
1/30

Text Search and Closure Properties
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN

Chinese University of Hong Kong

Fall 2017

2/30

Text Search

3/30

grep program

grep -E regexp file.txt

Searches for an occurrence of patterns matching a regular expression

cat|12 {cat, 12} union
[abc] {a, b, c} shorthand for a|b|c
[ab][12] {a1, a2, b1, b2} concatenation
(ab)

* {ε, ab, abab, . . . } star
[ab]? {ε, a, b} zero or one
(cat)+ {cat, catcat, . . . } one or more
[ab]{2} {aa, ab, ba, bb} n copies

4/30

Searching with grep

Words containing savor or savour
cd /usr/share/dict/

grep -E 'savou?r' words

savor
savor's
savored
savorier
savories
savoriest
savoring
savors
savory
savory's
unsavory

Words with 5 consecutive a or b
grep -E '[abAB]{5}' words

Babbage

4/30

Searching with grep

Words containing savor or savour
cd /usr/share/dict/

grep -E 'savou?r' words

savor
savor's
savored
savorier
savories
savoriest
savoring
savors
savory
savory's
unsavory

Words with 5 consecutive a or b
grep -E '[abAB]{5}' words

Babbage

5/30

More grep commands

. any symbol
[a-d] anything in a range
^ beginning of line
$ end of line

grep -E '^a.pl.$' words

6/30

How do you look for

Words that start in go and have another go
grep -E '^go.*go' words

Words with at least ten vowels?
grep -iE '([aeiouy].*){10}' words

Words without any vowels?
grep -iE '^[^aeiouy]*$' words

[^R]means “does not contain”

Words with exactly ten vowels?
grep -iE '^[^aeiouy]*([aeiouy][^aeiouy]*){10}$' words

7/30

How grep (could) work

regular
expression NFA DFA

text file

input

differences in class in grep
[ab]?, a+, (cat){3} not allowed allowed
input handling matches whole looks for pattern
output accept/reject finds pattern

Regular expression also supported in modern languages (C, Java, Python,
etc)

8/30

Implementation of grep

How do you handle expressions like

[ab]? → ()|[ab] zero or more R? → ε|R

(cat)+ → (cat)(cat)* one or more R+ → RR∗

a{3} → aaa n copies R{n} → RR . . .R︸ ︷︷ ︸
n times

[^aeiouy] ? not containing

9/30

Closure properties

10/30

Example

The languageL of strings that end in 101 is regular

(0+ 1)∗101

How about the languageL of strings that do not end in 101?

Hint: a string does not end in 101 if and only if it ends in
000, 001, 010, 011, 100, 110 or 111

or has length 0, 1, or 2

SoL can be described by the regular expression
(0+1)∗(000+001+010+011+100+110+111)+ε+(0+1)+(0+1)(0+1)

10/30

Example

The languageL of strings that end in 101 is regular

(0+ 1)∗101

How about the languageL of strings that do not end in 101?

Hint: a string does not end in 101 if and only if it ends in
000, 001, 010, 011, 100, 110 or 111

or has length 0, 1, or 2

SoL can be described by the regular expression
(0+1)∗(000+001+010+011+100+110+111)+ε+(0+1)+(0+1)(0+1)

11/30

Complement
The complementL of a languageL contains those strings that are not inL

L = {w ∈ Σ∗ | w /∈ L}

Examples (Σ = {0, 1})

L1 = lang. of all strings that end in 101

L1 = lang. of all strings that do not end in 101

= lang. of all strings that end in 000, …, 111 (but not 101)

or have length 0, 1, or 2

L2 = lang. of 1∗ = {ε, 1, 11, 111, . . . }
L2 = lang. of all strings that contain at least one 0

= lang. of the regular expression (0+ 1)∗0(0+ 1)∗

12/30

Example

The languageL of strings that contain 101 is regular
(0+ 1)∗101(0+ 1)∗

How about the languageL of strings that do not contain 101?

You can write a regular expression, but it is a lot of work!

13/30

Closure under complement

IfL is a regular language, so isL

To argue this, we can use any of the equivalent definitions of regular
languages

regular
expression NFA DFA

The DFA definition will be the most convenient here
We assumeL has a DFA, and showL also has a DFA

14/30

Arguing closure under complement

SupposeL is regular, then it has a DFAM

acceptsL

Now consider the DFAM ′ with the accepting and rejecting states ofM
reversed

accepts strings not inL

15/30

Can we do the same with an NFA?

q0 q1 q21 0

0, 1

(0+ 1)∗10

q0 q1 q21 0

0, 1

(0+ 1)∗

Not the complement!

15/30

Can we do the same with an NFA?

q0 q1 q21 0

0, 1

(0+ 1)∗10

q0 q1 q21 0

0, 1

(0+ 1)∗

Not the complement!

16/30

Intersection

The intersectionL ∩ L′ is the set of strings that are in bothL andL′

Examples:
L L′ L ∩ L′

(0+ 1)∗11 1∗ 1∗11

L L′ L ∩ L′

(0+ 1)∗10 1∗ ∅

IfL andL′ are regular, isL ∩ L′ also regular?

17/30

Closure under intersection

IfL andL′ are regular languages, so isL ∩ L′

To argue this, we can use any of the equivalent definitions of regular
languages

regular
expression NFA DFA

SupposeL andL′ have DFAs, call themM andM ′

Goal: construct a DFA (or NFA) forL ∩ L′

18/30

Example

M ′
L′ (odd number of 1s)

s0 s1

0

1

0

1

M
L (even number of 0s)

r0

r1

1

0

1

0

r0, s0 r0, s1

r1, s0 r1, s1

1

1

00 00

1

1

L ∩ L′ = lang. of even number of 0s and odd number of 1s

18/30

Example

M ′
L′ (odd number of 1s)

s0 s1

0

1

0

1

M
L (even number of 0s)

r0

r1

1

0

1

0

r0, s0 r0, s1

r1, s0 r1, s1

1

1

00 00

1

1

L ∩ L′ = lang. of even number of 0s and odd number of 1s

19/30

Closure under intersection

M andM ′ DFA forL ∩ L′

states Q = {r1, . . . , rs}
Q′ = {s1, . . . , sm}

Q × Q′ = {(r1, s1), (r1, s2),
. . . , (r2, s1), . . . , (rn, sm)}

start states ri forM
sj forM ′

(ri , sj)

accepting
states

F forM
F ′ forM ′

F × F ′ =
{(ri , sj) | ri ∈ F , sj ∈ F ′}

WheneverM is in state ri andM ′ is in state sj , the DFA forL ∩ L′ will be in
state (ri , sj)

20/30

Closure under intersection

M andM ′ DFA forL ∩ L′

transitions ri rj
a

sk s`a

ri , sk rj , s`a

21/30

Reversal

The reversalwR of a stringw isw written backwards
w = dog wR = god

The reversalLR of a languageL is the language obtained by reversing all its
strings

L = {dog,war, level} LR = {god, raw, level}

22/30

Reversal of regular languages

L = language of all strings that end in 01
L is regular and has regex

(0+ 1)∗01

How aboutLR?

This is the language of all strings beginning in 10
It is regular and represented by

10(0+ 1)∗

23/30

Closure under reversal

IfL is a regular language, so isLR

How do we argue?
regular

expression NFA DFA

24/30

Arguing closure under reversal

Take a regular expressionE forL

Wewill show how to reverseE

A regular expression can be of the following types:

I special symbols∅ and ε

I alphabet symbols like a and b

I union, concatenation, or star of simpler expressions

25/30

Inductive proof of closure under reversal

Regular expressionE reversalER

∅ ∅

ε ε

a a

E1 + E2 ER
1 + ER

2

E1E2 ER
2 ER

1

E∗
1 (ER

1)
∗

26/30

Duplication?

LDUP = {ww | w ∈ L}
Example:
L = {cat, dog}
LDUP = {catcat, dogdog}

IfL is regular, isLDUP also regular?

27/30

Attempts

Let’s try regular expression

LDUP ?
= L2

L = {a, b}
LDUP = {aa, bb}
LL = {aa, ab, ba, bb}

Let’s try NFA

q0 NFA forL NFA forL q1ε ε ε

27/30

Attempts

Let’s try regular expression

LDUP ?
= L2

L = {a, b}
LDUP = {aa, bb}
LL = {aa, ab, ba, bb}

Let’s try NFA

q0 NFA forL NFA forL q1ε ε ε

27/30

Attempts

Let’s try regular expression

LDUP ?
= L2

L = {a, b}
LDUP = {aa, bb}
LL = {aa, ab, ba, bb}

Let’s try NFA

q0 NFA forL NFA forL q1ε ε ε

27/30

Attempts

Let’s try regular expression

LDUP ?
= L2

L = {a, b}
LDUP = {aa, bb}
LL = {aa, ab, ba, bb}

Let’s try NFA

q0 NFA forL NFA forL q1ε ε ε

28/30

An example

L = language of 0∗1 (L is regular)

L = {1, 01, 001, 0001, . . . }
LDUP = {11, 0101, 001001, 00010001, . . . }

= {0n10n1 | n > 0}

Let’s design an NFA forLDUP

29/30

An example

LDUP = {11, 0101, 001001, 00010001, . . . }
= {0n10n1 | n > 0}

1

1

1

01

1

001

1

0001

0 0 0 0 …

Seems to require infinitely many states!

Next lecture: will show that languages likeLDUP are not regular

29/30

An example

LDUP = {11, 0101, 001001, 00010001, . . . }
= {0n10n1 | n > 0}

1

1

1

01

1

001

1

0001

0 0 0 0 …

Seems to require infinitely many states!

Next lecture: will show that languages likeLDUP are not regular

30/30

Backreferences in grep

Advanced feature in grep and other “regular expression” libraries

grep -E '^(.*)\1$' words

the special expression \1 refers to the substring specified by (.*)
(.*)\1 looks for a repeated substring, e.g. mama

^(.*)\1$ accepts the languageLDUP

Standard “regular expression” libraries can accept irregular languages (as
defined in this course)!

