CSCI4230 Computational Learning Theory Lecturer: Siu On Chan

Spring 2023 Based on Rocco Servedio's notes

Notes 12: Sample Size Bounds via VC dimension

Is C PAC-learnable?

How many samples are needed to learn C? (perhaps with an inefficient algorithm) If C is finite, and if confidence parameter δ is constant (e.g. $\delta = 1/100$) (Consistent Hypothesis Algorithm) then roughly $(\ln |\mathcal{C}|)/\varepsilon$ samples suffice What about lower bound? What if C is infinite?

VC dimension gives almost tight answer!

Let $d = \text{VCDim}(\mathcal{C})$

Any PAC learning algorithm for \mathcal{C} must use $\Omega(d/\varepsilon)$ samples

if $VCDim(\mathcal{C}) = \infty$, needs infinitely many samples (not PAC learnable)

Consistent Hypothesis Algorithm PAC-learns C with $m = O\left(\frac{1}{\varepsilon}\left(d\ln\frac{1}{\varepsilon} + \ln\frac{1}{\delta}\right)\right)$ samples inefficient algorithm

 $C_1 \frac{d}{\varepsilon} \leq \#$ samples to PAC learn (slowly) $\leq C_2 \frac{d \ln(1/\varepsilon) + \ln(1/\delta)}{\varepsilon}$

1. Lower Bounds

Claim 1 (No Free Lunch). Let $d = \text{VCDim}(\mathcal{C})$. Any PAC algorithm to learn \mathcal{C} with $\delta = 1/10$ (say) must use $\geq d/2 = \Omega(d)$ samples on some distribution \mathcal{D}

Proof. Some subset $S = \{x^1, \ldots, x^d\}$ is shattened by CEvery dichotomy $T \subseteq S$ is induced by some $c \in \mathcal{C}$

Idea: Every labeling is possible; d/2 seen samples give no information about unseen samples $\mathcal{D} =$ uniform distribution on S

Pick one of the dichotomies T and some c inducing it (2^d of them) uniformly at random If algorithm A gets d/2 samples and outputs hypothesis h

$$\mathbb{E}_{c}[\operatorname{err}_{\mathcal{D}}(h,c)] \ge \mathbb{P}_{x \sim \mathcal{D}}[x \text{ isn't among the } d/2 \text{ seen samples}] \mathbb{P}_{c}[h(x) \neq c(x)] \ge \frac{d/2}{d} \frac{1}{2} = \frac{1}{4}$$

 $X \stackrel{\text{def}}{=} 1 - \operatorname{err}_{\mathcal{D}}(h, c)$ nonnegative random variable with $\mathbb{E}[X] \leq 3/4$ By averaging argument/Markov inequality,

$$\mathbb{P}[X \ge 7/8] \le \mathbb{E}[X]/(7/8) \le (3/4)/(7/8) = 6/7$$

i.e. $\mathbb{P}[\operatorname{err}_{\mathcal{D}}(h,c) \ge 1/8] \ge 1/7$

Markov inequality:		y:	For any nonnegative random variable X , any $t > 0$,
			$\mathbb{P}[X \geqslant t] \leqslant \mathbb{E}[X]/t$
Reason:	$\mathbb{E}[X]$	=	$\mathbb{P}[X \ge t] \underbrace{\mathbb{E}[X \mid X \ge t]}_{\ge t} + \underbrace{\mathbb{P}[X < t]}_{\ge 0} \underbrace{\mathbb{E}[X \mid X < t]}_{\ge 0} \ge t \mathbb{P}[X \ge t]$

The lower bound can be boosted to $\Omega(d/\varepsilon)$

Claim 2. Let $d = \text{VCDim}(\mathcal{C})$. Any PAC algorithm to learn \mathcal{C} with $\delta = 1/10$ (say) must use $\Omega(d/\varepsilon)$ samples on some distribution \mathcal{D}

Proof. Some subset $S = \{x^1, \ldots, x^d\}$ is shattered by \mathcal{C} \mathcal{D} has weight $1 - 8\varepsilon$ on x^1 and weight $8\varepsilon/(d-1)$ on any of x^2, \ldots, x^d

 x^2, \ldots, x^d are rare: every $1/(8\varepsilon)$ sample is one of them; slows down learning by $\Omega(1/\varepsilon)$ Idea: Again, pick one of the dichotomies T and some c inducing it (2^d of them) uniformly at random If algorithm A gets $\leq (d-1)/2$ of the rare samples (i.e. one of x^2, \ldots, x^d)

then with prob. $\geq 1/7$, A has error $\geq 1/8$ under the uniform distribution over rare samples rare samples have total weight 8ε , so A has error $\geq \varepsilon$ under \mathcal{D}

How likely will $A \text{ get} \leq (d-1)/2$ of rare samples? If $A \text{ uses } \frac{d-1}{32\varepsilon} = \Omega(d/\varepsilon)$ samples $\mathbb{E}[\#\text{rare samples}] = 8\varepsilon \frac{d-1}{32\varepsilon} = \frac{d-1}{4}$ $\mathbb{P}\left[\#\text{rare samples} \geqslant \frac{d-1}{2}\right] \leq e^{-(d-1)/12}$ (Chernoff; $pm = \frac{d-1}{4}, \gamma = 1$) $\leq 1/100 \text{ (say)}$ when $d \geq 100$ Overall with prob. $\geq \frac{99}{100} \frac{1}{7} \geq \frac{1}{10}$, A outputs hypothesis h with error $\geq \varepsilon$

2. Upper bound

If VCDim(C) = d, will show that $O\left(\frac{1}{\varepsilon}\left(d\ln\frac{1}{\varepsilon} + \ln\frac{1}{\delta}\right)\right)$ samples suffice to PAC-learn CSimilar bound as Consistent Hypothesis analysis in notes09

 $\ln |\mathcal{H}|$ replaced with VCDim(\mathcal{C}) $\ln \frac{1}{\epsilon}$

Lower bound proof suggests too many dichotomies induced by C make future prediction difficult Upper bound proof will show that when m is much bigger than d, not many dichotomies are possible Will prove in two steps:

- (1) When m > d, #dichotomies induced on m samples grow only polynomially, i.e. $O(m^d)$
- (2) With few dichotomies, a small number of samples is likely representative and Consistent Hypothesis Algorithm works

Now measure #dichotomies on m samples as follows

Given subset of samples $S \subseteq X$

 $\Pi_{\mathcal{C}}(S) \stackrel{\text{def}}{=} \{ \text{dichotomies induced on } S \text{ by } \mathcal{C} \} = \{ c \cap S \mid c \in \mathcal{C} \}$

e.g. $\mathcal{C} = \{\text{closed intervals}\}, S = \{1, 2, 3\} \subseteq X = \mathbb{R},$

 $\Pi_{\mathcal{C}}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$ (missing $\{1, 3\}$)

Key definition: Growth function / Shatter coefficient

 $\Pi_{\mathcal{C}}(m) \stackrel{\text{def}}{=} \max \# \text{dichotomies induced on subset of } m \text{ samples} = \max\{\Pi_{\mathcal{C}}(S) \mid S \subseteq X, |S| = m\}$ e.g. $\mathcal{C} = \{\text{closed intervals}\}$

 $\Pi_{\mathcal{C}}(1) = 2 \qquad \Pi_{\mathcal{C}}(2) = 4 \qquad \Pi_{\mathcal{C}}(3) = 7$ Note: VCDim(\mathcal{C}) $\geq m \qquad \Longleftrightarrow \qquad \Pi_{\mathcal{C}}(m) = 2^m$ $\Pi_{\mathcal{C}}(m)$ grows exponentially when $m \leq d$ (and that's why insufficient info to learn)
Next lecture: $\Pi_{\mathcal{C}}(m) \leq \left(\frac{em}{d}\right)^d$ grows polynomially in m when m > d and d fixed

