
Decidability
CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2022

Chinese University of Hong Kong

1/23

Problems about automata

Does q0 q1

a

b

b

a
accept input abb?

We can formulate this question as a language

ADFA = {⟨D,w⟩ | D is a DFA that accepts input w}

Is ADFA decidable?

One possible way to encode a DFA D = (Q,Σ, δ, q0,F) and input w

((q0,q1)︸ ︷︷ ︸
Q

(a,b)︸ ︷︷ ︸
Σ

((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))︸ ︷︷ ︸
δ

(q0)︸ ︷︷ ︸
q0

(q1)︸ ︷︷ ︸
F

)(abb︸︷︷︸
w

)

2/23

Problems about automata

ADFA = {⟨D,w⟩ | D is a DFA that accepts input w}

Pseudocode:
On input ⟨D,w⟩, where
D = (Q,Σ, δ, q0,F)

Set q← q0
For i← 1 to length(w)

q← δ(q,wi)

If q ∈ F accept, else reject

TM description:
On input ⟨D,w⟩, where D is
a DFA, w is a string

Simulate D on input w
If simulation ends in an
accept state, accept; else
reject

3/23

Problems about automata

ADFA = {⟨D,w⟩ | D is a DFA that accepts input w}

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation:
((q̇0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(ȧbb)

((q̇0,q1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(aḃb)

((q0,q̇1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abḃ)

((q0,q̇1)(a,b)((q0,a,q0)(q0,b,q1)(q1,a,q0)(q1,b,q1))(q0)(q1))(abb)̇

4/23

Problems about automata

ADFA = {⟨D,w⟩ | D is a DFA that accepts input w}

Turing machine details:

Check input is in correct format

(Transition function is complete, no duplicate transitions)

Perform simulation: (very high-level)

Put markers on start state of D and first symbol of w

Until marker for w reaches last symbol:

Update both markers

If state marker is on accepting state, accept; else reject

Conclusion: ADFA is decidable

5/23

Acceptance problems about automata

ADFA = {⟨D,w⟩ | D is a DFA that accepts input w} 3

ANFA = {⟨N,w⟩ | N is an NFA that accepts input w}

AREX = {⟨R,w⟩ | R is a regular expression that generates w}

Which of these is decidable?

6/23

Acceptance problems about automata

ANFA = {⟨N,w⟩ | N is an NFA that accepts input w}

The following TM decides ANFA:

On input ⟨N,w⟩ where N is an NFA and w is a string
Convert N to a DFA D using the conversion procedure from Lecture 3
Run TM M for ADFA on input ⟨D,w⟩
If M accepts, accept; else reject

Conclusion: ANFA is decidable 3

7/23

Acceptance problems about automata

AREX = {⟨R,w⟩ | R is a regular expression that generates w}

The following TM decides AREX

On input ⟨R,w⟩, where R is a regular expression and w is a string
Convert R to NFA N using the conversion procedure from Lecture 4
Run the TM M′ for ANFA on input ⟨N,w⟩
If M′ accepts, accept; else reject

Conclusion: AREX is decidable 3

8/23

Other problems about automata

MINDFA = {⟨D⟩ | D is a minimal DFA}

EQDFA = {⟨D1,D2⟩ | D1 and D2 are DFAs and L(D1) = L(D2)}

EDFA = {⟨D⟩ | D is a DFA and L(D) is empty}

Which of the above is decidable?

9/23

Other problems about automata

MINDFA = {⟨D⟩ | D is a minimal DFA}

The following TM decides MINDFA

On input ⟨D⟩, where D is a DFA
Run the DFA minimization algorithm from Lecture 7
If every pair of states is distinguishable, accept; else reject

Conclusion: MINDFA is decidable 3

10/23

Other problems about automata

EQDFA = {⟨D1,D2⟩ | D1 and D2 are DFAs and L(D1) = L(D2)}

The following Turing machine S decides EQDFA

TM S: On input ⟨D1,D2⟩, where D1 and D2 are DFAs
Run DFA minimization algorithm on D1 to obtain a minimal DFA D′

1
Run DFA minimization algorithm on D2 to obtain a minimal DFA D′

2
If D′

1 = D′
2, accept; else reject

Conclusion: EQDFA is decidable 3

11/23

Other problems about automata

EDFA = {⟨D⟩ | D is a DFA and L(D) is empty}

The following TM T decides EDFA

Turing machine M: On input ⟨D⟩, where D is a DFA
Run the TM S for EQDFA on input ⟨D,D′⟩,
where D′ is any DFA that accepts no input, such as a,b
If S accepts, accept; else reject

Conclusion: EDFA is decidable 3

12/23

Problems about context-free grammars

ACFG = {⟨G,w⟩ | G is a CFG that generates w}

L where L is a context-free language

EQCFG = {⟨G1,G2⟩ | G1,G2 are CFGs and L(G1) = L(G2)}

Which of the above is decidable?

13/23

Problems about context-free grammars

ACFG = {⟨G,w⟩ | G is a CFG that generates w}

The following TM V decides ACFG

TM V: On input ⟨G,w⟩, where G is a CFG and w is a string
Eliminate the ε- and unit productions from G
Convert G into Chomsky Normal Form G′

Run Cocke–Younger–Kasami algorithm on ⟨G′,w⟩
If the CYK algorithm finds a parse tree, accept; else reject

Conclusion: ACFG is decidable 3

14/23

Problems about context-free grammars

L where L is a context-free language

Let L be a context-free language

There is a CFG G for L

Then the following TM decides L

On input w
Run TM V from the previous slide on input ⟨G,w⟩
If V accepts, accept; else reject

Conclusion: every context-free language L is decidable 3

15/23

Problems about context-free grammars

EQCFG = {⟨G1,G2⟩ | G1,G2 are CFGs and L(G1) = L(G2)}

is not decidable 7

What’s the difference between EQDFA and EQCFG?

To decide EQDFA we minimize both DFAs

But there is no method that, given a CFG or PDA, produces a unique
equivalent minimal CFG or PDA

16/23

Universal Turing Machine and
Undecidability

Turing Machines versus computers

computer
program

input
output

A computer is a machine that manipulates data according to a list of
instructions

How does a Turing machine take a program as part of its input?

18/23

Universal Turing machine

U
program code ⟨M⟩

input w for M
whatever M
does on w

The universal TM U takes as inputs a program M and a string w, and
simulates M on w

The program M itself is specified as a TM

19/23

Turing machine vs description (executable vs source code)

A Turing machine is
(Q,Σ,Γ, δ, q0, qacc, qrej)

A Turing machine can be described by a
string ⟨M⟩

M

q0

qacc

qrej

□/□R 0/0R

1/1R

Turing machine description ⟨M⟩

(q,qa,qr)(0,1)(0,1,□)
((q,q,□/□R)(q,qa,0/0R)(q,qr,1/1R))
(q)(qa)(qr)

Analogy in Python
Compiled bytecode

2 0 LOAD_GLOBAL 0 (print)
2 LOAD_CONST 1 ('Hello world')
4 CALL_FUNCTION 1
6 POP_TOP
8 LOAD_CONST 0 (None)
10 RETURN_VALUE

Source code
def f (x) :
p r i n t (” Hel lo world ”)

20/23

Universal Turing machine

U (q,qa,qr)(0,1)(0,1,□)
program code ⟨M⟩

001
input w for M

(Universal) Turing machine U: on input ⟨M,w⟩
Simulate M on input w
If M enters accept state, U accepts
If M enters reject state, U rejects

21/23

Acceptance of Turing machines

ATM = {⟨M,w⟩ | M is a TM that accepts w}

U on input ⟨M,w⟩ simulates M on input w

M accepts w
⇓

U accepts ⟨M,w⟩

M rejects w
⇓

U rejects ⟨M,w⟩

M loops on w
⇓

U loops on ⟨M,w⟩

TM U recognizes ATM but does not decide ATM

22/23

Recognizing versus deciding

qacc
Accept

qrej
Reject Infinite loop︸ ︷︷ ︸

halt

The language recognized by a TM M is the set of all inputs that M
accepts

A TM decides language L if it recognizes L and halts on every input

A language L is decidable if some TM decides L

23/23

	Universal Turing Machine and Undecidability

