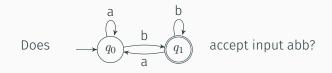
Decidability

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN Fall 2022

Chinese University of Hong Kong

Problems about automata



We can formulate this question as a language

 $A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Is A_{DFA} decidable?

One possible way to encode a DFA $D = (Q, \Sigma, \delta, q_0, F)$ and input w

$$(\underbrace{(q0,q1)}_{Q}\underbrace{(a,b)}_{\Sigma}\underbrace{((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))}_{\delta}\underbrace{(q0)}_{q0}\underbrace{(q1)}_{F}(\underbrace{abb}_{w})$$

$A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Pseudocode:

On input $\langle D, w \rangle$, where $D = (Q, \Sigma, \delta, q_0, F)$

Set $q \leftarrow q_0$ For $i \leftarrow 1$ to length(w) $q \leftarrow \delta(q, w_i)$ If $q \in F$ accept, else reject

TM description:

On input $\langle D, w \rangle$, where D is a DFA, w is a string

Simulate *D* on input *w* If simulation ends in an accept state, accept; else reject

$A_{\mathrm{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation:

((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb) ((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb) ((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb)

((q0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb)

$A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$

Turing machine details:

Check input is in correct format (Transition function is complete, no duplicate transitions) Perform simulation: (very high-level) Put markers on start state of *D* and first symbol of *w* Until marker for *w* reaches last symbol:

Update both markers

If state marker is on accepting state, accept; else reject

Conclusion: A_{DFA} is decidable

 $A_{\mathsf{DFA}} = \{ \langle D, w \rangle \mid D \text{ is a DFA that accepts input } w \}$ $A_{\mathsf{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$ $A_{\mathsf{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \}$ Which of these is decidable?

 $A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ is an NFA that accepts input } w \}$

The following TM decides $A_{\rm NFA}$:

On input $\langle N, w \rangle$ where N is an NFA and w is a string Convert N to a DFA D using the conversion procedure from Lecture 3 Run TM M for A_{DFA} on input $\langle D, w \rangle$ If M accepts, accept; else reject

Conclusion: $A_{\rm NFA}$ is decidable 🖌

 $A_{\text{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \}$

The following TM decides A_{REX}

On input $\langle R, w \rangle$, where R is a regular expression and w is a string Convert R to NFA N using the conversion procedure from Lecture 4 Run the TM M' for A_{NFA} on input $\langle N, w \rangle$ If M' accepts, accept; else reject

Conclusion: A_{REX} is decidable \checkmark

 $\mathsf{MIN}_{\mathsf{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \}$

 $EQ_{DFA} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$

 $E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \}$

Which of the above is decidable?

$\mathsf{MIN}_{\mathsf{DFA}} = \{ \langle D \rangle \mid D \text{ is a minimal DFA} \}$

The following TM decides $\mathsf{MIN}_{\mathsf{DFA}}$

On input $\langle D\rangle\text{, where }D\text{ is a DFA}$

Run the DFA minimization algorithm from Lecture 7 If every pair of states is distinguishable, accept; else reject

Conclusion: MIN_{DFA} is decidable 🗸

 $EQ_{DFA} = \{ \langle D_1, D_2 \rangle \mid D_1 \text{ and } D_2 \text{ are DFAs and } L(D_1) = L(D_2) \}$

The following Turing machine S decides $\mathrm{EQ}_{\mathrm{DFA}}$

TM S: On input $\langle D_1, D_2 \rangle$, where D_1 and D_2 are DFAs Run DFA minimization algorithm on D_1 to obtain a minimal DFA D'_1 Run DFA minimization algorithm on D_2 to obtain a minimal DFA D'_2 If $D'_1 = D'_2$, accept; else reject

Conclusion: EQ_{DFA} is decidable 🗸

 $E_{\text{DFA}} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) \text{ is empty} \}$

The following TM T decides E_{DFA}

Turing machine *M*: On input $\langle D \rangle$, where *D* is a DFA Run the TM *S* for EQ_{DFA} on input $\langle D, D' \rangle$, where *D'* is any DFA that accepts no input, such as $\longrightarrow \bigcirc \bigcirc \bigcirc a, b$ If *S* accepts, accept; else reject

Conclusion: E_{DFA} is decidable \checkmark

 $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$ L where L is a context-free language $EQ_{CFG} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}$

Which of the above is decidable?

 $A_{\mathsf{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$

The following TM V decides A_{CFG}

TM V: **On input** $\langle G, w \rangle$, where G is a CFG and w is a string Eliminate the ε - and unit productions from G Convert G into Chomsky Normal Form G' Run Cocke–Younger–Kasami algorithm on $\langle G', w \rangle$ If the CYK algorithm finds a parse tree, accept; else reject

Conclusion: A_{CFG} is decidable

L where *L* is a context-free language

Let L be a context-free language There is a CFG G for L

Then the following TM decides L

On input w

Run TM V from the previous slide on input $\langle G, w \rangle$ If V accepts, accept; else reject

Conclusion: every context-free language L is decidable \checkmark

$\mathsf{EQ}_{\mathsf{CFG}} = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2) \}$ is not decidable **X**

What's the difference between EQ_{DFA} and $EQ_{\text{CFG}}?$

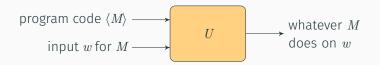
To decide EQ_{DFA} we minimize both DFAs

But there is no method that, given a CFG or PDA, produces a unique equivalent minimal CFG or PDA

Universal Turing Machine and Undecidability

A computer is a machine that manipulates data according to a list of instructions

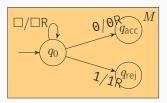
How does a Turing machine take a program as part of its input?



The universal TM U takes as inputs a program M and a string $w\!\!\!,$ and simulates M on w

The program M itself is specified as a TM

A Turing machine is $(Q, \Sigma, \Gamma, \delta, q_0, q_{\rm acc}, q_{\rm rej})$



A Turing machine can be described by a string $\langle M \rangle$

Turing machine description $\langle M \rangle$

(q,qa,qr)(0,1)(0,1,□) ((q,q,□/□R)(q,qa,0/0R)(q,qr,1/1R)) (q)(qa)(qr)

Analogy in Python

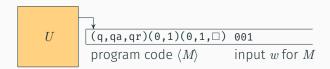
Source code

def f(x):

print("Hello world")

Compiled bytecode

2	0 LOAD_GLOBAL	0 (print)
	2 LOAD_CONST	1 ('Hello world')
	<pre>4 CALL_FUNCTION</pre>	1
	6 POP_TOP	
	8 LOAD_CONST	0 (None)
	10 RETURN_VALUE	



(Universal) Turing machine U: on input $\langle M, w \rangle$

Simulate *M* on input *w* If *M* enters accept state, *U* accepts

If *M* enters reject state, *U* rejects

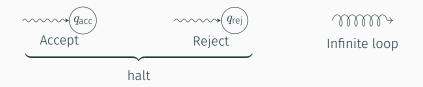
 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$

U on input $\langle M, w \rangle$ simulates M on input w

$M \operatorname{accepts} w$	M rejects w	M loops on w
\Downarrow	\Downarrow	\Downarrow
$U \operatorname{accepts} \langle M, w \rangle$	U rejects $\langle M, w \rangle$	U loops on $\langle M, w angle$

TM U recognizes A_{TM} but does not decide A_{TM}

Recognizing versus deciding



The language recognized by a TM *M* is the set of all inputs that *M* accepts

A TM decides language L if it recognizes L and halts on every input

A language L is decidable if some TM decides L