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1 Introduction

Throughout this presentation I have chosen to use a symbolic matrix notation. This choice
was not made lightly. I am a strong advocate of index notation, when appropriate. For
example, index notation greatly simplifies the presentation and manipulation of di↵erential
geometry. As a rule-of-thumb, if your work is going to primarily involve di↵erentiation
with respect to the spatial coordinates, then index notation is almost surely the appropriate
choice.

In the present case, however, I will be manipulating large systems of equations in which
the matrix calculus is relatively simply while the matrix algebra and matrix arithmetic is
messy and more involved. Thus, I have chosen to use symbolic notation.

2 Notation and Nomenclature

Definition 1 Let a

ij

2 R, i = 1, 2, . . . , m, j = 1, 2, . . . , n. Then the ordered rectangular
array

A =

2

66664

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...

a

m1 a

m2 · · · a

mn

3

77775
(1)

is said to be a real matrix of dimension m⇥ n.

When writing a matrix I will occasionally write down its typical element as well as its
dimension. Thus,

A = [a
ij

] , i = 1, 2, . . . , m; j = 1, 2, . . . , n, (2)

denotes a matrix with m rows and n columns, whose typical element is a

ij

. Note, the first
subscript locates the row in which the typical element lies while the second subscript locates
the column. For example, a

jk

denotes the element lying in the jth row and kth column of
the matrix A.

Definition 2 A vector is a matrix with only one column. Thus, all vectors are inherently
column vectors.

Convention 1

Multi-column matrices are denoted by boldface uppercase letters: for example, A,B,X.
Vectors (single-column matrices) are denoted by boldfaced lowercase letters: for example,
a,b, x. I will attempt to use letters from the beginning of the alphabet to designate known
matrices, and letters from the end of the alphabet for unknown or variable matrices.
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Convention 2

When it is useful to explicitly attach the matrix dimensions to the symbolic notation, I will
use an underscript. For example, A

m⇥n

, indicates a known, multi-column matrix with m rows

and n columns.

A superscript T denotes the matrix transpose operation; for example, A

T denotes the
transpose of A. Similarly, if A has an inverse it will be denoted by A

-1. The determinant
of A will be denoted by either |A| or det(A). Similarly, the rank of a matrix A is denoted by
rank(A). An identity matrix will be denoted by I, and 0 will denote a null matrix.

3 Matrix Multiplication

Definition 3 Let A be m⇥ n, and B be n⇥ p, and let the product AB be

C = AB (3)

then C is a m⇥ p matrix, with element (i, j) given by

c

ij

=
nX

k=1

a

ik

b

kj

(4)

for all i = 1, 2, . . . , m, j = 1, 2, . . . , p.

Proposition 1 Let A be m⇥ n, and x be n⇥ 1, then the typical element of the product

z = Ax (5)

is given by

z

i

=
nX

k=1

a

ik

x

k

(6)

for all i = 1, 2, . . . , m. Similarly, let y be m⇥ 1, then the typical element of the product

z

T = y

T

A (7)

is given by

z

i

=
nX

k=1

a

ki

y

k

(8)

for all i = 1, 2, . . . , n. Finally, the scalar resulting from the product

↵ = y

T

Ax (9)

is given by

↵ =
mX

j=1

nX

k=1

a

jk

y

j

x

k

(10)

Proof: These are merely direct applications of Definition 3. q.e.d.
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Proposition 2 Let A be m⇥ n, and B be n⇥ p, and let the product AB be

C = AB (11)

then
C

T = B

T

A

T (12)

Proof: The typical element of C is given by

c

ij

=
nX

k=1

a

ik

b

kj

(13)

By definition, the typical element of C

T , say d

ij

, is given by

d

ij

= c

ji

=
nX

k=1

a

jk

b

ki

(14)

Hence,
C

T = B

T

A

T (15)

q.e.d.

Proposition 3 Let A and B be n⇥n and invertible matrices. Let the product AB be given
by

C = AB (16)

then
C

-1 = B

-1
A

-1 (17)

Proof:
CB

-1
A

-1 = ABB

-1
A

-1 = I (18)

q.e.d.

4 Partioned Matrices

Frequently, I will find it convenient to deal with partitioned matrices 1. Such a representation,
and the manipulation of this representation, are two of the relative advantages of the symbolic
matrix notation.

Definition 4 Let A be m⇥ n and write

A =

"
B C

D E

#

(19)

where B is m1⇥n1, E is m2⇥n2, C is m1⇥n2, D is m2⇥n1, m1+m2 = m, and n1+n2 = n.
The above is said to be a partition of the matrix A.

1
Much of the material in this section is extracted directly from Dhrymes (1978, Section 2.7).
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Proposition 4 Let A be a square, nonsingular matrix of order m. Partition A as

A =

"
A11 A12

A21 A22

#

(20)

so that A11 is a nonsingular matrix of order m1, A22 is a nonsingular matrix of order m2,
and m1 + m2 = m. Then

A

-1 =

" �
A11 - A12A

-1
22 A21

�-1
-A

-1
11 A12

�
A22 - A21A

-1
11 A12

�-1

-A

-1
22 A21

�
A11 - A12A

-1
22 A21

�-1 �
A22 - A21A

-1
11 A12

�-1

#

(21)

Proof: Direct multiplication of the proposed A

-1 and A yields

A

-1
A = I (22)

q.e.d.

5 Matrix Di↵erentiation

In the following discussion I will di↵erentiate matrix quantities with respect to the elements
of the referenced matrices. Although no new concept is required to carry out such operations,
the element-by-element calculations involve cumbersome manipulations and, thus, it is useful
to derive the necessary results and have them readily available 2.

Convention 3

Let
y =  (x), (23)

where y is an m-element vector, and x is an n-element vector. The symbol

@y

@x

=

2

66664

@y1

@x1

@y1

@x2
· · · @y1

@x

n

@y2

@x1

@y2

@x2
· · · @y2

@x

n

...
...

...
@y

m

@x1

@y

m

@x2
· · · @y

m

@x

n

3

77775
(24)

will denote the m⇥ n matrix of first-order partial derivatives of the transformation from x

to y. Such a matrix is called the Jacobian matrix of the transformation  ().

Notice that if x is actually a scalar in Convention 3 then the resulting Jacobian matrix
is a m⇥ 1 matrix; that is, a single column (a vector). On the other hand, if y is actually a
scalar in Convention 3 then the resulting Jacobian matrix is a 1⇥n matrix; that is, a single
row (the transpose of a vector).

Proposition 5 Let
y = Ax (25)

2
Much of the material in this section is extracted directly from Dhrymes (1978, Section 4.3). The

interested reader is directed to this worthy reference to find additional results.
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where y is m⇥ 1, x is n⇥ 1, A is m⇥ n, and A does not depend on x, then

@y

@x

= A (26)

Proof: Since the ith element of y is given by

y

i

=
nX

k=1

a

ik

x

k

(27)

it follows that
@y

i

@x

j

= a

ij

(28)

for all i = 1, 2, . . . , m, j = 1, 2, . . . , n. Hence

@y

@x

= A (29)

q.e.d.

Proposition 6 Let
y = Ax (30)

where y is m⇥ 1, x is n⇥ 1, A is m⇥n, and A does not depend on x, as in Proposition 5.
Suppose that x is a function of the vector z, while A is independent of z. Then

@y

@z

= A

@x

@z

(31)

Proof: Since the ith element of y is given by

y

i

=
nX

k=1

a

ik

x

k

(32)

for all i = 1, 2, . . . , m, it follows that

@y

i

@z

j

=
nX

k=1

a

ik

@x

k

@z

j

(33)

but the right hand side of the above is simply element (i, j) of A

@x

@z

. Hence

@y

@z

=
@y

@x

@x

@z

= A

@x

@z

(34)

q.e.d.

Proposition 7 Let the scalar ↵ be defined by

↵ = y

T

Ax (35)

where y is m⇥ 1, x is n⇥ 1, A is m⇥ n, and A is independent of x and y, then

@↵

@x

= y

T

A (36)
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and
@↵

@y

= x

T

A

T (37)

Proof: Define
w

T = y

T

A (38)

and note that
↵ = w

T

x (39)

Hence, by Proposition 5 we have that

@↵

@x

= w

T = y

T

A (40)

which is the first result. Since ↵ is a scalar, we can write

↵ = ↵

T = x

T

A

T

y (41)

and applying Proposition 5 as before we obtain

@↵

@y

= x

T

A

T (42)

q.e.d.

Proposition 8 For the special case in which the scalar ↵ is given by the quadratic form

↵ = x

T

Ax (43)

where x is n⇥ 1, A is n⇥ n, and A does not depend on x, then

@↵

@x

= x

T

�
A + A

T

�
(44)

Proof: By definition

↵ =
nX

j=1

nX

i=1

a

ij

x

i

x

j

(45)

Di↵erentiating with respect to the kth element of x we have

@↵

@x

k

=
nX

j=1

a

kj

x

j

+
nX

i=1

a

ik

x

i

(46)

for all k = 1, 2, . . . , n, and consequently,

@↵

@x

= x

T

A

T + x

T

A = x

T

�
A

T + A

�
(47)

q.e.d.
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Proposition 9 For the special case where A is a symmetric matrix and

↵ = x

T

Ax (48)

where x is n⇥ 1, A is n⇥ n, and A does not depend on x, then

@↵

@x

= 2xT

A (49)

Proof: This is an obvious application of Proposition 8. q.e.d.

Proposition 10 Let the scalar ↵ be defined by

↵ = y

T

x (50)

where y is n⇥ 1, x is n⇥ 1, and both y and x are functions of the vector z. Then

@↵

@z

= x

T

@y

@z

+ y

T

@x

@z

(51)

Proof: We have

↵ =
nX

j=1

x

j

y

j

(52)

Di↵erentiating with respect to the kth element of z we have

@↵

@z

k

=
nX

j=1

✓
x

j

@y

j

@z

k

+ y

j

@x

j

@z

k

◆
(53)

for all k = 1, 2, . . . , n, and consequently,

@↵

@z

=
@↵

@y

@y

@z

+
@↵

@x

@x

@z

= x

T

@y

@z

+ y

T

@x

@z

(54)

q.e.d.

Proposition 11 Let the scalar ↵ be defined by

↵ = x

T

x (55)

where x is n⇥ 1, and x is a function of the vector z. Then

@↵

@z

= 2xT

@x

@z

(56)

Proof: This is an obvious application of Proposition 10. q.e.d.

Proposition 12 Let the scalar ↵ be defined by

↵ = y

T

Ax (57)

where y is m ⇥ 1, x is n ⇥ 1, A is m ⇥ n, and both y and x are functions of the vector z,
while A does not depend on z. Then

@↵

@z

= x

T

A

T

@y

@z

+ y

T

A

@x

@z

(58)
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Proof: Define
w

T = y

T

A (59)

and note that
↵ = w

T

x (60)

Applying Propositon 10 we have

@↵

@z

= x

T

@w

@z

+ w

T

@x

@z

(61)

Substituting back in for w we arrive at

@↵

@z

=
@↵

@y

@y

@z

+
@↵

@x

@x

@z

= x

T

A

T

@y

@z

+ y

T

A

@x

@z

(62)

q.e.d.

Proposition 13 Let the scalar ↵ be defined by the quadratic form

↵ = x

T

Ax (63)

where x is n ⇥ 1, A is n ⇥ n, and x is a function of the vector z, while A does not depend
on z. Then

@↵

@z

= x

T

�
A + A

T

�
@x

@z

(64)

Proof: This is an obvious application of Proposition 12. q.e.d.

Proposition 14 For the special case where A is a symmetric matrix and

↵ = x

T

Ax (65)

where x is n ⇥ 1, A is n ⇥ n, and x is a function of the vector z, while A does not depend
on z. Then

@↵

@z

= 2xT

A

@x

@z

(66)

Proof: This is an obvious application of Proposition 13. q.e.d.

Definition 5 Let A be a m⇥n matrix whose elements are functions of the scalar parameter
↵. Then the derivative of the matrix A with respect to the scalar parameter ↵ is the m⇥n

matrix of element-by-element derivatives:

@A

@↵

=

2

66664

@a11
@↵

@a12
@↵

· · · @a1n

@↵

@a21
@↵

@a22
@↵

· · · @a2n

@↵

...
...

...
@a

m1
@↵

@a

m2
@↵

· · · @a

mn

@↵

3

77775
(67)

Proposition 15 Let A be a nonsingular, m ⇥m matrix whose elements are functions of
the scalar parameter ↵. Then

@A

-1

@↵

= -A

-1@A

@↵

A

-1 (68)
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Proof: Start with the definition of the inverse

A

-1
A = I (69)

and di↵erentiate, yielding

A

-1@A

@↵

+
@A

-1

@↵

A = 0 (70)

rearranging the terms yields
@A

-1

@↵

= -A

-1@A

@↵

A

-1 (71)

q.e.d.
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