
1/28

Advanced topic: Space complexity
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

2/28

Review: time complexity

We have looked at how long it takes to solve various problems

P

NP

•L01•PATH
•CLIQUE •SAT

•IS •VC

What about the amount of memory?
Wemeasure memory usage (space) by the number of tape cells used

Questions onemay ask:
If a problem can be solved quickly, can it be solved with little memory?
If a problem can be solved with little memory, can it be solved quickly?

3/28

Space complexity

The space complexity of a Turing machineM is the function sM (n):

sM (n) = maximum number of cells thatM ever reads

on any input of length n

Example: L = {w#w | w ∈ {a, b}∗}

M : On input x , until you reach #

Read and cross of first a or b before #
Read and cross off first a or b after #
If mismatch, reject

If all symbols except # are crossed off, accept
space complexity: n + 1

“+1” becauseM may scan the blank symbol after the input

4/28

Sublinear space

If we assume the Turing machine has two tapes

1. Input tape: contains the input and is read-only

2. Work tape: initially empty, only the cells used here is counted

We will assume this in this lecture

ThenL can be solved inO(log n) space
L = {w#w | w ∈ {a, b}∗}

Idea: Keep a counter, storing the number of symbols matched so far
Counter can represent a number of sizem in usingO(log m) bits

5/28

Logarithmic space

Smallest reasonable amount of space used will be logarithmic in input
length

Just keeping one counter/pointer requires log n memory!

A languageL is in L ifL can be decided by a deterministic Turing machine
(with read-only input tape) inO(log n) space

6/28

Time vs space

If a Turing machine runs in time tM (n), howmuch space can it use?

At most as much space as the number of time steps
sM (n) 6 tM (n)

If a Turing machine uses space sM (n), how long can it take?

At most exponential time in the amount of space used
tM (n) 6 2O(sM (n)) if sM (n) > log n

Reason:
Constant number of possibilities (sayK) for each tape symbol

n possible input head locations
sM (n) possible work head locations

Total number of configurations6 nsM (n)K sM (n) 6 2O(sM (n)) if
sM (n) > log n

6/28

Time vs space

If a Turing machine runs in time tM (n), howmuch space can it use?

At most as much space as the number of time steps
sM (n) 6 tM (n)

If a Turing machine uses space sM (n), how long can it take?

At most exponential time in the amount of space used
tM (n) 6 2O(sM (n)) if sM (n) > log n

Reason:
Constant number of possibilities (sayK) for each tape symbol

n possible input head locations
sM (n) possible work head locations

Total number of configurations6 nsM (n)K sM (n) 6 2O(sM (n)) if
sM (n) > log n

7/28

PATH

PATH = {〈G, s, t〉 | Directed graphG has a directed path

from node s to node t}

As we will see, an important problem for space complexity

Howmuch space is required for solving PATH?
BFS or DFS uses> n space (n = |V (G)|)

We don’t know how to solve PATH inO(log n) space, but we can solve it in
O((log n)2) space

8/28

PATH in (log n)2 space

Main idea: Recursion!

If t is reachable from s, must be reachable within n − 1 steps
Solve the question “Is v reachable from u within k steps?” recursively

Try all intermediate nodesw and asks
“Isw reachable from u within k/2 steps?”
“Is v reachable fromw within k/2 steps?”

If answer is YES to both sub-questions for somew, then v reachable from u
within k steps

9/28

Savitch’s algorithm

Recursively answer “Can u reach v within k steps?”

Algorithm 1 PATH(u, v, k)
if k = 0 then

return whether u = v
else if k = 1 then

return whether (u, v) ∈ E
end if
for every vertexw do

if PATH(u,w, bk/2c) and PATH(w, v, dk/2e) then
return true

end if
end for
return false

10/28

PATH in (log n)2 space

Depth of recursion: O(log n)

Additional memory for each level: O(log n)
to remember the intermediate node for this level

unlike time, space can be reused!

Overall space used: O((log n)2)

11/28

Aside: repeated squaring

To computeAn , howmanymultiplications required?

To computeAn :
If n = 0, return 1
If n is even, recursively computeB = An/2 and returnB2

If n is odd, retursively computeB = A(n−1)/2 and returnB2 · B

O(log n)multiplications

WhenA is the adjacency matrix and not a scalar
repeated squaring is analogous to previous algorithm for PATH

12/28

Nondeterministic log-space

Why is PATH important?

Analogous to P vs NP, we can consider the nondeterministic analog of L
and asks L vs NL

A languageL is in NL ifL can be decided by a nondeterministic Turing
machine (with read-only input tape) inO(log n) space

13/28

NL-completeness

A languageB is NL-complete if

1. B is in NL; and

2. every languageA in NL log-space reduces toB

We consider log-space reductions, because polynomial-time reductions are
too coarse

Theorem
PATH is NL-complete

L

NL

•
•

• •

•PATH •

Assuming L 6= NL

14/28

PATH is NL-complete

PATH is in NL:

Nondeterministic Turing machine guesses a path from s to t
More precisely, the machine remembers the current node on the path and

guesses the next node

PATH is NL-hard:

For any languageA in NL
LetN be a log-space nondeterministic Turing machine forA

Construct the directed graphG whose vertices are configurations ofN
Let s be the initial configuration and t be the accepting configuration

15/28

PATH is NL-hard: details

Listing all sN (n) nodes/configurations can be done withO(sN (n)) space

Checking whether one configuration leads to another (whether one node
has an edge to another) can be done inO(sN (n)) space

Since sN (n) = O(log n),
constructing 〈G, s, t〉 can be done inO(log n) space

By modifyingN , we may assume its accepting configuration is unique

16/28

Caveat and consequences

Recall: NP = set of languages having polynomial-time verifier
A similar definition (with log-space verifier) is not unlikely to be true for NL
Intuitively, NLmachines do not have enoughmemory to remember all

nondeterministic choices

Since PATH is NL-complete and can be solved inO((log n)2) spaces
Every problem in NL can be solved inO((log n)2) space!

(Savitch’s theorem)
Even though we believe NP-complete problems takes exponential amount

of time compared to P problems, space is another story

17/28

Hierarchy theorems

18/28

Hierarchy theorem

Givenmore space, can Turing machines/algorithms solve more problems?

Are there problems solvable in n3 space but not in n2 space?

Given any “nice” function f : N → N, there is a language decidable in
O(f (n)) space but not in o(f (n)) space

For example, n3, log n,n log n will be “nice”

(If a function does not always take integer values, such as log n, we
consider rounding down the output to an integer)

19/28

Space-constructible functions

Technical definition of “nice” is space-constructible

A function f : N → N, where f (n) > log n, is space-constructible if the
function mapping an inputw of length n to the binary representation of

f (n) is computable by a Turing machine in spaceO(f (n)).

Space hierarchy theorem is therefore

Given any space-constructible function f : N → N, there is a language
decidable inO(f (n)) space but not in o(f (n)) space

20/28

Corollary

For any a < b, there are functions computable in spaceO(nb) but not in
spaceO(na)

Statement is intuitive
Hardest part: proving that all Turing machines with less space fails to solve

a problem

21/28

The “difficult” problem

L = {〈M ,w〉 | Turing machineM rejects 〈M ,w〉 in space6 f (n)
n = |〈M ,w〉|}

Need to show

1. L cannot be decided in space o(f (n))
2. L can be decided in spaceO(f (n))

An artifical problem

For technical reason, we assume the Turing machinesM have
constant-sized tape alphabet (such as 4), independent of n

22/28

Not solvable in space o(f (n))

L = {〈M ,w〉 | Turing machineM rejects 〈M ,w〉 in space6 f (n)
n = |〈M ,w〉|}

Proof by contradiction

SupposeL can be decided in space o(f (n)) by a Turing machineD
What happens ifM = D andw is very long?

Whenw is very long, n is big, and o(f (n))will be smaller than f (n)

23/28

Not solvable in space o(f (n))

L = {〈M ,w〉 | Turing machineM rejects 〈M ,w〉 in space6 f (n)
n = |〈M ,w〉|}

Case 1: IfD accepts 〈D,w〉
then 〈D,w〉 ∈ L (becauseD decidesL)
henceD rejects 〈D,w〉 (by definition ofL)

Case 2: IfD rejects 〈D,w〉
then 〈D,w〉 /∈ L (becauseD decidesL)

henceD doesn’t reject 〈D,w〉 (by definition ofL)
SinceD decidesL,D accepts 〈D,w〉

Combining two cases⇒ contradiction

24/28

Solvable in spaceO(f (n))

L = {〈M ,w〉 | Turing machineM rejects 〈M ,w〉 in space6 f (n)
n = |〈M ,w〉|}

Idea: simulateM
SinceM is supposed to use only6 f (n) space
Simulation can be done usingO(f (n)) space

Keeping track ofM ’s states takesO(log n) space

IfM tries to use more than f (n) space, aborts simulation and rejects

Here we use the assumption that f (n) is space-constructible
Simulator needs to knowhowmuch tape space to allocate for simulatingM

25/28

Solvable in spaceO(f (n))

L = {〈M ,w〉 | Turing machineM rejects 〈M ,w〉 in space6 f (n)
n = |〈M ,w〉|}

Idea: simulateM

Challenge: M may infinite-loop on 〈M ,w〉
Solution:

Computation in space f (n) goes through 2O(f (n)) configurations
If the same configuration appears twice,M loops indefinitely

When simulatingM , keeps track of the number of steps
If it exceeds 2O(f (n)), simulator rejects

This counter takes up additionalO(f (n)) space

26/28

Conclusion

L = {〈M ,w〉 | Turing machineM rejects 〈M ,w〉 in space6 f (n)
n = |〈M ,w〉|}

1. L cannot be decided in space o(f (n)) 3

2. L can be decided in spaceO(f (n)) 3

Why this artifical problem?

27/28

Diagonalization

L = {〈M ,w〉 | Turing machineM rejects 〈M ,w〉 in space6 f (n)
n = |〈M ,w〉|}

Need a problem not solvable by all Turing machines that runs in o(f (n))
space

That’s whyL involves Turing machines running in small space

28/28

Time hierarchy

Similar theorem for time complexity

Given any time-constructible function f : N → N, there is a language
decidable inO(f (n)) time but not in o(f (n)/ log n) time

A function f : N → N, where f (n) > n log n, is time-constructible if the
function mapping an inputw of length n to the binary representation of

f (n) is computable by a Turing machine in timeO(f (n)).

L = {〈M ,w〉 | Turing machineM rejects 〈M ,w〉 in6 f (n)/ log n time

n = |〈M ,w〉|}

Proof follows similar high-level strategy

1. L cannot be decided in o(f (n)/ log n) time

2. L can be decided inO(f (n)) time

