
Voltage Island-Driven Floorplanning

Qiang Ma and Evangeline F. Y. Young
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Email: {qma,fyyoung}@cse.cuhk.edu.hk

Abstract— Energy efficiency has become one of the most important
issues to be addressed in today’s System-on-a-Chip (SoC) designs.
One way to lower the power consumption is to reduce the supply
voltage. Multi-supply voltage (MSV) is thus introduced to provide higher
flexibility in controlling the power and performance trade-off. In region-
based MSV, circuits are partitioned into “voltage islands” where each
island occupies a contiguous physical space and operates at one supply
voltage. These tasks of island partitioning and voltage level assignments
should be done simultaneously in the floorplanning process in order to
take those important physical information into consideration. In this
paper, we consider this core-based voltage island driven floorplanning
problem including islands with power down mode, and propose a
method to solve it. Given a candidate floorplan solution represented by
a normalized Polish expression, we are able to obtain optimal voltage
assignment and island partitioning (including islands with power down
mode) simultaneously to minimize the total power consumption. Simulated
annealing is used as the basic searching engine. By using this approach,
we can achieve significant power savings (up to 50%) for all data sets,
without any significant increase in area and wire length. Our floorplanner
can also be extended to minimize the number of level shifters between
different voltage islands and to simplify the power routing step by placing
the islands in proximity to the corresponding power pins.

I. INTRODUCTION

Energy efficiency has become one of the most important issues to
be addressed in today’s System-on-a-Chip (SoC) designs because of
the increasing power density and the wide use of portable systems.
There are two kinds of power consumption: dynamic and leakage.
Dynamic power is caused by the charging and discharging of the
load capacitance during switching. Leakage power is due to the
sub-threshold currents when a device is turned off. There are many
techniques to reduce power consumption. One of the most effective
methods is by lowering the voltage supply. Multi-voltage design is
thus introduced to provide “just enough” power to support different
functional operations. Both dynamic and leakage power consumption
can be reduced in multi-voltage designs. For dynamic power, since
the consumption is proportional to the square of the voltage, a minor
adjustment to the voltage level can result in a significant reduction.
For leakage power, the consumption can be reduced by powering
down parts of a chip when the functions are inactive.

Multi-voltage designs involve the partitioning of a chip into areas
called “voltage islands” that can be operated at different voltage
levels, or be turned off when idle. With the use of voltage islands,
the chip design process is becoming more complicated. We need to
solve the problems of island partitioning, voltage assignment and
floorplanning simultaneously under area, power, timing and other
physical constraints. These problems must be solved at the same time
since their results will significantly affect each other. In addition,
there are other issues to be considered. For example, the voltage
islands should be placed close to the power pins in order to minimize
the power routing complexity and the IR drop. Besides, each island
requires level shifters to communicate with others and overhead in
area and delay will be resulted. These additional issues have created
many new challenges in generating floorplans for designs using
voltage islands. An example is shown in Figure 1. In this example,

the possible voltage levels of each core and groupings of similar
inactive periods (to generate islands with power down mode) are
shown on the right hand side. Assuming that the number of islands
is three, one possible partitioning is to group cores A, B and C
as one island operating at voltage 1.0V, core D on its own as one
island at voltage 1.5V and cores I , K, L and M as one island at
1.2V. Notice that other cores will be operated at the chip-level voltage
and the island containing I , K, L and M can be powered down
during sleep. A candidate floorplan solution for such a partitioning
and voltage assignment is shown on the left hand side.

There are several previous papers addressing similar voltage island-
driven floorplanning problem. One recent work is by Lee et al. [3].
Given a netlist without reconvergent fanouts, voltage assignment
(with two voltage levels of VDDL and VDDH) is first performed
on the netlist according to the timing requirement before the floor-
planning step. Level shifters are then inserted into the nets according
to the voltage assignment result when a VDDL block drives a VDDH
block. At last, a power-network aware floorplanner is invoked to
pack the blocks such that the power-network resource, estimated as
the sum of the perimeters of the voltage islands, will be minimized.
As a result, blocks in the same voltage island will be placed close
to each other. In their approach, the voltage assignment step and
the floorplanning step are done separately. Hu et al. [2] have also
considered this simultaneous island partitioning, voltage assignment
and floorplanning problem in SoC designs. Simulated annealing is
used as the basic searching engine. Given a candidate solution,
perturbations are performed to split an island, change the voltage
of an island or change all the islands of one voltage to another
voltage. Chip-level floorplanning is then performed to find a floorplan
in which compatible islands (islands with the same voltage) are likely
to be adjacent. An island merging process is then applied to reduce
the number of islands. At the end, island-level floorplanning is done
to each newly formed island to shrink its area. The whole process
is repeated until a satisfactory solution is obtained. Their approach
does not consider islands with power down mode and the search
space is large. Mak and Chen [7] have also addressed this problem
on SoC designs. Given a floorplanning input, the voltage assignment
and island partitioning problem is formulated as a 0-1 integer linear
program. In their approach, a few candidate floorplan solutions are
generated based on metrics like area and interconnect cost, then
voltage assignment and partitioning are performed on these candidate
floorplans using the ILP approach to identify the best candidate
solution. A fragmentation cost (number of adjacent cores operating
at different voltages) is used to model the power network complexity
but this cost is not related to the number of islands directly. There
are other works addressing issues like reliability [4] and temperature
reduction [5] in SoC voltage island partitioning and floorplanning.
For island partitioning, Wu et al. [6] and Ching et al. [8] minimized
the number of voltage islands after placement.

In this paper, we propose a floorplanning method for SoC designs
that is tightly integrated with the island partitioning and voltage

1-4244-1382-6/07/$25.00 ©2007 IEEE 644

assignment steps. Simulated annealing is used with normalized Polish
expression [1] as the floorplan representation.1 Normalized Polish
expression is used because the slicing tree is a suitable data structure
on which island partitioning and voltage assignment can be done
optimally and efficiently given one slicing floorplan. Simulated an-
nealing is adopted to perform the random search. In each step of
the annealing process, a candidate floorplan solution is generated
on which optimal island partitioning and voltage assignment will be
performed simultaneously to compute the smallest possible power
consumption for that candidate floorplan solution. This is done by
dynamic programming with an efficient cost table update technique.
In this way, we can integrate the three steps closely, and reduce the
searching space (instead of doing voltage assignment by the “move”
operations of the annealing process as in [2]). In this floorplanning
framework, we can also generate islands with power down mode to
optimize the total power consumption further. Our floorplanner can
be extended to consider the number of level shifters and the ease
of power network routing (proximity to power pins and shapes of
voltage islands). By using this approach, we can achieve significant
power savings (up to 50%) for all data sets, without any significant
increase in area and wire length.

We will define the problem in section II, then the methodology
used will be discussed in section III. Experimental results will be
reported in section IV before the conclusion and discussion in the
last section.

II. PROBLEM FORMULATION

In this problem, we are given a set of n cores with areas
A1, A2 . . . An and aspect ratio bounds [li, ui] for i = 1 . . . n. Each
core i is associated with a power table Ti that specifies the legal
voltage levels for the core and the corresponding average power
consumption values. The power table of a core can be characterized
by a core designer. For example, they can run simulations that try
applying different supply voltages to the core, and a voltage level
will be regarded as a legal one as long as the timing assertion2 can
be satisfied [2]. The power consumption corresponding to each legal
voltage can then be estimated. In this work, we compute the power
cost of a core i operated at voltage v as v2Ai. We are also given a set
of m nets {N1, N2 . . . Nm} and a set of groupings {G1, G2 . . . Gp}
between the cores such that the cores in each group Gi have similar
inactive periods and will have a si% saving in power consumption
if they are grouped together as an island with power down mode.

Given a constant K and a chip-level voltage Vc, our goal is to
generate a floorplan F with K rectangular voltage islands so that the
total power consumption is minimized. Each island will be supplied
with the lowest possible voltage level common to all the cores in
that island while the remaining cores not assigned to any island will
be operated at the chip-level voltage. Islands containing blocks all
belonging to the same group Gi can have a further reduction in
power consumption by si% by shutting it down during sleep.

III. METHODOLOGY

Our floorplanner is based on simulated annealing using normalized
Polish expression (NPE) as the representation. For each candidate
floorplan solution represented by an NPE, we will perform an optimal
island partitioning and voltage assignment to maximize the total
power saving. The cost function of the annealing process is to

1Since many input cores have flexibilities in shape at this stage, the
restricted use of slicing floorplan can also give satisfactory results.

2We assume that the given voltage levels of each core can meet timing, so
we do not consider timing explicitly in our formulation.

A: {1.0V, 1.1V}

E: {1.1V, 1.5V}

B: {1.0V, 1.1V, 1.2V}
C: {1.0V, 1.1V}
D: {1.5V}

F: {1.1V, 1.2V}
G: {1.1V, 1.2V}

H: {1.0V, 1.1V}
I: {1.2V}
J: {1.0V, 1.1V}

K: {1.1V, 1.2V}
L: {1.1V, 1.2V}

M: {1.1V, 1.2V}

Idle State Grouping:
Group 1: {D, I, K, L, M}

Group 2: {H, J}
Power saving = 50%

Power saving = 30%

F

C

A
I

M

D

HG

B

E

KL

J

Fig. 1. An example of the voltage island driven floorplanning Problem.

minimize a weighted sum of the area, wire length and power. We can
also extend our floorplanner to consider level shifters and proximity
to power pins. Details will be given in the following sections.

A. Optimal Island Partitioning and Voltage Assignment

Given a candidate floorplan solution represented by a normalized
Polish expression, we can construct the corresponding slicing tree
and perform optimal island partitioning and voltage assignment on
it. This can be done efficiently by dynamic programming. The pseudo
code is shown below:

Pseudocode TreePart(u, k)
// Partition the subtree under node u into k subtrees to
// minimize the total power consumption such that the cores
// (leaf nodes) in each of these k subtree will form one island
// operated at one common voltage possibly with power down
// mode while the remaining cores not belonging to any of
// these k subtrees will be operated at the chip level voltage Vc

1. min cost = ∞
2. If k is 0, return(power(u)).
3. If cost table[u][k] is updated, return(cost table[u][k]).
4. If k is 1,
5. C1 = TreePart(lchild(u),1) + power(rchild(u))
6. C2 = TreePart(rchild(u),1) + power(lchild(u))
7. C3 = nonSubtree(u, 1)
8. C4 = cost({u})
9. min cost = min{C1, C2, C3, C4}
10. Store min cost into cost table[u][1].
11. Return (min cost).
12.Else
13. min cost = nonSubtree(u, k)
14. For i = 0 to k
15. C = TreePart(lchild(u), i)+

TreePart(rchild(u), k − i)
16. If min cost > C, min cost = C
17. Store min cost into cost table[u][k].
18. Return(min cost).

At the beginning, TreePart(root,K) is called to obtain an
optimal island partitioning and voltage assignment of the whole
floorplan, where root is the root of the slicing tree corresponding
to the normalized Polish expression under consideration and K is
the number of voltage islands we want to produce. When k is zero
(line 2), no voltage island is formed in the subtree of u, so the power
consumption power(u) will be computed as (Vc)

2A{u}, where Vc

is the chip-level voltage and A{u} is the total area of the cores in
the subtree of u. For non-zero k, we will first check whether this

645

optimal cost has been computed before and is available in the table
for immediate return (line 3). If this value is not available, we will
consider the situations when k is one and when k is larger than
one separately. When k is one (line 4), there are four cases: case 1
(line 5), we continue to search for a voltage island in the left subtree
of u and let the right subtree operates at the chip-level voltage Vc;
case 2 (line 6), similarly, we look for a voltage island in the right
subtree of u and let all the cores in the left subtree work at Vc;
case 3 (line 7), use the function nonSubtree() to group the cores
across a number of subtrees along the left tree branches of u into a
voltage island (details will be given in the next sub-section); case 4
(line 8), the entire subtree u is regarded as one voltage island and
the power consumption cost({u}) will be computed as (v{u})2A{u},
where v{u} is the smallest common voltage among all the cores
in the subtree rooted at u and A{u} is the total area of the cores
in the subtree rooted at u. We will compute the costs of the four
cases respectively, and the smallest one will be returned and recorded
in the table for future use. When k is more than one (line 12),
we will recursively call the procedure TreePart() to exhaust all
the possible partitionings of the subtree of u, including both inter-
subtree partitionings (line 13) and intra-subtree ones (line 14-16). The
minimum one will be returned and recorded in the table.

1) Voltage Islands in Non-subtrees: Notice that a voltage island
(a rectangular region) may be formed by a set of contiguous right
subtrees linked by internal nodes of the same operational type.
An example is shown in Figure 2. Therefore, we need the proce-
dure nonSubtree() to enumerate these cases. The pseudo code of
nonSubtree() is shown in the following. In this procedure, we ex-
haust all the cases of forming one island with two or more contiguous
right subtrees and the one with the smallest power consumption will
be returned. On line 7, we compute the cost of grouping the right
subtrees in S as one island and having the remaining k − 1 islands
in the last left subtree (subtree D in the example of Figure 2).

Pseudocode nonSubtree(u, k)
// Exhaust the cases of forming one island by a number
// of contiguous right subtrees, while the remaining k − 1
// islands are formed in the remaining left subtree.

1. min cost = ∞
2. S = rchild(u)
3. op = operator(u)
4. While operator(lchild(u)) is op,
5. u = lchild(u)
6. S = S ∪ rchild(u)
7. C = TreePart(lchild(u), k − 1) + cost(S)
8. If min cost > C, min cost = C
9. Return(min cost).

2) Proof of Optimality: The procedure TreePart() will give the
optimal partitioning to minimize the total power consumption. Given
a candidate floorplan solution represented by a normalized slicing tree
rooted at u and the number of voltage islands required k, TreePart()
will exhaust all the possible cases recursively and return the best
solution. When k is zero, there is only one case that all the cores
in the tree rooted at u (called Tu) are operated at the chip voltage.
When k is one, there is only one voltage island among all the cores
in Tu. Three of the cases are obvious: (1) the island is in the left
subtree of u, (2) the island is in the right subtree and (3) all the cores
in Tu form one island. There is still a case that the island is formed
between the left and right subtrees of u. This may happen only when

+

+

+

Same operator

Subtrees
along the

left tree branches

A, B and C, not in one subtree, can form one voltage island.

D
D

B

C

A

C

B

A

Fig. 2. An example of forming island across subtrees.

two consecutive internal nodes are of the same type (both “+” or both
“*”). In a normalized slicing tree, an internal node will not be of the
same type as its right child, so this will happen only along the left
branch. nonSubtree() will exhaust this last case of forming one island
by a set of contiguous right subtrees along the left branch rooted at
u. When k is larger than one, the cases are similar to those when k
is one and TreePart() will exhaust all different ways of distributing
the k islands between the left and right subtrees of u and the case of
having an island lying between the two subtrees. Since TreePart() has
exhausted all different cases of forming k islands in a given candidate
floorplan, the solution returned by TreePart() is optimal.

3) Handling Island with Power Down Mode: Voltage islands with
power down mode can be easily handled in our framework. When
computing the power consumption of an island formed with the cores
in the set of subtrees rooted at a node in set X by calling cost(X)
in the procedures TreePart() and nonSubtree(), we only need to
check if all the cores within this island belong to one group Gi for
some i = 1 . . . p. If this is true, the island formed can be shut down
during sleep and have an additional power saving of si%. In this
way, our floorplanner can give optimal island partitioning and voltage
assignment taking into account islands with power down mode given
any candidate floorplan solution.

4) Speedup in Implementation and Complexity: A table
cost table[v][j] for j = 1 . . . K is kept at each internal node
v of the slicing tree to record the optimal power consumption of
partitioning the cores in the subtree rooted at v into j islands. This
data structure can help to minimize the number of recursive calls
and to avoid repetitive computations. It can be seen from the the
procedure TreePart() that whenever we want to find the optimal
power saving at a node u with k voltage islands, we will first
check whether this is computed before and the required information
is available from cost table[u][k]. If it is available, the optimal
value is returned immediately (line 3). Otherwise, it is computed
recursively and the computed value will be saved in the cost table
to be used in some later steps (line 10 and 17). After a move in the
annealing process, only a small part of the whole slicing tree will be
changed and we only need to update the tables of the affected nodes
once. The affected nodes will be those lying on the paths from the
modified parts of the tree to the root. For those affected nodes, the
corresponding cost tables will be flagged as “not updated” and will
be updated during the recursive calls.

For each affected node v, we need to update all the K entries
of its table once. Since each entry is just updated once, the time
complexity will be the same as that of updating all the affected nodes
in a bottom-up fashion from the leaves to the root. If the nodes were

646

updated from the leaves to the root, the time taken to update a table
at a node v was O(K2), because there were K entries and each
entry took O(K) time (the tables of v’s children have already been
updated). Therefore the total time to perform all the updates in each
iteration is (number of affected nodes)×O(K2). This is O(K2n)
in the worst case, and is (K2 log n) on average.

5) Varying Background Chip-level Voltage: In the problem formu-
lation, it is assumed that a background chip-level voltage Vc is given.
Our approach can also be applied when there is no such voltage and
the final chip-level voltage is determined by the minimum feasible
voltage level among all the cores which are not grouped into any
voltage island. To achieve this, we only need to expand the table
at each node L times where L is the number of possible voltage
levels among all the cores. In this case, each entry cost table[v][j][Vl]
will be the optimal power consumption of partitioning the cores in
the subtree rooted at v into j islands when the background chip-
level voltage is Vl where 1 ≤ l ≤ L. Notice that all entries in the
tables corresponding to different chip-level voltages can be updated
simultaneously during the recursive calls and the run time is only
linearly scaled up by L. This is very affordable in practice since the
number of possible voltage levels L is usually small.

B. Moves

There are three kinds of moves to change the normalized Polish
expression of a candidate floorplan solution in the annealing process.
This set of moves has been proven to be complete to change any
arbitrary solution to any other arbitrary solution.

1) Swap - Swap two adjacent blocks.
2) Complement - Complement a chain of operators.
3) SwapOp - Swap a block with its adjacent operator.

C. Cost Function

We use the cost function ψ = A + λwW + λpP to evaluate a
floorplan where A is the area of the floorplan, W is the total wire
length estimated by the half perimeter bounding box method and P
is the total power consumption. The parameters λw and λp are the
weights which will be set at the beginning of the annealing process
by random walks to make the three terms similar in weighting. This
cost function can be modified to consider the fixed-outline constraint
by replacing the area term A (since we are not minimizing the area)
by λ∞(max{0, w − W ′} + max{0, h − H ′}) where λ∞ is a large
positive constant, w and h are the width and height of the candidate
floorplan solution, and W ′ and H ′ are the fixed width and height
required for the final floorplan design.

IV. EXPERIMENTAL RESULTS

We have done experiments on the GSRC floorplanning bench-
marks. Since no voltage information is provided in those benchmarks,
we have randomly generated the voltage levels for each block from
the set {1.0V, 1.1V, 1.2V, 1.3V, 1.5V} and 1.5V is assumed to be the
chip-level voltage. In each data set, groups of blocks with similar
inactive periods are also randomly generated. Table I shows the
details of each data set, the fourth column indicates the grouping
information of similar inactive periods, e.g., for n30, there are two
groups: one contains five cores with an additional 30% power saving
if being grouped together, and the other one contains five cores
with an additional 20% power saving if being grouped together. Our
algorithm is implemented in the C programming language and all the
experiments were performed on a Sun Blade 2500 with a 1.6 GHz
CPU and 2 GB RAM.

TABLE I
DATA SETS

Data Block Net Groups
No. No.

n10 10 118 3(30%)
n30 30 349 5(30%), 5(20%)
n50 50 485 5(50%), 5(30%), 5(20%)

n100 100 885 10(30%), 5(50%), 6(40%)
n200 200 1585 10(50%), 10(40%), 9(30%), 9(20%)
n300 300 1893 15(60%), 15(50%), 15(40%), 15(30%)

The results are shown in Table III. For each data set, we performed
voltage island driven floorplanning with the number of voltage islands
generated ranges from zero to six. We can see from the results that
up to 50% power saving can be achieved without any significant
degradation in area and wire length. In addition, the speed is very
acceptable and promising. Some resultant floorplans are shown in
Figure 3 and Figure 4. Figure 3 is a resultant packing of data set
n100, with four voltage islands generated. In Figure 4, we aim at
testing a particular situation in which some cores can be operated
at very low voltages (compared with the chip-level voltage). We use
playout of the MCNC benchmark as the testing data set, and assign
0.6V to cores {2-9} and 0.8V to cores {12-19} respectively as their
minimum working voltages, while the other cores’ working voltages
are all set to 1.5V. The floorplanning procedure is then performed
with K = 2 and 1.5V being the chip-level voltage. In the result, two
islands are generated as expected, one with cores {2,3,4,8,9} and the
other one with {12,13,14,15,17}. The cores {5,6,7} and {16,18,19}
are not included in the islands due to other factors like interconnect
and area. Their sizes are small and will not cause large power wastage
even if being operated at a higher voltage.

Fig. 3. One resultant floorplan of n100 with four voltage islands.

In order to compare with the previous related work on SoC
designs [7], we have done another set of experiments with the
benchmarks provided by the authors of [7]. In their data sets,
the available voltage levels for each cell are chosen from the set
{1.1V, 1.3V, 1.5V, 1.8V }. The comparisons are displayed in Table II.
Note that two different comparisons have been done, one of which
enables the idle island option while the other disables it. Result shows
that our approach is much more efficient and is able to save more
power in most cases, while with less area overhead. In this set of
experiments, we set K = 4 for all data sets, i.e., four voltage islands
are generated for each test case.

A. Extension to Minimize Level Shifters

Level shifters (LS) are needed for connections between two blocks
in different power domains. These level shifters will lead to area
and delay overhead and should be minimized. We can extend our

647

TABLE II
COMPARISONS WITH A PREVIOUS WORK [7]

Data Power Saving Dead Space Run Time*
(%) (%) (s)

Set with without [7] with without [7] with without [7]
idle island idle island idle island idle island idle island idle island

apte 52.47 47.91 53.78 1.264 1.232 3.422 3.016 3.002 5.482
xerox 50.21 41.76 22.85 1.137 1.085 5.259 3.235 3.185 7.079

hp 47.85 39.19 25.37 1.324 1.318 5.700 3.827 3.367 122.9
ami33 54.26 46.96 44.12 3.865 3.582 5.784 40.69 36.84 89.39
ami49 52.63 45.50 41.13 3.791 3.805 6.440 98.36 91.23 90.46
2xerox 50.86 41.76 33.53 2.062 3.067 3.765 10.64 9.026 74.75

2hp 55.13 39.19 17.47 2.451 2.238 5.650 12.74 11.12 26.86
ami75 49.32 40.05 39.06 4.379 4.871 6.330 276.1 257.2 316.5
ami99 48.68 45.57 41.16 6.388 7.036 7.666 441.4 428.3 684.4

ami200 43.87 39.88 41.90 8.116 8.011 10.88 1657 1598 3851
ami300 42.54 40.54 40.69 10.08 11.42 12.02 3369 3243 7380
Average 49.78 42.57 36.46 4.078 4.333 6.655 537.8 516.7 1150

*[7] is run on a Linux machine with a 2.1 GHz CPU and 4 GB RAM.

TABLE III
EXPERIMENTAL RESULTS WITH IDLE ISLANDS

Data K Total Power Total Dead Wire Idle Run Data K Total Power Total Dead Wire Idle Run
Power Saving Area Space Length Island Time Power Saving Area Space Length Island Time

(%) (%) (×10) No. (s) (%) (%) (×10) No. (s)
n10 0 498718 0.000 223588 0.854 1832 0 3.236 n100 0 417928 0.000 187899 1.146 17638 0 325.8

1 406653 18.47 223918 1.003 1865 1 3.259 1 365143 12.63 190173 2.338 17962 0 333.7
2 357723 28.28 224457 1.238 1986 1 3.343 2 350558 16.12 195880 5.174 18267 0 367.6
3 303755 39.16 224546 1.277 1929 1 3.351 3 327864 21.55 196858 5.645 18663 1 396.7
4 277569 44.35 224335 1.184 1897 1 3.374 4 307553 26.41 198599 6.472 18135 1 438.1
5 268342 46.22 224314 1.175 2106 1 3.388 5 282686 32.36 200187 7.214 19579 2 451.5
6 267145 46.44 224355 1.193 2075 1 3.454 6 250064 40.17 200429 7.326 18851 2 492.4

n30 0 469330 0.000 211720 1.476 8659 0 29.65 n200 0 419223 0.000 188092 0.942 21501 0 1489
1 322429 31.30 214040 2.543 8823 0 31.34 1 382449 8.761 195633 4.762 22419 0 1523
2 251420 46.43 213453 2.278 8425 1 32.47 2 363843 13.21 196582 5.224 22946 1 1568
3 243300 48.16 214763 2.874 9016 1 32.83 3 350804 16.32 199979 6.831 23017 1 1626
4 237621 49.37 216481 3.645 8969 2 37.14 4 325484 22.36 203808 8.586 22838 1 1648
5 233623 50.22 220572 5.432 9113 2 39.88 5 295216 29.58 206267 9.670 23519 1 1723
6 228047 51.41 217022 3.885 9084 2 42.64 6 271572 35.22 209939 11.26 23485 2 1838

n50 0 446802 0.000 200465 0.941 15324 0 90.26 n300 0 668290 0.000 302007 1.652 27924 0 2843
1 326612 26.90 200852 1.132 16233 0 94.25 1 624303 6.582 317022 6.310 28318 0 2869
2 286310 35.92 202101 1.743 17659 0 95.73 2 598988 10.37 325061 8.627 28254 0 2913
3 255838 42.74 202332 1.855 16983 1 95.46 3 563502 15.68 326493 9.028 29247 1 2966
4 229835 48.56 202875 2.118 17241 2 100.3 4 515518 22.86 331086 10.29 28761 1 3202
5 217369 51.35 202495 1.934 16815 3 113.7 5 483508 27.65 335348 11.43 29388 1 3635
6 216788 51.48 206309 3.747 17927 2 134.1 6 453167 32.19 342858 13.37 29289 2 3828

42

43

44

45

48

46
47

49

35

41

40

39

13

37

36

2

56

29

34

5

62

61

14

59

17

57

5512

53
52

51

50

15

60

3854

11

10

98

7
6

4 3

1

16

33

32

31
30

28
27

26

25

24

23
22

21

20

19

18

58

Fig. 4. One resultant floorplan of playout with some blocks operated at very
low voltages.

floorplanner to minimize the usage of level shifters by having an
additional term in the cost function (with a weight determined by
random walk before the annealing process) to represent the number of
level shifters used. We assume that a level shifter is needed whenever

a wire is connecting two blocks operating at different voltages3. For
example, if a net connects a source in voltage island A to three
sinks, two in island B and one in island C, two level shifters will be
inserted, one between A and B and one between A and C. Since the
operating voltage of each block is known after the voltage assignment
and voltage island partitioning procedure, the number of level shifters
needed can be counted trivially. The result is shown in Table IV. In
this set of experiments, the numbers of voltage islands K are all
four. The results have shown that our method can reduce the number
of level shifters by 67.1% on average with some penalty in power
saving and run time.

B. Extension to Consider Power Network Routing

The voltage islands should be placed in proximity to the power
pins to simplify the power routing step and to minimize the IR drop.
The power network resources can be modeled by the sum of the half
perimeters of the islands [3]. We can also extend our floorplanner to
consider these power network issues by having additional terms in the
cost function (with weights determined by random walk) to represent

3We can also consider adding a level shifter only when one core with a
lower voltage level drives another core with a higher voltage level.

648

TABLE IV
MINIMIZATION OF LEVEL SHIFTER NUMBER

Data No. of LS Power Saving (%) Run Time (s)
w/o LS with LS w/o LS with LS w/o LS with LS

Opt. Opt. Opt. Opt. Opt. Opt.
n10 43 27 44.35 38.25 3.374 4.635
n30 79 45 49.37 35.89 37.14 42.82
n50 192 137 48.56 40.63 100.3 108.9

n100 267 62 26.41 17.82 438.1 440.6
n200 345 96 22.36 15.34 1648 1702
n300 569 126 22.86 12.86 3202 3228
Avg 249.2 82.1 35.65 26.80 904.8 920.2

Diff(%) -67.1 -24.82 +1.7

(1) the total distance of the voltage islands from their respective
power pins, and (2) the sum of the half perimeters of the islands.
In our experiments, we assume that the positions of the K power
pins are given. In each iteration of the annealing process, each island
is matched to a power pin such that the total distance between them is
the smallest possible. This total distance and the sum of the islands’
half perimeters will be minimized during the annealing process.

Two resultant packings of the n300 data set consisting of 300
blocks are shown in Figure 5, and they are produced with the
fixed-outline constraint. The packing in Figure 5(a) is obtained by
the original floorplaner, without taking into consideration the power
network issues, while the one in Figure 5(b) is obtained by this
extended version. There are four power pins located at the center of
each boundary in this example. We can see from the figures that the
four islands are shifted to the sides of the chip containing the pins in
order to be located closer to their respective power pins. Besides the
islands are closer to square in shape that will favor IR drop reduction
and power network routing.

V. CONCLUSION

In this paper, we have proposed a simulated annealing-based
approach for the floorplanning problem with simultaneous island par-
titioning and voltage assignment. The three factors area, wire length
and power consumption of the resultant floorplan are concurrently
taken into consideration. The experiment results have shown that we
are able to achieve a significant power saving of up to 50% for the
testing data sets.

In addition, when extended to minimize the number of level
shifters, our method can reduce 67.1% of the LS used on average,
with some penalty in power saving. It also functions well to generate
voltage islands in proximity to their corresponding power pins, by
having additional terms in the cost function to minimize the total
distance between voltage islands and power pins, and to restrict the
islands to be more square-like in shape.

REFERENCES

[1] D. F. Wong and C. L. Liu. A New Algorithm for Floorplan Design.
Proceedings of the 23rd ACM/IEEE Design Automation Conference,
pages 101–107, 1986.

[2] J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu. Architecting Volt-
age Islands in Core-based System-on-a-chip Designs. Proceedings

(a) Without considering proximity to power pins

(b) Considering proximity to power pins

Fig. 5. Resultant floorplans considering proximity constraints to power pins

of the 2004 International Symposium on Low Power Electronics and
Design, pages 180–185, 2004.

[3] W.-P. Lee, H.-Y. Liu, and Y.-W. Chang. Voltage Island Aware
Floorplanning for Power and Timing Optimization. Proceedings of
the International Conference on Computer-Aided Design, 2006.

[4] S. Yang, W. Wolf, N. Vijaykrishnan and Y. Xie. Reliability-aware
SoC Voltage Islands Partition and Floorplan. Proceedings of the
Emerging VLSI Technologies and Architectures, 2006.

[5] W.-L. Hung, G.M. Link, Y. Xie, N. Vijaykrishnan, N. Dhanwada
and J. Conner. Temperature-aware Voltage Islands Architecting in
System-on-chip Design. Proceedings of the Computer Design, 2004.

[6] H. Wu, I.-M. Liu, D.-F. Wong, and Y. Wang. Post-Placement Voltage
Island Generation under Performance Requirement. Proceedings of
the International Conference on Computer-Aided Design, 2005.

[7] Wai-Kei Mak and Jr-Wei Chen. Voltage Island Generation under
Performance Requirement for SoC Designs. Proceedings of the Asian
South Pacific Design Automation Conference, 2007.

[8] Royce L.-S. Ching and Evangeline F.-Y. Young. Post-placement Volt-
age Island Generation. Proceedings of the International Conference
on Computer-Aided Design, 2006.

649

