Text Search and Closure Properties

CSCI 3130 Formal Languages and Automata Theory

Siu On CHAN
Fall 2022

Chinese University of Hong Kong

1/36

Text Search

grep program

grep -E regex file.txt

Searches for an occurrence of patterns matching a regular

expression
regex language meaning
cat|12 {cat,12} union
[abc] {a,b,c} shorthand for alblc
[ab][12] {al,a2,b1,b2} concatenation
(ab)” {e,ab,abab,...} star
[ab]? {e,a,b} zero or one
(cat)+ {cat,catcat,...} oneor more
[ab]{2} {aa,ab,ba,bb} n copies

3/36

Searching with grep

Words containing
savor or savour

cd /usr/share/dict/
grep -E 'savou?r' words

savor
savor's
savored
savorier
savories
savoriest
savoring
savors
savory
savory's
unsavory

4/36

Searching with grep

Words containing Words with 5 consecutive a or b

savor or savour grep -E '[abAB]{5}' words

cd /usr/share/dict/

Babbage
grep -E 'savou?r' words

savor
savor's
savored
savorier
savories
savoriest
savoring
savors
savory
savory's
unsavory

5/36

More grep commands

. any symbol

[a-d] | anythingin a range
n beginning of line
$ end of line

grep -E '"a.pl.$' words

6/36

How do you look for

Words that start in go and have another go

grep -E '“go.*go' words

Words with at least ten vowels?

grep -iE '([aeiouy].*){10}' words

Words without any vowels?
grep -iE '"“["aeiouy]*$' words

[*R] means “does not contain”

Words with exactly ten vowels?
grep -iE '"“["aeiouy]*([aeiouy]["aeiouy]*){10}$' words

7/36

How grep (could) work

regular
expression mmmp—| NFA mmmmpp- = DA
inputT
differences in class ingrep
[ab]?, a+, (cat){3} notallowed allowed
input handling matches whole looks for substring
output accept/reject finds substring

Regular expression also supported in modern languages (C, Java,
Python, etc)

8/36

Implementation of grep

How do you handle expressions like

[ab]? — ()| [ab] zero or more R? - e¢+R
(cat)+ — (cat)(cat)* oneor more R+ — RR*
a{3} — aaa n copies R{n} — RR'. ..R

n times
[“aeiouy] | ? not containing

9/36

Closure properties

The language L of strings that end in 101 is regular
(0 + 1)*101

How about the language L of strings that do not end in 101?

1/36

The language L of strings that end in 101 is regular
(0 + 1)*101
How about the language L of strings that do not end in 101?

Hint: a string does not end in 101 if and only if it ends in
000, 001, 010, 011, 100, 110 or 111
or has length 0, 1, or 2

So L can be described by the regular expression

(0+1)*(000+001+0104011+1004110+111) +-£+ (041) +(0+1)(0+1)

12/36

Complement

The complement L of a language L consists of strings not in L

I={we¥> |w¢L}

Examples (X ={0,1})

L1 = lang. of all strings that end in 101
L; = lang. of all strings that do not end in 101
= lang. of all strings that end in 000, .., 111 (but not 101)
or have length 0, 1, or 2

Ly = lang. of 1" = {&,1,11,111,... }
Ly = lang. of all strings that contain at least one 0

= lang. of the regular expression (0 +1)*0(0 + 1)*

13/36

The language L of strings that contain 101 is regular
(04 1)*101(0 + 1)*

How about the language L of strings that do not contain 101?

You can write a regular expression, but it is a lot of work!

14/36

Closure under complement

If Lis a regular language, so is L

To argue this, we can use any of the equivalent definitions of regular
languages

regular
expression

@ NA @@ DFA

The DFA definition will be the most convenient here

We assume L has a DFA, and show L also has a DFA

15/36

Arguing closure under complement

Suppose L is regular, then it has a DFA M

(O
HCX &@D o

Now consider the DFA M’ with the accepting and rejecting states of
M reversed

%/QD accepts strings not in L

16/36

Can we do the same with an NFA?

Limem o
oo

17/36

Can we do the same with an NFA?

&t»o o
(0+1)*
— ‘_.‘ Not the complement!

18/36

Intersection

The intersection LN L’ is the set of strings that are in both L and I/

Examples:
L r Lnr
(04 1)*11 1* 1*11
L r Lnr
(04 1)*10 1* 0

If Land L' are regular, is LN L' also regular?

19/36

Closure under intersection

If Land L’ are regular languages, so is LN L/

To argue this, we can use any of the equivalent definitions of regular
languages

regular
expression

@ NFA <@ DFA

Suppose L and L' have DFAs, call them M and M
Goal: construct a DFA (or NFA) for LN I/

20/36

I’ (odd number of 1s)

FOETo

L (even number of 0s)

LN L' = lang. of even number of 0s and odd number of 1s
21/36

I’ (odd number of 1s)

FOETo

L (even number of 0s)

LN L' = lang. of even number of 0s and odd number of 1s
22/36

Closure under intersection

M and M DFAfor LN L/
states Q={r,...,rn} Qx Q ={(r1,s),(r, s2),
Q ={s1,-..,8m} coy(r2,81)y ooy (T Sm) }
start states r; for M (71, 55)
s; for M
accepting Ffor M Fx F =
states F for M {(ri,s;) | s € F,s;€ F'}

Whenever Mis in state r; and M’ is in state s;, the DFA for LN L' will
be in state (r;, s;)
23/36

Closure under intersection

M and M DFAfor LN L'

transitions ® a @ @

&——®

24/36

Reversal

The reversal w® of a string w is w written backwards

w = dog wf = god
The reversal LT of a language L is the language obtained by

reversing all its strings

L = {dog,war, level} LE = {god, raw, level}

25/36

Reversal of regular languages

L = language of all strings that end in 01
L is regular and has regex

(0 + 1)*01
How about L%?

This is the language of all strings beginning in 10
It is regular and represented by

10(0 + 1)*

26/36

Closure under reversal

If Lis a regular language, so is L

How do we argue?

regular
expression

@ NA <@ DFA

27/36

Arguing closure under reversal

Take any regular language L

Will show that L% is union/concatenation/star of “atomic” regular
languages

A regular language can be of the following types:

- @ and {e}
- alphabet symbols e.g. {0}, {1}
- union, concatenation, or star of simpler regular languages

28/36

Inductive proof of closure under reversal

Regular language L reversal L%
0 0

{e} {e}

{2} (zex) {z}

LU Ly) L

L Ly I

Iy Ry

29/36

Duplication?

Example:
IPYP = fww | we L} L = {cat, dog}
LPY? = {catcat, dogdog}

If Lis regular, is LPY? also regular?

30/36

Attempts

Let’s try regular expression

poup 2L 2

31/36

Attempts

Let’s try regular expression
L={a,b}
LDU < [2 LDUP = {aa, bb}
LL = {aa,ab,ba,bb}

Let’s try NFA

H‘—g»] NFA fo>ﬂ<FA for L }—5»

32/36

L = language of 0*1 (L is regular)
L ={1,01,001,0001,...}
LPY? = {11,0101,001001,00010001, ...}
= {0™0™ | n > 0}

Let's design an NFA for LPUP

33/36

LPYP = {11,0101,001001,00010001, ...}
={0™0™ | n > 0}

. 0 0 0 o
1 1 1 1
1 01 001 0001

ONORONO

34/36

LPYP = {11,0101,001001,00010001, ...}
={0™0™ | n > 0}

TET T
T T T

ONORONO

Seems to require infinitely many states!

Next lecture: will show that languages like LPY? are not regular /
35/36

Backreferences in grep

Advanced feature in grep and other “regular expression” libraries
grep -E '"(.*)\1$' words

the special expression \1 refers to the substring specified by (.*)

(.*)\1 looks for a repeated substring, e.g. mama

~(.*)\1$ accepts the language LPU?

Standard “regular expression” libraries can accept irregular
languages (as defined in this course)!

36/36

	Text Search
	Closure properties

