running two applications
concurrently, which we call concurrent execution, only increases
the energy consumption a little compared with single execution.
The main reason is that running a single application needs to wake
up the GPU from the idle state and increases its clocks, and this
consumes a lot of energy. Note that the applications we tested here
are very lightweight, and running them concurrently on one GPU
only causes a small slowdown on their performance (< 2%). Thus,
compacting multiple lightweight applications to run on fewer GPUs
in DCUDA can improve the overall energy e�ciency.
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Figure 1: Energy consumption when run one application
(⇠30sec) or concurrently run two applications on a GPU

2.3 Static Scheduling
In this paper, we focus on the scheduling in GPU sharing scenarios.
In these scenarios, kernels from di�erent applications can run con-
currently on a GPU by performing spatial multiplexing on thousand
of GPU cores.

To improve the fairness and e�ectiveness of GPU sharing, vari-
ous GPU scheduling methods are proposed, such as Round-robin
scheduling [19] and Least-Loaded scheduling [12, 26]. Round-robin
scheduling uses round-robin strategy to choose GPUs to execute
new applications. Least-Loaded scheduling assigns the GPU with
the lightest load to run new applications. We point out that both
methods are static scheduling methods, as they are responsible for
only assigning new applications to di�erent GPUs before running
them, but they can not dynamically migrate running applications.

We �nd that load balance and energy e�ciency could still be
greatly improved in GPU sharing which uses static scheduling. The
main reasons are as follows. First, it is hard to obtain the exact
resource demand of applications before running them on GPUs, so
static scheduling methods could not �nd out the most appropri-
ate GPU to assign for a newly arrived application. Second, GPU
utilization is time-varying due to the dynamic arrivals and depar-
tures of applications, but static scheduling methods cannot migrate
running applications to re-balance the loads of GPUs. Third, static
scheduling methods do not distinguish applications with di�erent
resource demands, so applications with low resource demands are
often blocked by applications with high resource demands. All the
above problems may lead to load imbalance between GPUs, which
further causes resources contention on overloaded GPUs, and ener-
gy ine�ciency on underloaded GPUs. We emphasize that all these
problems may become severe in a multi-tenant GPU sharing envi-
ronment, because applications from di�erent tenants usually have
di�erent resource demands.

To further validate the load imbalance problem of static schedul-
ing, we conducted experiments to show GPUs’ load by deploying
the Least-Loaded scheduling. We run a workload consisting of
twenty di�erent applications, which arrive with a �xed interval
with length being smaller than execution time of the application
(see Section 4.1 for details of the setup). We use this setup because
DCUDA focuses on the scenario of GPU sharing which inherently
has multiple applications concurrently running on each GPU.

We classify each GPU into three utilization types, i.e., from 0-50%
utilization, 50%-100% utilization, up to “overloaded” which denotes
the case in which the total resource demand of all applications
exceeds the resource capacity of the GPU. We present the fraction
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Figure 2: Load imbalance with Least-Loaded scheduling

of time of being at each utilization type for each GPU, and the
results are shown in Fig. 2. We �nd that even with the Least-Loaded
scheduling method, it is quite common to have GPUs being at
overloaded state or underloaded state (i.e., 0-50% utilization). In
fact, we also �nd that the case of load imbalance, in which at least
one GPU is overloaded and some other GPUs are still underloaded,
accounts for 41.7% of the whole execution time. This is because
static scheduling can not migrate running applications from the
overloaded GPUs to the underloaded GPUs.

2.4 DCUDA with Dynamic Scheduling
To further improve load balance and alleviate resource contention
between GPUs, we developed DCUDA, a runtime system which
supports dynamic scheduling and live migration of running appli-
cations. We claim that our live migration method migrates applica-
tions between kernel invocations, and it cannot migrate a running
kernel. Because current techniques cannot interrupt a running k-
ernel and save its state during execution. The main challenges of
DCUDA are as follows.
Monitoring GPUs and applications. DCUDA needs to monitor
both GPUs and applications in real time, and this task can not be
accomplished by current monitor tools, such as nvidia-smi [3] and
nvprof [4]. Speci�cally, nvidia-smi can only monitor GPUs but not
applications, while nvprof imposes a large overhead as it collects
trace data of each function call by replaying APIs. Thus, how to
accurately monitor applications and GPUs with low overhead still
remains challenging.
Live migration. CUDA and existing studies do not provide a u-
niversal live migration function, and we face three challenges in
the design and implementation of the live migration facility. The
�rst challenge is to migrate memory data to the target GPU while
keeping virtual addresses of the data exactly the same with that in
the source GPU. This requirement of preserving identical address-
es is challenging as modern GPUs allocate virtual addresses in a
stochastic manner. The second one is how to construct a consistent
runtime environment and how to resume the computing tasks of
applications correctly on the target GPU, because runtime environ-
ment and running state of applications are determined by many
factors, which can not be obtained directly from CUDA. The third
and the most important challenge is that from the perspective of
performance, all the above tasks may introduce a large overhead,
so only a lightweight live migration scheme is practical.
Dynamic scheduling. Dynamic scheduling is more e�cient to
achieve higher load balance and better GPU utilization. However,
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Figure 3: DCUDA Architecture

three problems need to be addressed. First, we need to be aware
of the ping-pong e�ect to avoid �ip-�op migrations. Second, we
need to carefully choose candidate applications for migration to
reduce the number of migrations. Finally, we need to balance the
performance of all applications and avoid lightweight applications
being blocked by heavyweight ones during live migration.

3 DESIGN OF DCUDA
DCUDA is a CUDA-based GPU sharing platform which supports
dynamic scheduling of running applications between GPUs. In
this section, we �rst introduce the overall design of DCUDA, then
present the design details of its key components.

3.1 Overview of DCUDA
Similar to many other GPU sharing platforms, like vCUDA [28], r-
CUDA [13], GVim [17], and Pegasus [18],DCUDA adopts a frontend-
backend architecture to ease the implementation while providing
full compatibility to all CUDA applications. As shown in Fig. 3, the
frontend of DCUDA is implemented as a CUDA wrapper library,
which dynamically links user applications and intercepts CUDA
API calls. The backend is realized as a daemon responsible for re-
ceiving GPU requests from the frontend, dispatching CUDA API
calls to the corresponding GPUs, and returning error codes and/or
output parameters to the frontend. In particular, DCUDA consists
of three modules in the backend to realize its key features: Monitor,
Scheduler and Migrator. The Monitor tracks the realtime utilization
of GPUs and the resource demand of each application from inter-
cepted API calls. The Scheduler dynamically schedules running
applications by taking advantage of the monitored information so
as to balance the load between multiple GPUs. Finally, the Migrator
is responsible for migrating CUDA applications between di�erent
GPUs, including cloning runtime, replicating memory data and
computing tasks. We will introduce these three modules in details
in the following subsections.

3.2 The Monitor
The Monitor needs to track two kinds of information in real time,
the utilization of each GPU and the resource demand of each ap-
plication. Current monitoring tools (i.e., nvidia-smi and nvprof)

introduce a large overhead as they replay API calls. To achieve
both accuracy and low overhead, we provide a lightweight monitor-
ing method by tracking information only from the parameters of
intercepted APIs.
Monitoring applications’ usage of GPU cores. Note that in CU-
DA applications, most computing tasks of an application are per-
formed by kernel functions. Thus, we can obtain applications’ de-
mand of GPU cores by evaluating the occupancy of GPU cores
and the execution time of each kernel function, which can be ob-
tained with the timer function. The kernels’ occupancy of GPU
cores can be estimated by using cuOccupancyMaxActiveBlocksPer-
Multiprocessor() as well as some parameters of the kernel functions,
including the pointer of the kernel function, the number of blocks,
the number of threads per block and so on.

However, evaluating the occupancy of GPU cores each timewhen
a kernel function is called will severely degrade the applications’
performance, e.g., it may cause 20%-30% performance slowdown.
To handle this problem, DCUDA evaluates a kernel function and
records its information when it is called at the �rst time, and uses
these recorded information when the kernel is called again with the
same system parameters (e.g, the number of threads). The rationale
is that GPU applications are usually iteration-based computing, so
they may call the same kernel function for many times. With this
method, DCUDA can still accurately monitor the usage of GPU
cores with a small overhead.
Monitoring applications’ usage of GPUmemory. A CUDA ap-
plication allocates most of its needed GPU memory with APIs like
cuMemAlloc(), so we obtain the allocated memory size and the
range of virtual addresses from the parameters of the allocation
APIs. However, not all allocated GPU memory would be used by
the application and uni�ed memory only maps virtual addresses
to physical GPU memory when they are being accessed by the
application. For example, in some machine learning platforms im-
plemented based on the CUDA libraries, such as tensor�ow [7]
and theano [8], applications usually allocate the whole GPU mem-
ory, while they may only use a very small portion of it. To avoid
prefetching unused data, we need to detect the actual usage of GPU
memory.

To detect the actual usage of GPU memory, we propose a mon-
itoring method by checking whether the memory pointers really
point to GPU memory or not with cuPointerGetA�ribute(). How-
ever, checking all pointers introduces large overhead. We use a
sampling method to reduce the monitor overhead. Speci�cally, we
sample memory usage information with �xed step size (i.e., 64MB).
For every 64MB region, we only check one page. If this page is being
used, then we migrate the whole 64MB data via prefetching. Here
we note that using a sampling method may cause false negative, i.e.,
some really used pages can not be identi�ed and migrated using the
prefetching operation. However, this false negative will not a�ect
the correctness of running applications, because these omissive
pages can still be migrated to the destination GPU via on-demand
paging when page fault happens (see Sec 3.4).
Monitoring GPU utilization. Finally, to monitor the utilization
of each GPU,DCUDA uses a thread to periodically scan the resource
demand of each application, and then aggregates them together.
We point out that this thread introduces negligible overhead, and
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its accuracy is guaranteed by the accuracy of monitoring each
application.

In summary, by tracking only the parameters of API calls with
some optimizations, DCUDA can monitor both GPUs and applica-
tions with high accuracy and negligible overhead. Our experiment
results validate that DCUDA brings very little overhead compared
with traditional monitoring tool like nvprof, meanwhile, it achieves
higher than 90% accuracy.

3.3 The Scheduler
Our �rst goal in designing DCUDA is to achieve better load balance
so as to improve application performance, so the �rst task of the
Scheduler is to determine when to perform load balancing and
which applications to be migrated, and two key problems need to
be addressed: (1) How to alleviate the “ping-pong” e�ect to avoid
�ip-�op migrations? (2) How to reduce the number of migrations
when selecting candidate applications for migration? To address
these problems, DCUDA adopts hysteresis control to manage the
load balancing operation and uses a greedy policy to determine the
applications to be migrated. These methods can e�ciently reduce
the overloaded time of GPUs and reduce the migration times as
well as the number of migrated applications.

After doing load balancing, we further explore the opportunity
of additional optimizations. We �nd that after load balancing, it is
still possible for GPUs to be either overloaded with heavyweight
applications, or underloaded with multiple lightweight applications.
Thus, we try to address two problems: (1) How to achieve a good
fairness and reduce resource contention, especially for the slight-
ly overloaded GPUs? (2) How to reduce the energy consumption
without sacri�cing performance, especially for the underloaded
GPUs? To address these problems, DCUDA proposes some tech-
niques to take into consideration the energy awareness and fairness
awareness after doing load balancing.

In summary, DCUDA employs a three-step process to sched-
ule running applications on GPUs (see Fig. 4). First, in the load
balancing step, DCUDA decides the candidate applications to be
migrated from an overloaded GPU to an underloaded GPU so as
to achieve dynamical load balance. After that, DCUDA leverages
energy awareness by compacting several lightweight applications
on underloaded GPUs to make them run on as few GPUs as possible.
This can let more GPUs stay idle and can save a lot of energy with-
out sacri�cing the application performance. Finally, DCUDA also
ensures the fairness of applications by adopting a priority-based
time slicing policy to schedule the applications concurrently run-
ning on the same GPU. In the following, we introduce the details
of each step.
Step 1: Load balancing operation. Note that the �rst key issue
in scheduling is to balance the load between GPUs. Thus, we need
to �nd out an overloaded GPU and an underloaded GPU, and then
shift some workload from the overloaded one to the underloaded
one. However, to realize this idea, an underloaded GPU may be-
come overloaded right after the migration, and then it may trigger
another migration immediately. To alleviate this kind of “ping-pong”
e�ect which causes frequent �ip-�op migrations, DCUDA lever-
ages hysteresis control to classify GPUs into three states with two
threshold parameters, Thresho�er and Threshunder , according to

App. App.

Load Balancing

Energy-efficient 
Scheduling

…

Fairness-based 
Scheduling

GPU GPU GPU GPU… …

Underloaded GPUs
(After load balancing)

Overloaded GPUs
(After load balancing)

Figure 4: Scheduling �ow of DCUDA

their utilization. Speci�cally, if the utilization of a GPU is greater
than Thresho�er , then we classify this GPU as an overloaded GPU,
and if the utilization is smaller than Threshunder , then we say this
GPU is underloaded. Otherwise, we consider this GPU to be in a
normal state. Based on this classi�cation, DCUDA checks every
pair of GPUs, and selects a pair as candidate for live migration if
one GPU is overloaded and the other is underloaded. By de�ning
a normal state, DCUDA can avoid GPUs changing too frequently
between overloaded state and underloaded state, and thus alleviates
the “ping-pong” e�ect.

After selecting a pair of candidate GPUs, it is also important to
determine which applications on the overloaded GPU should be
migrated to the underloaded GPU. The goal is to migrate as few
applications as possible so as to reduce the number of migrations
which directly a�ects the migration overhead. Furthermore, we also
need to ensure that the migration will not make the underloaded
GPU become overloaded immediately. To achieve the above goals,
DCUDA uses a greedy policy to balance the load between the GPUs
by always choosing the most heavyweight and feasible application
for migration, i.e., the application which has the largest resource
demand but will not make the underloaded GPU become overloaded
if it is migrated. We point out that DCUDA may migrate more
than one application at one time by repeating the selection until
no application satis�es the above condition or the source GPU
becomes not overloaded anymore. Finally,DCUDA adds all selected
applications into a candidate list to wait for real migration. Note
that the greedy policy tries to migrate heavyweight applications
�rst and tries to migrate as many applications as possible in one
operation so as to reduce the overhead.
Step 2: Energy awareness.Asmentioned before, static scheduling
methods usually assign applications to all GPUs to achieve better
performance. However, such an assignment makes all GPUs active,
even though some of them may be under-utilized, e.g., when the
whole system load is low. Even in the heavy load case, the load-
balancing operation only reduces the load on overloaded GPUs, but
it may leave some GPUs being underloaded.

On the other hand, the energy consumption of GPUs depends
on their load, e.g., a GPU which stays in the idle state consumes
only a little energy, but running even a single application on it may
increase the energy consumption a lot as it needs to wake up the
GPU from the idle state. However, running one more application
on active GPUs only increases the energy consumption a little,

11�



SoCC ’19, November 20–23, 2019, Santa Cruz, CA, USA Fan Guo, Yongkun Li, John C. S. Lui, and Yinlong Xu

comparing to the energy consumption caused by waking up from
the idle state. Thus, compacting lightweight applications to run
on fewer GPUs and letting more GPUs stay idle will save a lot of
energy.

To achieve this goal, after doing load balancing, DCUDA further
scans all GPUs and �nds the two most under-loaded GPUs. If the
applications running on the two GPUs can be compacted together
to run on only one GPU, then DCUDA migrates the applications
from one GPU to the other and let one GPU stay idle. DCUDA
repeats the above steps until no GPU pair can be compacted. We
like to emphasize that this energy-aware scheduling is performed
after load balancing, and more importantly, it does not a�ect the
performance as the compaction is performed only when the com-
puting resource demand of these applications can be satis�ed by
one GPU.
Step 3: Fairness awareness.We point out that the load balancing
operation can only reduce the variance of loads between GPUs,
and it is still possible that some GPUs are slightly overloaded after
load balancing. For an overloaded GPU, it may contain multiple
applications which have very di�erent resource demands on GPU
cores. This may make the applications with low resource demand
hard to compete for a fair share of computing resource and result
in a very long execution time. Thus, how to ensure fairness among
multiple applications concurrently running on overloaded GPUs is
also important. To handle this issue, DCUDA uses a priority-based
time slicing policy to guarantee the fairness.

First, DCUDA divides time into many slices (i.e., 100ms). It also
classi�es applications on an overloaded GPU into multiple groups.
ThenDCUDA allocates time slices equally to each group, and allows
only one group of applications to run at each time slice. DCUDA
also records the usage history in the past scheduling epoch. If any
group overshoots its allocated time, it is penalized in subsequent
epochs.

To decide which applications belonging to a group, the key prin-
ciple is to make sure that the applications belonging to the same
group should not cause a severe competition for the computing
resource. In addition, they should also utilize the computing re-
source as much as possible as they are allowed to run concurrently
on a GPU. To be more speci�c, the total resource demand of the
applications belonging to the same group should be close to the
total computing power of the GPU as much as possible. In DCUDA,
we also allow the total demand to slightly exceed the computing
power for the consideration of GPU utilization. For example, if
one application requires 100% of computing resource and another
application requires only 5%, then we will compact them into one
group instead of two. Otherwise, the GPU utilization will be very
low during the time slices in which the application with very low
resource demand is running.

Note that allowing the resource demand of applications within a
group to slightly exceed the computing power of GPU can greatly
improve the GPU utilization, but it may make the GPU become
overloaded when this group is scheduled to run, and thus it may
still lead to the problem of unfair competition between application-
s within the same group. To handle this problem, we propose a
priority-based reordering scheme which dynamically adjusts the
priority of applications within the same group. In particular, we
set higher priority to applications with low resource demand to
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Tasks and state

Handles Binaries

Source GPU

A running app.

Memory data

Tasks and state

Handles Binaries
1. Clone runtime

2. Migrate data

3.Resume tasks
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Figure 5: Process of live migration

increase their share of computing resource so as to guarantee a fair
competition. We point out the above priority scheme does not cause
signi�cant slowdown on the performance of applications with high
resource demand, the main reason is that even though applications
with low resource demand has higher priority, they only need a
little GPU resource to complete their computing tasks.

In the implementation, when an application’s priority needs to
be changed, DCUDA calls cuStreamCreateWithPriority() to create
some new stream handles with the speci�ed priority, and then uses
these new stream handles to replace the old stream handles of the
application.

3.4 The Migrator
The Migrator is responsible for performing live migration of speci-
�ed applications from source GPU to target GPU. We note that our
live migration method only migrates the unlaunched kernels, i.e.,
the kernels which have not been launched to GPUs. But we em-
phasize that it is still necessary to migrate the unlaunched kernels.
Because lots of kernels are blocked in the CPU side due to various
synchronous operations.

As illustrated in Fig. 5, the key issues and challenges of the
live migration are (1) how to e�ciently clone a consistent runtime
environment on the target GPU? (2) how to reduce the overhead of
migrating memory data? and (3) how to guarantee the consistency
of the computing tasks contained in a running application after
migration?
Cloning consistent runtime environment. By analyzing CUDA
applications, we �nd that the runtime environment of an application
includes kernel binaries, streams, and relevant libraries’ handles,
such as cublas handle, cudnn handle, cu�t handle and so on. These
variables hold all the management data which controls and uses
GPUs. Thus, to clone a consistent runtime environment, we �rst ini-
tialize all needed libraries and create new handles of these libraries
on target GPU, then copy the con�guration information from the
corresponding variables on the source GPU. In addition, we need to
register the binary of kernel functions so that they could be called
by the applications on target GPU.

Note that we also discovered that cloning runtime causes a large
overhead, and it mainly comes from libraries initialization, and in
particular, the time needed by initializing the necessary libraries of
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an application may be as high as 200ms - 400ms, which accounts
for more than 80% of the total cloning time. To reduce this over-
head, we employ a handle pooling technique by maintaining a pool
of libraries’ handles for each GPU which initializes libraries and
creates handles at background. During the cloning, DCUDA can
immediately fetch the handles of required libraries from the handle
pool, instead of creating new handles.

To reduce the overhead caused by registering the binaries of
kernel functions, considering that many binaries may not be needed
by the remaining tasks of an application after being migrated to the
target GPU, so DCUDA uses an on-demand policy to register the
binary of kernel functions. Speci�cally, DCUDA maintains a copy
of the binary of kernel functions required by applications in CPU
memory and records the relationship between each binary and its
corresponding kernel function. DCUDA triggers the registration of
kernel binaries in an on-demand way when the kernel functions
are really called.
Migrating memory data. Note that the key challenge of live mi-
gration is to migrate memory data, because it requires to keep the
virtual memory addresses of the application data on target GPU
being exactly the same as those on source GPU. DCUDA addresses
the issue of preserving the same virtual memory addresses by lever-
aging uni�ed memory. Speci�cally, when an application is triggered
to be migrated, we just need to guarantee all the memory of this
application is allocated with the uni�ed memory, and we can run
tasks of this application on the target GPU immediately without
explicitly migrating data �rst, as shown in Fig. 6. Accessing data
not residing on the target GPU causes page fault which triggers
data migration.

However, two problems need to be addressed when taking use
of uni�ed memory. The �rst problem is that most applications do
not allocate GPU memory with uni�ed memory. To transparently
support uni�ed memory in these applications, DCUDA intercepts
all GPU memory allocation APIs and replaces them with uni�ed
memory allocation APIs, and �nally returns uni�ed pointers to
applications. We emphasize that by intercepting APIs to support
uni�ed memory, DCUDA can also signi�cantly reduce the memory
consumption of most applications, mainly because many applica-
tions may allocate a lot of GPU memory but only use a very small
portion of it.

The second problem is that on-demand migration with the sup-
port of uni�ed memory may trigger many page faults, which also
introduce a large overhead. Tomitigate this problem,DCUDA uses a
thread at background to asynchronously prefetch data to the target
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Src. GPU Target GPU Src. GPU Target GPU

Waiting 
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Waiting 
tasks
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Figure 7: Procedure of migrating tasks

GPU. By using the on-demand migration policy with data prefetch-
ing, data migration and executing kernels can work well in pipeline,
so the overhead of moving data is hidden in the computation time.
Resuming computing tasks. An application may consist of mul-
tiple computing tasks (i.e., kernels), and these tasks are usually
submit to GPUs in batches. As a result, when migrating a running
application, it is possible that some of the tasks are still running,
which we call “running tasks”, but others are waiting for execution,
which we call “waiting tasks”. That is, the running tasks have been
submitted to GPU but have not completed the computation, and
the waiting tasks are still waiting to be submitted. Thus, we need
to migrate all waiting tasks to the target GPU and wait for the
running tasks to �nish �rst so as to preserve the executing order
of all computing tasks.

DCUDA uses two techniques to guarantee the executing order of
computing tasks as shown in Fig. 7. DCUDA �rst sends a synchro-
nization command to the source GPU to wait for the completion of
all running tasks, then resumes the waiting tasks on the target GPU
to preserve the executing order between running tasks and wait-
ing tasks. Besides, DCUDA preserves the executing order among
waiting tasks by managing all waiting tasks with a FIFO-queue
based on their submitted order during the synchronization. Note
that DCUDA needs to replace the handles used by the waiting tasks
with new handles belonging to the target GPU. After the migra-
tion completes, the corresponding resources on source GPU will be
released.

4 EVALUATION
To evaluate DCUDA, we implemented a prototype based on CUDA
toolkit 8.0. For comparison, we also implemented the Least-Loaded
scheduling scheme in our prototype, because it is the most practical
and e�cient scheme within the class of static scheduling algorithms
and has been widely studied in gCloud [12], Rain [26], and Strings
[27]. In particular, we evaluate DCUDA to answer the following
questions.

• How large are the overheads of CPU cycles and system mem-
ory introduced by DCUDA (Section 4.2)?

• How much improvement can DCUDA achieve for load bal-
ance betweenGPUs (Section 4.3) and reduction of application
execution time (Section 4.4)?

• How much improvement can DCUDA achieve for fairness
and QoS between applications (Section 4.5)?

• What is the impact of di�erent load levels on the performance
and the energy saving of DCUDA (Section 4.6)?
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4.1 Setup
We conducted our experiments on a server with two Intel Xeon
E5-2620 v4 2.10GHz processors, 64GB system memory, and four
NVIDIA 1080Ti GPUs, which are based on the PASCAL architecture
and interconnected with PCIe. Each GPU has 3584 computing cores
and 12GB memory.

We select twenty distinct benchmark programs taken from the
CUDA Samples [1], SHOC [11], and Tensor�ow Benchmarks [5]. Ta-
ble 1 lists all of the workloads used in our evaluation. We emphasize
that these benchmarks represent a majority of GPU applications,
including high performance computing (MatrixMul), data mining
(Kmeans), machine learning (Mnist_mlp), graph Algorithm (BFS),
and deep learning (Mnist_cnn) [1, 5, 11].

Suite Num. Name of Applications
CUDA Sam-
ples

4 1MatrixMul, 2BlackScholes

3eigenvalues, 4transpose
5Triad, 6MaxFlops, 7MD5Hash

SHOC 9 8Sort, 9FFT, 10Scan, 11S3D
12BFS, 13Reduction

14AutoencoderRunner
Tensor�ow 7 15VariationalAutoencoderRunner
Bench. 16mnist_cnn, 17mnist_mlp

18alexnet, 19Kmeans, 20cifar10
Table 1: Benchmarks

Since we focus on the scenario of GPU sharing which naturally
requires multiple applications concurrently run on a GPU server,
we evaluate DCUDA by generating a workload which combines all
the twenty benchmark programs together. Precisely, we sequential-
ly submit the twenty benchmark programs to the prototype system
with a �xed time interval, and let them compete for the GPU re-
sources. The interval is set as 5s by default in our experiment. Note
that the interval is smaller than the executing time of a benchmark
program (around 30s) so as to simulate a medium-weight workload.
We also study the impact of di�erent load levels by adjusting the
length of the arrival interval (see Section 4.6). Note that with the
20 benchmark applications, we can have 20! ( 2.43e18) application
sequences by adjusting the arrival order of each application, and
each sequence can represent a particular workload. We select 50
random arrival sequences to evaluateDCUDA. We set the threshold
Thresho�er as 100%, and forThreshunder , considering that as long
as the GPU utilization is smaller than 100%, it has a chance to be
further improved, so we set Threshunder as 90% so as to achieve
high GPU utilization. At last, we set the monitoring interval as
100ms .

4.2 Overhead of DCUDA
Overhead of monitoring and scheduling.We �rst evaluate the
overhead of CPU cycles and memory usage caused by the monitor-
ing and scheduling processes in DCUDA. Our experiments show
that DCUDA uses no more than 0.2% CPU and consumes around
7MB system memory only. This is mainly because our monitoring
and scheduling mechanisms are both lightweight, e.g., our monitor-
ing scheme just tracks the usage information from the parameters
of API calls and the scheduling mechanism only needs to run when
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Figure 8: Performance loss caused by uni�ed memory
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Figure 9: Reduction of migration overhead with DCUDA

some GPUs become overloaded, so they only consume a few CPU
cycles. In terms of memory overhead, DCUDA only needs to keep
the metadata of each application, including handle pointers, kernel
binaries and so on, so the metadata size is small compared to the
whole memory size. In summary, the memory and CPU overheads
of DCUDA are both negligible. We point out that the lightweight
monitoring scheme in DCUDA also achieves very high accuracy,
due to page limit, we do not show this result, and instead, we show
the improvement of DCUDA in load balancing which relies on the
accurate monitoring results (see Section 4.3).
Overhead of uni�ed memory. Next, we also evaluate the perfor-
mance loss caused by the support of uni�ed memory in all schedul-
ing applications. As shown in Fig. 8, the performance slowdown
caused by uni�ed memory is within 1% in most test cases, and
the average performance loss is 0.96%. Thus, the overhead of uni-
�ed memory can be negligible, compared with the improvement
brought by DCUDA (see Section 4.4).
Overhead of live migration.We further evaluate the time over-
head of the live migration process with DCUDA, and compare it
with NVCR [23], which is the state-of-the-art live migration ap-
proach. The migration overhead is measured as the percentage of
the time for one single migration to the total execution time of each
application. The results are shown in Fig. 9, we can see that the
migration overhead of NVCR is very high, which accounts for up to
11.6% of total execution time. In contrast, the overhead of the live
migration in DCUDA is very small, and precisely, it takes less than
100 milliseconds to migrate a running application, which accounts
for only 0.01% - 0.3% of the total execution time of an application.
In general, DCUDA can reduce up to 97.4% migration overhead
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Figure 10: Load of each GPU under one app. sequence

compared with NVCR. This is because that the overhead of cloning
runtime environment already becomes negligible due to the handle
pooling technique used by DCUDA, and the overhead of migrating
data can be hidden in the execution of computing tasks with the
on-demand data migration technique.

More importantly, NVCR cannot work correctly in the GPU
sharing scenario for scheduling applications, because it adopts the
replaying technique to keep virtual address unchanged after mi-
gration, speci�cally, it replays memory-related API calls on the
target GPU. However, in GPU sharing scenarios, some virtual ad-
dresses may be occupied by other applications, so NVCR cannot
work correctly. DCUDA is the �rst work which supports universal
live-migration and it can work well in all scenarios, including GPU
sharing with multi-tenants.

4.3 Improvement of Load Balance
The main bene�t of DCUDA is to balance the load between GPUs
via dynamic scheduling, so we �rst evaluate the improvement of
DCUDA in load balancing, and compare it with the Least-Loaded
scheduling scheme. We classify each GPU into three states based on
its utilization, which is the ratio of the computing resource demand
of all applications running on the GPU to its resource capacity, i.e.,
0%-50% utilization, 50%-100% utilization, and overloaded state, and
show the fraction of time of being at each state for each GPU. We
only show the results under one sequence of applications in Fig. 10,
and the results are similar for other sequences.

From Fig. 10(a), we �nd that when using the Least-Loaded sched-
uling, GPUs are very likely to become overloaded, e.g., the over-
loaded time of each GPU accounts for 14.3% - 51.4% of the whole
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Figure 11: GPU utilization under di�erent app. sequences

running time. The main reason is that when assigning a new ap-
plication with high resource demand, there is often no GPU which
has enough resources to run this application as all GPUs may have
been assigned some applications before. Even though the Least-
Loaded scheduling chooses the most underloaded GPU, it makes
the GPU overloaded immediately after assigning the new heavy-
weight application to it because of the lack of rescheduling running
applications. Moreover, the utilization of other GPUs may be very
low (< 50%) for a long time even some GPUs are already overload-
ed. The reason is that even some applications on these GPUs have
completed, applications running on other overloaded GPUs could
not be migrated to the underloaded GPUs to realize realtime load
balance.

As shown in Fig. 10(b), even under the same workload, DCUDA
signi�cantly improves the load balance between GPUs compared
to the Least-Loaded scheduling. Speci�cally, DCUDA reduces the
overloaded time of GPUs by 79.5%, and improves overall GPU u-
tilization by 38.1%. Moreover, the overloaded time of each GPU is
always within 6% and the underloaded time of each GPU is also
greatly reduced. The main reason of this improvement is that D-
CUDA can migrate running applications from overloaded GPUs
to underloaded GPUs when overload situation occurs. This live
migration not only reduces the overloaded time duration, but also
reduces the underloaded time duration by taking advantage of the
computing resources of underloaded GPUs.

We further evaluate the performance of DCUDA in load balanc-
ing under all 50 application sequences. Fig. 11(a) shows the average
GPU utilization and Fig. 11(b) shows the proportion of overloaded
time. We can see that DCUDA can achieve a large improvement in
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load balancing under all workloads. In particular, comparing with
the Least-Loaded scheme, DCUDA can improve the GPU utilization
by 14.6% and reduce the overloaded time by 78.3% on average.

4.4 Reduction of Execution Time
In this section, we evaluate the bene�t that comes from the improve-
ment of load balance by comparing the average execution time of
applications under di�erent application sequences. We normalize
the execution time of applications to their single execution. The
results are shown in Fig. 12. DCUDA reduces the average execution
time of all applications by up to 42.1% compared to the Least-Loaded
scheduling. Moreover, DCUDA achieves a more stable performance
across di�erent workloads, e.g., the di�erence of the average ex-
ecution time of di�erent workloads is always within 20%. This is
because DCUDA achieves better load balance and mitigates re-
source contentions between applications. Furthermore, DCUDA
can also guarantee the performance of lightweight applications due
to the use of priority-based policy.

4.5 Improvement of QoS and Fairness
Besides the execution time, QoS and fairness are also two impor-
tant metrics to measure the e�ciency of scheduling methods. First,
we analyze the performance degradation of each application in a
shared scenario compared to its single execution. If the performance
degradation is less than 20%, we see that the QoS requirement is
satis�ed. We count the proportion of applications which can satisfy
the QoS requirement under di�erent application sequences. The
results are shown in Fig. 13(a). We observe that across the 50 ap-
plication sequences, on average, more than 80% of the applications
achieve the QoS goal using DCUDA, and for some sequences, the
proportion of applications that satisfy the QoS requirement is up to
100%. In contrast, the Least-Loaded scheduling only has less than
60% of the applications satisfying the QoS requirement on average,
and the largest proportion is 65%. We also run more experiments
by varying the allowable degradation threshold instead of using
20%, and we also observe signi�cant improvement with DCUDA.

Next, we use the Jain’s fairness index to measure the fairness
between applications with di�erent scheduling methods. Jain’s fair-
ness index is a number between zero and one [20], and one indicates
perfect fairness (i.e., concurrent executing processes experience
equal performance slowdown), while zero indicates no fairness at
all. We evaluate the fairness index of applications under di�erent
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sequences and show the results in Fig. 13(b). From the �gure, we
�nd that DCUDA can improve the fairness index by 12.1% on av-
erage compared with Least-Loaded scheduling. Furthermore, the
fairness index under DCUDA is very close to one, which means
that DCUDA almost guarantees the perfect fairness.

4.6 Performance under Di�erent Loads
Note that DCUDA reduces the execution time of applications by
balancing the loads between GPUs to improve GPU utilization, so
clearly the improvement of DCUDA may depend on the load levels
of applications submitted to GPUs. To show the e�ectiveness of
DCUDA, we consider di�erent load levels by adjusting the time
interval of application arrivals. In particular, we vary the length
of the arrival interval from 7s , 5s to 3s to represent the cases of
light load, medium load, and heavy load. The results of execution
time are shown in Fig. 14. We can see that the improvement of
DCUDA, which is measured by the reduction of average execution
time of applications, is the largest under medium load. The reason
is that if all GPUs are overloaded or all are underloaded, then
there is not much room to further improve GPU utilization by
balancing the load, so the bene�t of dynamic scheduling should
decrease. However, we emphasize thatDCUDA still achieves a large
improvement in a wide range of load levels, and in practical systems,
the scenario of load imbalance is usually very common because of
the static feature of existing scheduling schemes, so DCUDA could
achieve a large improvement.

We also show the improvement of DCUDA in energy saving
by comparing the energy consumption of all GPUs with DCUDA
and Least-Loaded scheduling. The results are shown in Table 2. We
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Figure 14: Reduction of the execution time of applications
with DCUDA under di�erent loads

Light Load Medium Load Heavy Load
Least-Loaded 81201J 74935J 70611J

DCUDA 70449J 70921J 68771J
Table 2: Reduction of the energy consumption of applica-
tions with DCUDA under di�erent loads

can see that DCUDA can save more energy if the system load is
lighter, which is 13.3% in the light load case in our setting. This is
because when more GPUs are underloaded in the light load case,
DCUDA has more opportunities to compact applications to run on
fewer GPUs and make more GPUs stay at idle so as to save more
energy. However, with the increase of system load, the opportunity
to compact multiple applications to fewer GPUs also decreases, and
this is the scenario in which load balancing operation can play an
important role.

5 RELATEDWORK
GPU scheduling. To improve GPU utilization in shared environ-
ment, multiple scheduling schemes are proposed. Some of them
focus on the scheduling of applications on a single GPU, such
as Baymax [10], FLEP [32], E�Sha [9] and TimeGraph [21]. But
these works do not consider the scheduling between multiple G-
PUs. Additionally, many others scheduling schemes are proposed
to schedule applications between multiple GPUs, including Round-
Robin scheduling [19], Least-Loaded scheduling [12, 26, 27], and
Prediction-based scheduling [30]. In particular, Least-Loaded sched-
uling, which always assigns new applications to the GPU with the
least load, has been widely used in practical systems due to its
superiority. For example, in gCloud [12], Khaled et al. �nd that
Least-Loaded scheduling can improve the performance of applica-
tions by 10.3% than Round-Robin policy. Sengupta et al. [26] also
employ a weighted version of the Least-Loaded policy to schedule
applications between GPUs by taking into account the di�erent
capability of each GPU in a heterogeneous system. Recently, Yash
et al. [30] develop Mystic, which predicts the resource demand of
applications to guide scheduling, while this scheme requires to
pre-execute applications for �ve seconds, and thus brings a large
overhead. Di�erent from existing schemes, which can be classi-
�ed as static scheduling as they consider only the assignment of
new applications, DCUDA provides dynamic scheduling of running
applications via live migration.

Live migration. Live migration is an important feature in GPU

sharing systems, which has been widely used for fault tolerance and
load balance. In particular, Xiao et al. [33] propose a live migration
approach for OpenCL applications, while it is not applicable to CU-
DA applications. Takizawa et al. �rst propose CheCUDA [29] which
provides checkpoint and restart library for CUDA applications, but
CheCUDA requires re-compilation of the application’s source code
and can not handle software in binary format.

NVCR [23] also provides a live migration approach for CUDA
application which works transparently without re-compiling source
codes. In particular, NVCR can keep virtual address unchanged after
migration by replaying memory allocation APIs in order on the
target GPU. But the replaying method provided by NVCR cannot
work in a GPU sharing environment. Because in these scenarios,
some virtual address range may be occupied by other applications.
DCUDA di�ers from the above works by providing a universal live
migration approach to transparently support all CUDA applications.
Besides, DCUDA greatly improves the load balance between GPUs
with negligible migration overhead, with the help of migrating data
in an on-demand fashion, as well as the optimization techniques
like handle pooling and data prefetching.

6 DISCUSSION AND FUTUREWORK
DCUDA also has some limitations. First, DCUDA only performs
migration and scheduling between GPUs intra a server. We will
study live migration and scheduling techniques for GPUs across
di�erent servers in our future work. Second,DCUDA only considers
the contention of GPU cores in the design of scheduling policy.
We will consider multiple shared resources in our future work,
including memory bandwidth and shared caches within the GPU.
Last but not least, current version of DCUDA only supports APIs
in CUDA toolkit 8.0. We will add the supports of more APIs in the
newest CUDA library. We emphasize that this work will take very
little e�ort due to the low update frequency of CUDA libraries.

7 CONCLUSION
In this paper, we proposed DCUDA which supports dynamic sched-
uling of running applications between GPUs and is fully compatible
to all CUDA applications. In particular, DCUDA accurately and ef-
�ciently estimates the resource demand of applications and GPU
utilization with a lightweight scheme, and dynamically migrates
running applications to achieve load balance between GPUs and
improve GPU utilization. With DCUDA, both the execution time of
applications and the energy consumption of GPUs can be signi�-
cantly reduced.
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