Lecturer: Siu On Chan

Notes 13: Sauer-Shelah lemma

1. Sauer-Shelah Lemma

Claim 1. $|\Pi_{\mathcal{C}}(S)| \leq |\{T \subseteq S \mid \mathcal{C} \text{ shatters } T\}|$

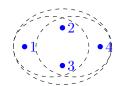
Proof. Apply following Proposition with $\mathcal{F} = \Pi_{\mathcal{C}}(S)$

Note that T is shattered by \mathcal{C} if and only if T is shattered by $\mathcal{F} = \Pi_{\mathcal{C}}(S)$

Proposition 2 (Pajor). A finite family \mathcal{F} of subsets over S shatters at least $|\mathcal{F}|$ subsets, i.e.

$$|\mathcal{F}| \leqslant \#subsets \ \mathcal{F} \ shatters = |\{T \subseteq S \ | \ \mathcal{F} \ shatters \ T\}|$$

e.g.



$$\mathcal{F} = \left\{ egin{array}{l} \{1,2,3\}, \\ \{2,3,4\}, \\ \{1,2,3,4\} \end{array} \right\}, \qquad \mathcal{F} ext{ shatters } \{1\}, \{4\}, \emptyset$$

Proof of Proposition. Base case $|\mathcal{F}| = 0$: trivial

Base case $|\mathcal{F}| = 1$: \mathcal{F} shatters \emptyset

Induction step for $|\mathcal{F}| > 1$: Fix $x \in S$ belonging to some but not all of the sets in \mathcal{F} Split \mathcal{F} into $\mathcal{F}_{\ni x}$ and $\mathcal{F}_{\not\ni x}$ (those containing x and those do not)

Induction hypothesis implies $\mathcal{F}_{\ni x}$ shatters $\geqslant |\mathcal{F}_{\ni x}|$ subsets, $\mathcal{F}_{\not\ni x}$ shatters $\geqslant |\mathcal{F}_{\not\ni x}|$ subsets

$$|\mathcal{F}| = |\mathcal{F}_{\ni x}| + |\mathcal{F}_{\not\ni x}| \leqslant \text{\#subsets } \mathcal{F}_{\ni x} \text{ shatters} + \text{\#subsets } \mathcal{F}_{\not\ni x} \text{ shatters}$$

Remains to show right-hand-side \leq #subsets \mathcal{F} shatters

Any set shattered by $\mathcal{F}_{\ni x}$ cannot contain x, since all sets in $\mathcal{F}_{\ni x}$ contain x. Any set shattered by $\mathcal{F}_{\not\ni x}$ cannot contain x, since all sets in $\mathcal{F}_{\not\ni x}$ do not contain x. Thus any set of the form $T \cup \{x\}$ cannot be shattered by $\mathcal{F}_{\ni x}$ or $\mathcal{F}_{\not\ni x}$

If T is shattered by only one of $\mathcal{F}_{\ni x}$ or $\mathcal{F}_{\not\ni x}$, T contributes 1 to #subsets \mathcal{F} shatters If T is shattered by both $\mathcal{F}_{\ni x}$ and $\mathcal{F}_{\not\ni x}$, then T and $T \cup \{x\}$ are both shattered by \mathcal{F} T and $T \cup \{x\}$ together contribute 2 to #subsets \mathcal{F} shatters

Lemma 3 (Perles–Sauer–Shelah). When
$$VCDim(\mathcal{C}) = d$$
, $\Pi_{\mathcal{C}}(m) \leq \binom{m}{0} + \binom{m}{1} + \cdots + \binom{m}{d}$

Proof. By above Claim, at most $\sum_{0 \le k \le d} \binom{m}{k}$ choices for shattered subset T

No subset larger than $d = VCDim(\mathcal{C})$ is shattered

Corollary 4. When $VCDim(\mathcal{C}) = d$ and $m \ge d$, $\Pi_{\mathcal{C}}(m) \le \left(\frac{em}{d}\right)^d$

Proof. Want to show $\sum_{0 \le k \le m} {m \choose k} \le \left(\frac{em}{d}\right)^d$ for $m \ge d$

$$\left(\frac{d}{m}\right)^d \sum_{0 \leqslant k \leqslant d} \binom{m}{k} \leqslant \sum_{0 \leqslant k \leqslant d} \left(\frac{d}{m}\right)^k \binom{m}{k} \leqslant \sum_{0 \leqslant k \leqslant m} \left(\frac{d}{m}\right)^k \binom{m}{k} = \left(1 + \frac{d}{m}\right)^m \leqslant (e^{d/m})^m = e^d$$

First inequality due to $d/m \leq 1$

Second inequality due to $d \leq m$

Next equality is binomial theorem

Last inequality is $1 + x \leq e^x$ for all real x

2. Consistent Hypothesis

Theorem 5. Given m independent labelled samples, with prob. $\geq 1 - \delta$, any hypothesis consistent with all m samples has error at most ε , provided

$$m \geqslant \Omega\left(\frac{1}{\varepsilon}\log\frac{\Pi_{\mathcal{C}}(2m)}{\delta}\right)$$

Compared with notes 09, now C may be infinite

notes 09 was union bound over \mathcal{H} ; now over dichotomies on 2m samples

Proof. Imagine drawing 2m labelled samples $(x^i, c(x^i))$ from $\mathrm{EX}(c, \mathcal{D})$

Call m of the samples S_1 ; the remaining m samples S_2

Event A: Some bad $h \in \mathcal{C}$ is consistent with S_1

Recall h is bad if $\operatorname{err}_{\mathcal{D}}(h,c) \geqslant \varepsilon$; Goal: show $\mathbb{P}[A] \leqslant \delta$

Event B: Some $h \in \mathcal{C}$ is consistent with S_1 but wrong on $\geq \varepsilon m/2$ samples in S_2

Claim 6. If $m \ge 8/\varepsilon$, then $\mathbb{P}[A] \le 2 \mathbb{P}[B]$

Proof of Claim. $\mathbb{P}[B] \geqslant \mathbb{P}[B \text{ and } A] = \mathbb{P}[A] \mathbb{P}[B \mid A]$

Suffice to show $\mathbb{P}[B \mid A] \geqslant 1/2$

When A occurs, fix any bad h, $\mathbb{P}[h \text{ makes at most } \varepsilon m/2 \text{ mistakes on } S_2] \leqslant e^{-\frac{1}{8}\varepsilon m} \leqslant 1/e \leqslant 1/2$

Using Claim, suffices to show $\mathbb{P}[B] \leq \delta/2$

Equivalent way to view B:

- (1) First draw 2m independent labelled samples S
- (2) Randomly split S into two halves, S_1 and S_2 (first and second halves)
- (3) Event B: S_1 contains no mistakes, S_2 contains $\geq \varepsilon m/2$ mistakes

Now fix any 2m instances S and a labeling/dichotomy of S (from $\Pi_{\mathcal{C}}(S)$) from step (1)

Event B is equivalent to $\geq \varepsilon m/2$ mistakes in S all falling in S_2

Combinatorial experiment: 2m balls (S), each colored red (mistake) or blue (correct)

exactly ℓ are red $(\ell \geqslant \varepsilon m/2)$

Randomly put m balls into S_1 and the other m balls into S_2

 $\mathbb{P}[\text{all red balls fall into } S_2 \text{ equals}] = \binom{m}{\ell} / \binom{2m}{\ell}$

 $(=\mathbb{P}[\text{out of } 2m \text{ uncolored balls, randomly color } \ell \text{ of them red and all red balls fall on } S_2])$

$$\frac{\binom{m}{\ell}}{\binom{2m}{\ell}} = \frac{m}{2m} \frac{m-1}{2m-1} \cdots \frac{m-\ell+1}{2m-\ell+1} \leqslant \left(\frac{1}{2}\right)^{\ell}$$

Union bound over at most $\Pi_{\mathcal{C}}(S)$ labellings of S with $\ell \geqslant \varepsilon m/2$:

$$\mathbb{P}[B] \leqslant \frac{\Pi_{\mathcal{C}}(2m)}{2^{\varepsilon m/2}} \leqslant \frac{\delta}{2} \qquad \text{when } m \geqslant \frac{2}{\varepsilon} \log \frac{2\Pi_{\mathcal{C}}(2m)}{\delta}$$

Advantage of Event B over Event A:

union bound over finitely many (in fact $\Pi_{\mathcal{C}}(2m)$) labellings; even when \mathcal{C} is infinite