Undecidability and Reductions

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2022

Chinese University of Hong Kong

Undecidability

$$A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid \mathsf{Turing} \; \mathsf{machine} \; M \; \mathsf{accepts} \; \mathsf{input} \; w \}$$

Turing's Theorem

The language A_{TM} is undecidable

Note: a Turing machine M may take as input its own description $\langle M \rangle$

Turing's Theorem: Proof sketch (in Python)

Suppose function H(M) correctly decides whether program M halts, given its source code $\langle M \rangle$

D checks whether itself halts using H and does the opposite

```
def D():
   if H(D):
     loop_forever()
```

Does D halt?

Proof by contradiction:

Suppose A_{TM} is decidable, then some TM H decides A_{TM} :

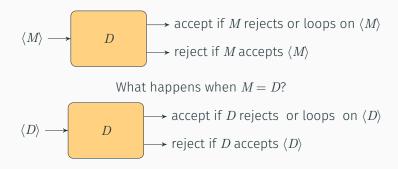
Proof by contradiction:

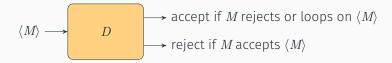
Suppose A_{TM} is decidable, then some TM H decides A_{TM} :

Construct a new TM D (that uses H as a subroutine):

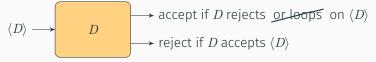
Turing machine D: On input $\langle M \rangle$

- 1. Run H on input $\langle M, \langle M \rangle \rangle$
- 2. Output the opposite of H: If H accepts, reject; if H rejects, accept





What happens when M = D?



H never loops indefinitely, neither does D

If D rejects $\langle D \rangle$, then D accepts $\langle D \rangle$

If D accepts $\langle D \rangle$, then D rejects $\langle D \rangle$

Contradiction! D cannot exist! H cannot exist!

Proof of Turing's theorem: conclusion

Proof by contradiction

Assume $A_{\rm TM}$ is decidable Then there are TM H and D But D cannot exist!

Conclusion

The language $A_{\rm TM}$ is undecidable

		all possible inputs w				
		ε	0	1	00	
S	M_1	acc	rej	rej	acc	
ine	M_2	rej	acc	loop	rej	
sible machines	M_3	rej	loop	rej	rej	
ssik	M_4	acc	rej	acc	loop	
all possible Turing mach			:			

Write an infinite table for the pairs (M, w)

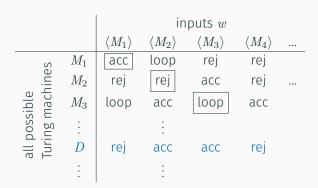
(Entries in this table are all made up for illustration)

		\mid inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
S	M_1	acc	loop	rej	rej	
ole achines	M_2	rej	rej	acc	rej	
	M_3	loop	acc	loop	acc	
ssibl ; ma	M_4	acc	acc	loop	acc	
all possible Turing mach			:			

Only look at those $\it w$ that describe Turing machines

		inputs w				
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
all possible Turing machines	M_1	acc	loop	rej	rej	
	M_2	rej	rej	acc	rej	
	M_3	loop	acc	loop	acc	
	:		:			
ıll pos uring	D	rej	acc	acc	rej	
a T	:		:			

If A_{TM} is decidable, then TM D is in the table



D does the opposite of the diagonal entries

		\mid inputs w					
		$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$
all possible Turing machines	M_1	acc	loop	rej	rej		loop
	M_2	rej	rej	acc	rej		acc
	M_3	loop	acc	loop	acc		rej
	:		:				
all pos Turing	D	rej	acc	acc	rej		?
,,,	:		÷				

We run into trouble when we look at $(D,\langle D\rangle)$

The language $A_{\rm TM}$ is recognizable but not decidable

How about languages that are not recognizable?

$$\overline{A_{\mathsf{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM that does not accept } w \}$$

$$= \{ \langle M, w \rangle \mid M \text{ rejects or loops on input } w \}$$

Claim

The language $\overline{A_{\text{TM}}}$ is not recognizable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof of Claim from Theorem:

We know $A_{\rm TM}$ is recognizable if $\overline{A_{\rm TM}}$ were also, then $A_{\rm TM}$ would be decidable

But Turing's Theorem says A_{TM} is not decidable

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (flawed):

Let M= TM recognizing L, M'= TM recognizing \overline{L} The following Turing machine N decides L:

Turing machine N: On input w

- 1. Simulate M on input w. If M accepts, accept
- 2. Simulate M' on input w. If M' accepts, reject

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (flawed):

Let M= TM recognizing L, M'= TM recognizing \overline{L} The following Turing machine N decides L:

Turing machine N: On input w

- 1. Simulate M on input w. If M accepts, accept
- 2. Simulate M' on input w. If M' accepts, reject

Problem: If M loops on w, we will never go to step 2

Theorem

If L and \overline{L} are both recognizable, then L is decidable

Proof idea (2nd attempt):

Let $M={
m TM}$ recognizing $L, \qquad M'={
m TM}$ recognizing \overline{L}

The following Turing machine N decides L:

Turing machine N: On input w

For $t = 0, 1, 2, 3, \dots$

Simulate first t transitions of M on input w.

If *M* accepts, accept

Simulate first t transitions of M' on input w.

If M' accepts, reject

Reductions

Reductions

Reducing A to B

Transform program ${\cal R}$ that solves ${\cal B}$ into program ${\cal S}$ that solves ${\cal A}$

To reduce A to B means solving problem A using subroutine R as a blackbox

Example from Lecture 17:

 $A_{\rm DFA} = \{\langle D, w \rangle \mid D \text{ is a DFA that accepts input } w\}$ $A_{\rm NFA} = \{\langle N, w \rangle \mid N \text{ is an NFA that accepts input } w\}$

 A_{NFA} reduces to A_{DFA} (by converting NFA into DFA)

Reductions in this course

If language A reduces to language B, and A is undecidable then B is also undecidable

Steps for showing a language *B* to be undecidable:

- 1. If some TM R decides B
- 2. Using R, build another TM S that decides $A=A_{\mathrm{TM}}$

But by Turing's theorem, A_{TM} is not decidable

Another undecidable language

 $\mathsf{HALT}_\mathsf{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \}$

We'll show:

 $HALT_{TM}$ is an undecidable language

We will argue that $\label{eq:thm:model} \mbox{If HALT}_{\mbox{\scriptsize TM}} \mbox{ is decidable, then so is } A_{\mbox{\scriptsize TM}}$

Undecidability of halting

If HALT $_{\mathsf{TM}}$ can be decided, so can A_{TM}

```
\begin{aligned} \mathsf{HALT}_{\mathsf{TM}} &= \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \\ A_{\mathsf{TM}} &= \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \end{aligned}
```

Suppose HALT $_{
m TM}$ is decidable by a Turing machine H Then the following TM S decides $A_{
m TM}$

```
Turing machine S: On input \langle M, w \rangle
Run H on input \langle M, w \rangle
If H rejects, reject
If H accepts, run the universal TM U on input \langle M, w \rangle
If U accepts, accept; else reject
```

Mapping reductions

Special kind of reduction: program f such that instance $x \in A \iff f(x) \in B$ and f never infinite-loops

If x is a Yes-instance to A, then f(x) is a Yes-instance to BIf x is a No-instance to A, then f(x) is a No-instance to B

Given program R deciding problem B, and reduction f.

Program S: On input xRun f on x to get f(x)If R accepts f(x), accept; else reject

 $A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is A'_{TM} decidable? Why?

 $A'_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \}$

Is A'_{TM} decidable? Why?

Undecidable!

Intuitive reason:

To know whether M accepts ε seems to require simulating M But then we need to know whether M halts

Let's justify this intuition

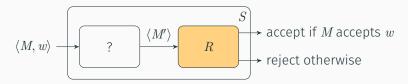
Example 1: Implementing a mapping reduction

M' should be a Turing machine such that

M' on input $\varepsilon = M$ on input w

Turing machine M': On input z

- 1. Simulate M on input w
- 2. If M accepts w, accept
- 3. If M rejects w, reject
 - · If M accepts w, M' accepts arepsilon
 - If M rejects w, M' rejects arepsilon
 - · If M loops on w, M' loops on arepsilon



Turing machine S: On input $\langle M, w \rangle$ where M is a TM

1. Construct the following TM M':

M' = a TM such that on input z,

Simulate M on input w and accept/reject according to M

2. Run R on input $\langle M' \rangle$ and accept/reject according to R

Example 1: The formal proof

$$\begin{split} A'_{\mathsf{TM}} &= \{ \langle M \rangle \mid M \text{ is a TM that accepts input } \varepsilon \} \\ A_{\mathsf{TM}} &= \{ \langle M, w \rangle \mid M \text{ is a TM that accepts input } w \} \end{split}$$

Consider a mapping reduction that turns $\langle M, w \rangle$ into $\langle M' \rangle$, where

 $M'={
m a}$ TM such that on input z, Simulate M on input w and accept/reject according to M

If some Turing machine R decides A'_{TM} , then some Turing machine S decides A_{TM} , which is impossible

 $A''_{\rm TM} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$ Is $A''_{\rm TM}$ decidable? Why?

Undecidable!

Intuitive reason:

To know whether M accepts some strings seems to require simulating M

But then we need to know whether M halts

Let's justify this intuition

Implementing a mapping reduction

Task: Given $\langle M, w \rangle$, construct M' so that If M accepts w, then M' accepts some input If M does not accept w, then M' accepts no inputs

TM M': On input z

- 1. Simulate M on input w
- 2. If M accepts, accept
- 3. Otherwise, reject

Example 2: The formal proof

$$A''_{\mathsf{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input}\}$$

$$A_{\mathsf{TM}} = \{\langle M, w \rangle \mid M \text{ is a TM that accepts input } w\}$$

Consider a mapping reduction that turns $\langle M, w \rangle$ into $\langle M' \rangle$, where

 $M'={
m a}$ TM such that on input z, Simulate M on input w and accept/reject according to M

If some Turing machine R decides $A_{\rm TM}^{\prime\prime}$, then some Turing machine S decides $A_{\rm TM}$, which is impossible

```
E_{\mathsf{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts no input} \} Is E_{\mathsf{TM}} decidable?
```

Undecidable! We will show:

If E_{TM} can be decided by some TM R

Then $A_{\rm TM}^{\prime\prime}$ can be decided by another TM S

 $A''_{\mathsf{TM}} = \{ \langle M \rangle \mid M \text{ is a TM that accepts some input strings} \}$

```
E_{\mathsf{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts no input}\}
A''_{\mathsf{TM}} = \{\langle M \rangle \mid M \text{ is a TM that accepts some input}\}
```

Then $E_{\rm TM}=\overline{A''_{\rm TM}}$ (except ill-formatted strings, which we will ignore) Suppose $E_{\rm TM}$ can be decided by some TM R Consider the following Turing machine S:

TM S: On input $\langle M \rangle$ where M is a TM

- 1. Run R on input $\langle M \rangle$
- 2. If R accepts, reject
- 3. If R rejects, accept

Then S decides $A_{\mathsf{TM}}^{\prime\prime}$, a contradiction

$${\rm EQ_{TM}}=\{\langle M_1,M_2\rangle\mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1)=L(M_2)\}$$
 Is EQ_{TM} decidable?

Undecidable!

We will show that EQ_{TM} can be decided by some TM R then $E_{\rm TM}$ can be decided by another TM S

Example 4: Setting up the reduction

$$\begin{split} \mathsf{EQ}_\mathsf{TM} &= \{\langle M_1, M_2\rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2)\} \\ E_\mathsf{TM} &= \{\langle M\rangle \mid M \text{ is a TM that accepts no input}\} \end{split}$$

Given $\langle M \rangle$, we need to construct $\langle M_1, M_2 \rangle$ so that

- If M accepts no input, then M_1 and M_2 accept the same set of inputs
- If M accepts some input, then M_1 and M_2 do not accept the same set of inputs

Idea: Make $M_1=M$ Make M_2 accept nothing

Example 4: The formal proof

$$\begin{split} \mathsf{EQ}_\mathsf{TM} &= \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs such that } L(M_1) = L(M_2)\} \\ E_\mathsf{TM} &= \{\langle M \rangle \mid M \text{ is a TM that accepts no input}\} \end{split}$$

Suppose EQ_{TM} is decidable and R decides it Consider the following Turing machine S:

- TM S: On input $\langle M \rangle$ where M is a TM
 - 1. Construct a TM M_2 that rejects every input z
 - 2. Run R on input $\langle M, M_2 \rangle$ and accept/reject according to R

Then S accepts $\langle M \rangle$ if and only if M accepts no input So S decides E_{TM} which is impossible