Turing Machines

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2022

Chinese University of Hong Kong

1/17

Turing machine may not halt

¥ ={0,1}

input: e

Inputs can be divided into three types:

(1) wvw» AR

Accept gject Infinite loop

2/17

We say M halts on input z if there is a sequence of configurations
Co, C1,..., Cy

Cp is starting C;yields Ciiq C,, is accepting or rejecting

ATM M is a decider if it halts on every input
ATM M decides a language L if M is a decider and recognizes L

Language L is decidable if it is recognized by a TM that halts on
every input

3/17

Programming Turing machines: Are two strings equal?

Ly = {whw| we {a,b}*}

Description of Turing Machine

1 Until you reach #

2 Read and remember entry

3 Write x

i Move right past # and past all x's
5 If this entry is different, reject

6 Write x

7 Move left past # and to right of first x
s If you see only x's followed by [J, accept

xbbaa#xbbaa
xxbaa#txbbaa
xxbaa#txbbaa

xxbaattxxbaa
xxbaa#txxbaa

4/17

Programming Turing machines: Are two strings equal?

Ly = {whw| we {a,b}*}

a/aR

b/bR X/XR everything else

X /xR

5/17

Programming Turing machines: Are two strings equal?

input:
aab#aab
X/XR everything else configurations:
qo aab#aab
X qa1 ab#taab
alal
b/bL Xa g;1 b#aab

xab ¢a1 #aab
e xab# ga2 aab

xab ¢ #xab
Xa g3 b#xab
X gz ab#txab

g3 xab#txab
X qo ab#xab

6/17

Programming Turing machines

Ly = {a®b’c* | ijj= kand 4,j, k> 0}

High level description of TM: Example:

1 For every a: 1 aabbcccc

2 Cross off the same number of b’s and c¢'s 2 aabbeecc

s Uncross the crossed b’s (but not the ¢'s) s aabbeecc

« Cross off this a « aabbeecc

s Ifall a’s and c¢'s are crossed off, accept s aabbeecc
: aabbeeee
: aabbeeee

¥ ={a,b,c} I ={a,b,c,ab,€ 0}

7/17

Programming Turing machines

Ly = {a®b’c* | ij= kand 4,j, k> 0}
Low-level description of TM:

Scan input from left to right to check it looks like aa*bb™cc*
Move the head to the first symbol of the tape
For every a:

Cross off the same number of b's and c's

Restore the crossed off b’s (but not the c’s)

Cross off this a

Ifall a’s and c¢’s are crossed off, accept

8/17

Programming Turing machines

Ly = {a®b’c* | ij= kand 4,j, k> 0}
Low-level description of TM:

Scan input from left to right to check it looks like aa*bb™cc*
Move the head to the first symbol of the tape How?
For every a:

Cross off the same number of b’'sand c¢’'s How?

Restore the crossed off b’s (but not the c’s)

Cross off this a

Ifall a’s and c¢’s are crossed off, accept

9/17

Programming Turing machines

Implementation details:

Move the head to the first symbol of the tape:

Put a special marker on top of the first a aabbcccc
Cross off the same number of b's and c’s: daabbcccc
Replace b by b aabbcccc
Move right until you see a c aabbcccc
Replace c by € aabbeccc
Move left just past the last b aabbeccc
If any uncrossed b's are left, repeat aabbeccc

aabbeecc

Y ={a,b,c} I'={a,b,c,a,b,€,a,& 0}

10/17

Programming Turing machines: Element distinctness

Ly = {#m#tay .. Ha, | z; € {0,1}" and z; # ; for every ¢ # j}

Example: #O1#0011#1 € Ls

High-level description of TM:

On input w

For every pair of blocks z; and z; in w
Compare the blocks z; and ;
If they are the same, reject

Accept

1/17

Programming Turing machines: Element distinctness

Ly = {#x #tzy .. Hzp, | ; € {0,1}* and z; # z; for every ¢ # j}

Low-level desrciption:

0. Ifinputise, or has exactly one #, accept
1. Mark the leftmost # as # and move right #01#0011#1
2. Mark the next unmarked # #01#0011#1

12/17

Programming Turing machines: Element distinctness

Ly = {#m#tay .. Ha, | ;€ {0,1} and z; # ; for every ¢ # j}

3. Compare the two strings to the right of # #01#0011#1
If they are equal, reject

4. Move the right # #01#0011#1
If not possible, move the left # to the next #
and put the right # on the next #
If not possible, accept

5. Repeat Step 3 #01#0011#1
#O01#00114#1
#O1#0011#1

13/17

How to describe Turing Machines

Unlike for DFAs, NFAs, PDAs, we rarely give complete state diagrams
of Turing Machines

We usually give a high-level description

unless you're asked for a low-level description or even state diagram

We are interested in algorithms behind the Turing machines

14/17

Programming Turing machines: Graph connectivity

Ly = {{G) | Gis a connected undirected graph}

How do we feed a graph into a Turing Machine?

How to encode a graph G as a string (G)?

(1,2,3,4)((1,4),(2,3),(3,4),(4,2))

a a Conventions for describing graphs:
“ (nodes) (edges)
e Q no node appears twice

edges are pairs (first node, second node)

15/17

Programming Turing machines: Graph connectivity

Ly = {(G) | G is a connected undirected graph}

High-level description:
On input (G)
0. Verify that (G) is the description of a graph
No node/edge repeats; Edge endpoints are

nodes
1. Mark the first node of G a ‘e
2. Repeat until no new nodes are marked: e‘a

21 For each node, mark it if it is adjacent to an
already marked node

3. If all nodes are marked, accept; otherwise
reject

16/17

Programming Turing machines: Graph connectivity

Some low-level details:

0. Verify that (G) is the description of a graph

No node/edge repeats: Similar to Element distinctness

Edge endpoints are nodes: Also similar to Element distinctness

1. Mark the first node of G

Mark the leftmost digit with a dot, e.g. 12 becomes 12

2. Repeat until no new nodes are marked:

21 For each node, mark it if it is attached to an already marked node
For every dotted node w and every undotted node w:

Underline both wand » from the node list
Try to match them with an edge from the edge list

If not found, remove underline from u and/or vand try another
pair

17/17

