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A Necessary and Sufficient Condition for
Reaching a Consensus Using DeGroot’'s Method

ROGER L. BERGER*

DeGroot (1974) proposed a model in which a group of &
individuals might reach a consensus on a common sub-
jective probability distribution for an unknown parame-
ter. This paper presents a necessary and sufficient con-
dition under which a consensus will be reached by using
DeGroot’s method. This work corrects an incorrect state-
ment in the original paper about the conditions needed
for a consensus to be reached. The condition for a con-
sensus to be reached is straightforward to check and
yields the value of the consensus, if one is reached.

KEY WORDS: Subjective probability distribution; Mar-
kov chain; Stochastic matrix; Opinion pool.

1. INTRODUCTION

Consider a group of k individuals, each of whom can
specify his or her own subjective probability distribution
for the unknown value of some parameter 6. Suppose the
k individuals must act together as a team or committee.
DeGroot (1974) presented a model in which the group
might reach a consensus and form a common subjective
probability distribution for 8 by pooling their opinions.
DeGroot’s method is both simple and intuitively appeal-
ing. For this reason, it has been cited by many authors,
including Aumann (1976), Dickey and Freeman (1975),
Dickey and Gunel (1978), Hogarth (1975), Moskowitz,
Schaefer, and Borcherding (1976), Ng (1977), Press
(1978), and Woodworth (1976).

This paper presents a necessary and sufficient condi-
tion under which a consensus will be reached by using
DeGroot’s method. DeGroot presented one such condi-
tion, but that condition turns out to be sufficient but not
necessary. So this paper presents a weaker condition
under which a consensus will be reached. The condition
that must be checked to determine if a consensus can be
reached is explicitly calculated. Roughly speaking, the
result is that the group of  individuals can be partitioned
into subgroups. The behavior of each subgroup deter-
mines whether the whole group will reach a consensus.

2. MODEL FOR REACHING A CONSENSUS

DeGroot (1974) presented the following model under
which a consensus might be reached among the & indi-
viduals. A more detailed explanation of the model can be
found in DeGroot’s paper.

* Roger L. Berger is Assistant Professor, Department of Statistics,
The Florida State University, Tallahassee, FL 32306. Research was
supported by U.S. Army Research Office Grant DAAG29 79 C 0158.

Fori =1, ..., k, let F; denote the subjective prob-
ability distribution that individual / assigns to the param-
eter 0. The subjective distributions, F,, . . . , Fy, will be
based on the different backgrounds and different levels
of expertise of the members of the group. It is assumed
that if individual i is informed of the distributions of each
of the other members of the group, he might wish to
revise his subjective distribution to accommodate this
information. It is further assumed that when individual
i makes this revision, his revised distribution is a linear
combination of the distributions Fy, . . . , Fy. Let p;; de-
note the weight that individual i assigns to F; when he
makes this revision. It is assumed that the p;/’s are all
nonnegative and 2,’-; 1 pij = 1. So, after being informed
of the subjective distributions of the other members of
the group, individual i revises his own subjective distri-
bution from F; to F;; = X%_ p;;F;.

Let P denote the £ X k matrix whose (i, j)th element
ispi=1,...,kj=1,...,k).Pis a stochastic
matrix since the elements are all nonnegative and the
rows sum to one. Let F and F" be the vectors whose

transposes are F' = (F,, ..., F;) and F"" = (Fy,,
..., Fx1). Then the vector of revised subjective distri-
butions can be written as F'" = PF.

The critical step in this process is that now the above
revision is iterated. It is assumed that after individual i
is informed of the revised subjective distributions, Fi,,
..., Fyy, of the members of the group, he revises his
subjective distribution from F;; to F, = >~ p;;F;;. The
process continues in this way. Let F;, denote the sub-
jective distribution of individual i after n revisions. Let
F denote the vector whose transpose is F'™' = (F,,,
.o, Fi). Then F¥? = PF"~D = P'F, n = 2,3, ....
It is assumed that these revisions are made indefinitely
or until F"+V = F* for some n.

DeGroot states that a consensus is reached if and only
if all X components of F™ converge to the same limit as
n— o, That is to say, a consensus is reached if and only
if there exists a distribution F* such that lim, . F;, =
F*,i=1,...,k.

DeGroot goes on to assert that a consensus is reached
if and only if every row of the matrix P” converges to
the same vector, say = = (w, . . . , wx). This is clearly
a sufficient condition for a consensus to be reached. But
it is not a necessary condition, as can be seen from this
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simple example. Suppose F;, = F, = - -+ = F,. Then
it makes no difference what P is, since F™ = P"F = F,

= 2,3, . Thus the consensus F, is reached no
matter what weights p;; are used.

Whether a consensus is reached depends not only on
P (as suggested by DeGroot’s condition) but also on F.
The remainder of this paper explains how to check if a
consensus is reached and how to calculate the consensus
if one is reached for an arbitrary set of weights P and an
arbitrary set of initial subjective distributions F.

Chatterjee and Seneta (1977) consider a generalization
of DeGroot’s model in which the individuals can change
their weights p;; at each iteration. They consider condi-
tions under which a consensus will be reached using this
more general model. But they only consider the situation
in which all the rows of the weight matrix converge to
a common vector. So they do not take into account the
effect of F on whether a consensus is reached.

3. CONDITION FOR CONVERGENCE

Since the matrix P is a k X k stochastic matrix, it can
be regarded as the one-step transition probability matrix
of a Markov chain with k& states and stationary transition
probabilities. With this interpretation, standard results
about Markov chains can be applied here. These results
will be used freely in this discussion. Standard references
such as Chung (1960) and Karlin (1969) may be consulted
for statements of these results.

DeGroot showed that if the Markov chain is irreducible
and aperiodic, then a consensus will always be reached.
If the chain is reducible or periodic, it is possible to reach
a consensus if the subjective distributions F; satisfy cer-
tain conditions. To state and check these conditions, it
is necessary to partition the chain into its recurrent
classes and moving subclasses of periodic classes. The
following notation makes this partitioning explicit.

By appropriately relabeling the individuals in the
group, the matrix P can be put into this form:

P, 0 040
0 P 0|0
P = H H . :
0 0 ... P,O
Pm-%-l

Here P; is an m; X m; matrix, i = 1, ,m. P, is
an m,, ., X k matrix. In this Markov chain there are m
recurrent classes of communicating states. States 1
through m, form the first recurrent class, and all these
states communicate with each other. States m, + 1
through m, + m, form the second recurrent class of
communicating states, and so on. States Srmom) + 1
through k are the transient states. If there are no transient
states in the chain, m,, . is taken to be zero and P,, .
is not in the matrix.

Let d; denote the period of the ith recurrent class. If
the class is aperiodic, d; = 1. Then by appropriately
relabeling the individuals in the class, P; can be written
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in the form:
0 P, 0 ... 0
0 0 P, ... 0
P=|: i i .
0 0 0 .o Pi,_,
Py 0 0 ... 0

Here P;; is an m;; X my; 4, matrix, j = , d;. All
of the m;; are positive integers, m; = m,(d,H,, and
>4 my; = m,. If the class is aperiodic, let P;; = P; and
interpret the above notation asP; = P;;. Let M, = 0 and

= >z m;,i=2,...,m. Thestates M; + 1 through
M + m;, are called the first moving subclass of the ith
recurrent class. The states M; + m;; + 1 through M,
+ m;; + mp are called the second moving subclass of
the ith recurrent class, and so on.

Then all of the recurrent states in the chain (and hence
all of the individuals in the group corresponding to these
recurrent states) can be partitioned into subgroups ac-
cording to which moving subclass they belong to. There
are d = >, ’., d; subgroups in this partition.

Fori=1,...,mandj=1,...,d, let A;; denote
the mi; X mij matrix given by A,'j P,‘jP,‘(j+ 1))
. PidiPiI .« e P,'(j_|).
Then P; is given by
Aqn 0 ... 0
P = 0 Ay e 0
0 0 T A,
Let w(i, j) = (w(i, )1, . - . , (i, j)m,) be the solution to

the linear equations (i, j)A;; = w(i, j) together with the
equation >,/ (i, j); = 1. Since A;; is the one-step
transition probability matrix for an irreducible aperiodic
Markov chain, a solution (i, j) exists and it is unique.
Let F(i, j) denote the m;; X 1 vector of initial subjective
probability distributions for the individuals in the jth
moving subclass of the ith recurrent class. That is, F(i, j)
is the vector whose transpose is F'(i, j) = (FM 1

FM,,+m,,) where MU - (El~l ml) + (E =1 mrl) and
any sum from one to zero is defined to be zero.

Now the necessary and sufficient condition for a con-
sensus to be reached can be stated. Theorem 1 gives the
limiting distribution for a recurrent individual if such a
limit exists. Theorem 2 gives the necessary and sufficient
condition for the group to reach a consensus. The proofs
of both theorems are given in Section 6.

Theorem 1. If individual [ is in the jth moving subclass
of the ith recurrent class and if lim,_, ., F), exists, then
limn—wo Fln = ‘ﬂ'(l, J)F(l, .])

Theorem 2. (a) If d = 1, a consensus is reached and
the consensus is (1, 1)F(1, 1).
(b) If d > 1, a consensus is reached if and only if
w(i, ))FG,j) = F*foreveryi =1, ..., m;j = 1,
, d;, for some distribution F*. The consensus, if it
is reached, is F*.
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Case (a), d = 1, is the case considered by DeGroot
for, in this situation, all of the rows of P” converge to the
vector (m(1, 1)0) where 0isa 1 X m, vector of zeros and
m, is the number of transient states. But case (b), d > 1,
gives the condition under which a consensus will be
reached in the situation in which DeGroot claimed that
a consensus would not be reached, namely, if there are
at least two disjoint classes of communicating states or
at least one class of communicating states is periodic.

The conditions under which a consensus will be
reached in the reducible or periodic case may be seldom
satisfied in practice. If many of the F;’s are equal, then
the condition may be satisfied. But since the individuals
in one recurrent class give zero weight to the opinions
of the individuals in another recurrent class, it is hard to
imagine that a particular linear combination of opinions
from the first class would equal a particular linear com-
bination of opinions from the second class. Nevertheless,
the result is interesting in that it points out this fact.
Reaching a consensus is determined not only by the gen-
eral opinions of the individuals about one another, as
expressed by P, but also by the specific opinions of the
individuals about the problem at hand, as expressed by
F. This fact would probably be true for any reasonable
opinion pooling scheme.

4. AN EXAMPLE

The notation of Section 3 and the results of Theorems
1 and 2 will be illustrated with the following example.
Suppose k = 8 and

144100000
14 3 00000
13 00000
p = 000 O0O0T43 3% O0
000 O0O0TZ4FT 13O0
0003 3 000
0003 3% 000
1 00 3% 000 4%
Thenm = 2,d, = 1,d, = 2,,andd = d, + d» = 3.

P oioi
Pi=Pu=An=[3 3% 3}
i i3

and m(1, 1), the solution to m(1, NA,;, = =(1, 1) and

E?=l 'Tl'(l, l)l = 19 iS (_14—1’ %, ﬁ)‘

where

=
N
|

~

N

|
TN
vl <o
N—

>
8
|
N e

|
o~~~
oleo copm = SO

1
N
ol colt
N~

Solving the linear equations yields m(2, 1) = (11/25, 14/ .
25) and (2, 2) = (9/25, 16/25). Theorem 2 states that a

417

consensus is reached if and only if
i Fy + &F, + {iF; = 3F, + %%Fs = 35F¢ + #F;.

The consensus, if it is reached, is the common value. In
this example, the eighth state is transient and has no
effect on whether a consensus is reached. Also, Fg does
not enter into the calculation of the consensus.

5. A COMPUTATIONAL SHORTCUT

To determine if a consensus is reached, it is necessary
to compute the vectors w(i, j) (i L ...,mj=1,
..., d;. Each of these vectors is defined as the solution
of a certain set of linear equations. The following result
states that for eachi = 1, . .., m, it is only necessary
to solve the linear equations for =(i, 1). The remaining
d; — 1 vectors, ©w(i, 2), . . ., w(i, d;), can be determined
by simple matrix multiplication.

Theorem 3. Foranyi =1,...,mandj =2,...,

di’ Tr(iyj) = ﬂ(i,j - l)Pi(i—l)-

Remark. For example, in the previous example it is
easily verified that w(2, 2) = (9/25, 16/25) = =w(2, 1)Py,.

Proof. It suffices to show that (i, j — 1)P;, 1, satisfies
the appropriate linear equalities; that is, the sum of the
coordinates of (i, j — 1)P;;— is one and w(i, j — 1)
Pi;— nA;; = w(i,j — 1)P,; 1 . The sum of the coordinates
is one since the sum of the coordinates of (i, j — 1) is
one and the sum of each row of P,;_, is one. The def-
inition of A;; _ 1, and A;; and the fact that (i, j — DA -1
n(i,j — 1) yields

5, j — DPiy— Ay = w(i,j — DPiy—1)
X (Py...PuPiu...Pig-n)
= @i, j — DAig-nPig-n
=n(,j — DPig-1).

Hence the second equality is also true.

6. PROOFS OF THEOI&EMS 1AND 2

Let p;"” denote the ith row of P*, i = 1, ..., k. Let
0;denotea 1 x jvector of zeros. All of the limiting results
for stochastic matrices used in these two proofs are sum-
marized in Part I, Section 6, Theorem 4 of Chung (1960).

Proof of Theorem 1. Suppose [ is in the jth moving
subclass of the ith recurrent class. Then lim,_, . p,"
exists and is equal to p;/* = (0a, 7@, j)Ok—r1,;— m,). SO
lim, e Fipgy = lim,—o p*” F = p*F = u(i, )FG, j).
If lim,_, .. F), exists, it must equal the limit of the sub-
sequence Fy,q,. Therefore, lim, .. F;,, = =w(i, ))FQ, j).

Proof of Theorem 2. (a) If d = 1, then there is only
one recurrent class and it is aperiodic. So lim,, ... p,”
exists and equals p* = (w(l, 1)0,,,) for every i = 1,
..., k. Thus lim,_. F;, = lim,_. p;"'F = p*F
(1, DF(1, 1) for everyi = 1, ..., k. So a consensus
is reached and the consensus is w(1, 1)F(1, 1).
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(b) (Necessity). Suppose a consensus is reached. Then
lim, .. F;, = F*foreveryi = 1,..., k. If lis in the
Jjth moving class of the ith recurrent class, by Theorem
1, =@, ))F(, j) = lim,_. F;,, = F*. Thus w(i, j)F(i, j)

=FGi=1,...,myj=1,...,d).
(b) (Sufficiency). Suppose w(i, j))F(i, j) = F*(i = 1,
omyj=1,...,d).

First, it will be shown that if / is a recurrent state,
lim,_, . F,, exists and equals F*. Suppose [ is in the jth
moving subclass of the ith recurrent class. Then, for r
=0,...,d; — 1, limp,"%*" exists and equals p,*(r)
= (0as,w(, @)0k-n1,,—m,) Where g = (j + r)(mod dy).
(Note that here M,'() = M,'d,, My = Miqg,, Tl'(l, 0) = ‘ﬂ'(l,
d;), and F(i, 0) = F(i, d;) fori = 1, ..., m.) Thus
limn—»@ Fl(ndi+r) = llmn—>oo pl(ndi+r)F = pl*(r)F = @(i,
q@F(i, q) = F*. Since each of the d; subsequences
Fing,+n, r =0,...,d; — 1, converges to F*, the full
sequence F), also converges to F*. Thus, since [ was an
arbitrary recurrent state, every subjective distribution
corresponding to a recurrent state converges to F*.

Finally, it will be shown that if / is a transient state,

lim,_. . F;, exists and equals F*. Let 8 = | |/~ d;. Then,
forr=0,...,8 — 1, lim,_. p,"®*" exists and equals
p*(r) = (Fu*md, D, fu*(w=(1, 2), ...,

Fima, ¥(r)w(m, d,,), 0,,, . ,) where f,;;*(r) is the probability
that the chain is in the jth moving subclass of the ith
recurrent class for some n = r(mod d;) given that the
chain started in state /. (Note that the fact that the f;*(r),
as defined by Chung, are constant for j in a particular
moving subclass was used to express p,*(r) in terms of
the f,;*(r). Also note that > 2}1":1 fii*(r) = 1.) Thus,

llm pl(nﬁ + r)F

n— o0

p*(r)F

lim Fl(n5+r) =

n— oo

m d,
> 3 fi*(m, HFG, j)

i=1j=1

> 2 fu*(OF*

m d,
i=

1j=1
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Mz

= F*

1

= F*

d;
2 flg*(")
1j=1

I

Since each of the & subsequences Fy,5+,, " = 0, . . .,
& — 1, converges to F*, the full sequence F), also con-
verges to F*. Thus, since / was an arbitrary transient
state, every subjective distribution corresponding to a
transient state converges to F*.

[Received April 1980. Revised August 1980.]
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