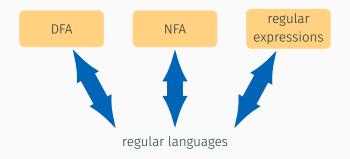
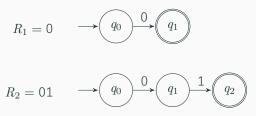
Equivalence of DFA and Regular Expressions

CSCI 3130 Formal Languages and Automata Theory

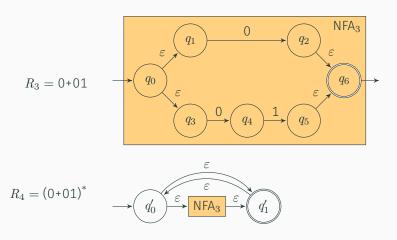
Siu On CHAN Fall 2022


Chinese University of Hong Kong

Three ways of doing it


 $L = \{x \in \Sigma^* \mid x \text{ ends in 01}\} \qquad \Sigma = \{0, 1\}$

expressions

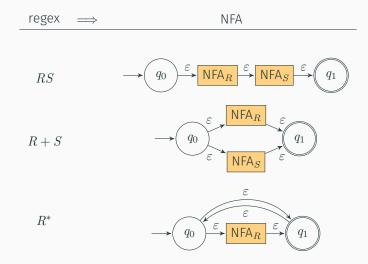

They are equally powerful

Examples: regular expression \rightarrow NFA

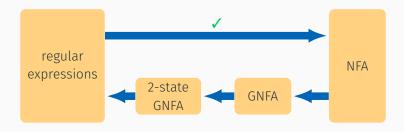
Examples: regular expression \rightarrow NFA

Regular expressions

In general, how do we convert a regular expression to an NFA?

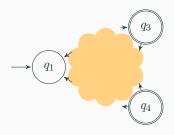

A regular expression over Σ is an expression formed by the following rules

- The symbols \varnothing and ε are regular expressions
- Every symbol in Σ is a regular expression
 - If $\Sigma = \{0, 1\}$, then 0 and 1 are both regular expressions
- If R asd S are regular expressions, so are R+S, RS and R^*

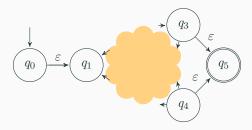

General method when $\Sigma = \{\mathbf{0}, \mathbf{1}\}$

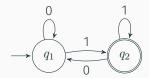
regular expression	\Longrightarrow	NFA
Ø		$\rightarrow q_0$ q_1
arepsilon		$\longrightarrow \overbrace{q_0} \xrightarrow{\varepsilon} \overbrace{q_1}$
0		$\longrightarrow q_0 \longrightarrow q_1$
1		$\longrightarrow q_0$ $\xrightarrow{1}$ q_1

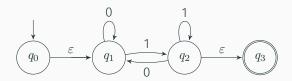
General method: induction step



Roadmap

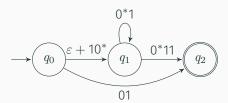

First we simplify the NFA so that

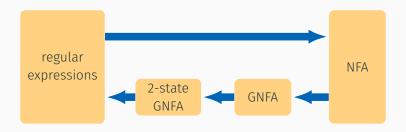

- · It has exactly one accepting state
- · No arrows come into the start state
- · No arrows go out of the accepting state



First we simplify the NFA so that

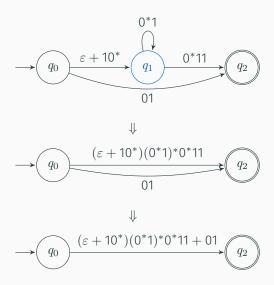
- It has exactly one accepting state
- · No arrows come into the start state
- No arrows go out of the accepting state



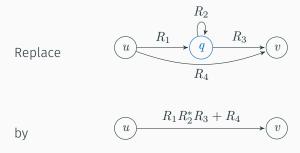

- It has exactly one accepting state ✓
- No arrows come into the start state ✓
- No arrows go out of the accepting state \checkmark

Generalized NFAs

A generalized NFA is an NFA whose transitions are labeled by regular expressions, like



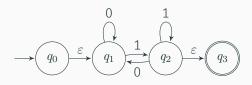
GNFA state elimination


We will eliminate every state but the start and accepting states

State elimination

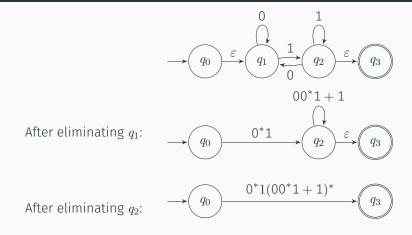
State elimination: general method

To eliminate state q, for every pair of states (u, v) such that $u \to q \to v$

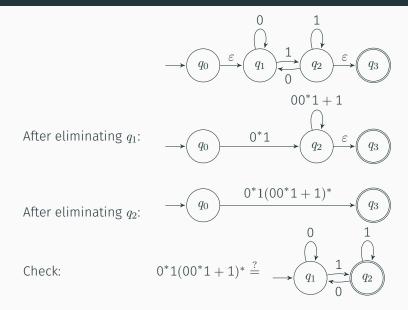


Remember to do this even when u = v

Roadmap

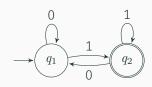


Conversion example



After eliminating q_1 :

Conversion example


Conversion example

Check your answer!

Check your answer!

All strings ending in 1 $(0+1)^*1$

$$0*1(00*1+1)*$$

Always ends in 1

$$= 0*1(0*1)*$$

Does every string ending in 1 have this form?

Yes